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THE TORSION BOHR COMPACTIFICATION
OF ABELIAN GROUPS

OMAR BECERRA-MURATALLA AND MIKHAIL TKACHENKO

Abstract. Let G be an abstract abelian group and G♮ be the
underlying group G endowed with the torsion Bohr topology, i.e.,
the topology on G induced by the family G~ of all homomorphisms
of G to the torsion subgroup of the circle group T. The completion
of G♮ is known as the torsion Bohr compactification of G and is
denoted by bG. The main results of the article are as follows:
(1) The group bZ is topologically isomorphic to ∆a, the additive
group of a-adic integers with a = (2, 3, 4, 5, . . . ), where Z is the
group of integers. (2) If G is divisible, then bG contains a closed
subgroup topologically isomorphic to a power of the a-adic solenoid
with a = (2, 3, 4, 5, . . . ) multiplied by a product of powers of p-
adic integers, with prime p’s. (3) The group G is divisible if and
only if bG is divisible. (4) If bG is zero-dimensional, then the
group G is reduced, i.e., the unique divisible subgroup of G is {0}.
Furthermore, bG is zero-dimensional if and only if G~ is torsion if
and only if G is isomorphic to Zn ⊕ tor(G) for some integer n ≥ 0,
where tor(G) is a bounded torsion group. (5) If H is a subgroup
of G, then b(G/H) ∼= bG/bH and the same relation is valid for the
Bohr compactification, i.e., b(G/N) ∼= bG/bH.

1. Introduction

The torsion Bohr topology on abelian groups was defined and studied
in [2]. It admits a simple description as follows. Let G be an abstract
abelian group. The coarsest topological group topology on G that makes
every homomorphism of G to the torsion subgroup of the circle group T
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16 O. BECERRA-MURATALLA AND M. TKACHENKO

continuous is called the torsion Bohr topology of G. The group G endowed
with this topology is denoted by G♮.

Let rG be the diagonal product of the family G~ of the homomorphisms
of G to tor(T), the torsion subgroup of T. Then rG is a homomorphism of
G to the product group tor(T)G~

. It is shown in [2, Theorem 2.1] that rG
is a monomorphism, i.e., for every x ∈ G distinct from the neutral element
of G, there exists h ∈ G~ such that h(x) ̸= 1. The closure in TG~

of the image rG(G), considered with the topology inherited from TG~
,

is a compact Hausdorff topological group which will be denoted by bG.
The group bG is called the torsion Bohr compactification of G. Further,
rG : G→ bG is a monomorphism of G onto a dense subgroup of bG which
is topologically isomorphic to G♮ [2, Theorem 2.1 and Corollary 2.2].

Let G be an abstract or topological group. We denote by G∗ the
group of all homomorphisms of a discrete group G to T. The coarsest
topological group topology on G in which all homomorphisms of G to T
are continuous is called the Bohr topology of G. The group G endowed
with the Bohr topology isG#. The completion ofG# is known as the Bohr
compactification ofG and is denoted by bG. The group bG is characterized
by the property that every homomorphism of G (identified with a dense
subgroup of bG) to a compact topological groupK extends to a continuous
homomorphism of bG to K. The Bohr topology is a subject of a thorough
study and it appears in different areas of mathematics (see [5], [7], [9],
[11], [12], just to mention a few contributions).

It is clear from the above definitions that the Bohr topology on a group
G is always finer than the torsion Bohr topology and the two topologies
coincide if G is a torsion group. Since our aim is to continue the study
of the torsion Bohr topology started in [2] and compare it with the Bohr
topology, we will be mainly concerned with non-torsion groups.

In section 2 we show that the torsion Bohr compactification bZ of the
group of integers is metrizable and topologically isomorphic to the group
of a-adic integers with a = (2, 3, 4, 5, . . . ) (Corollary 2.3). It is worth
mentioning that the topological character (i.e., the minimal cardinality of
a local base at the neutral element) of the Bohr compactification of Z is
equal to c = 2ω. Also we present several conditions on a group G, neces-
sary and sufficient, in order that bG be zero-dimensional (Corollary 2.12
and Theorem 2.13).

In section 3 it is shown that G is divisible if and only if bG and bG are
divisible (Lemma 3.2, Corollary 3.3, and Theorem 3.4).

The relation between the torsion Bohr compactification and taking
quotient groups is considered in section 4, where we prove that b(G/H) is
topologically isomorphic to bG/bH whenever H is a subgroup of a group
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G (Theorem 4.6). The same argument shows that b(G/H) is topologically
isomorphic to bG/bH (Theorem 4.7).

The algebraic and topological structures of the torsion Bohr compacti-
fication of various classical groups is described in section 5. In particular,
we present a description of the compact groups bQ, bR, bT, btor(T),
bZ(p∞), etc.

1.1. Notation and terminology.

We consider only abelian groups here, so we will use the additive
notation, except for the case of the circle group T. In the latter case the
traditional multiplicative notation is adopted.

A group G is divisible if the equation nx = a has a solution in G for
each a ∈ G and each integer n ̸= 0. It is said that G is reduced if a unique
divisible subgroup of G is the trivial group {0G}, where 0G is the identity
of G. A subgroup H of G is pure if nG∩H = nH, for each integer n ≥ 1.

Elements a1, . . . , ak of G are linearly independent if the equality n1a1+
· · · + nkak = 0G implies that n1a1 = · · · = nkak = 0G, where n1, . . . , nk

are arbitrary integers. An infinite set A ⊂ G is linearly independent if
every finite subset of A is linearly independent. The order of an element
a ∈ G distinct from 0G is denoted by o(a).

The additive group ∆a of a-adic integers with a = (2, 3, 4, 5, . . . ) is pre-
sented and studied in detail in [8, Definition 10.2, theorems 10.3 and 10.5,
and Note 10.6]. This group is topologically isomorphic to the compact
group

∏∞
n=2 Z/nZ when the latter carries the usual product topology,

where Z/nZ ∼= {0, 1, . . . , n−1} (see the proof of Theorem 10.5 in [8]). We
will use the symbol a exclusively for the sequence (2, 3, 4, 5, . . .).

The additive group of p-adic integers, ∆p, is presented in [8, Definition
10.2 and Theorem 10.3]. It is known that the group ∆a is compact and
torsion-free. Further, this group is topologically isomorphic to the product∏

p∈P ∆p, where P is the set of prime numbers [8, theorems 25.8 and
25.28(a)].

The group Z(p∞) = {z ∈ T : zp
n

= 1 for some n ∈ ω}, with a prime p,
is called quasicyclic. The additive groups of the rationals and reals are Q
and R, respectively. The direct sum of κ copies of a group G is denoted
by G(κ).

Given a set A ⊂ G, we use ⟨A⟩ to denote the minimal subgroup of
G containing A. The fact that D is a subgroup of G is abbreviated to
D ≤ G.

The group of continuous homomorphisms of a topological group G
to the circle group T, with the compact-open topology, is denoted by
G∧. If G is an abstract or topological group, G∗ is the group of all
homomorphisms of the discrete group G to T, while G∗

p denotes the group
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G∗ endowed with the pointwise convergence topology. Similarly, G~ is
the family of all homomorphisms of G to tor(T).

Suppose that G and H are topological groups. We write G ∼= H if G
is topologically isomorphic to H. If K is a topological or abstract group,
Kd stands for the same group with discrete topology.

We say that 0 → A→ B → C → 0 is a short exact sequence if A→ B
is a monomorphism and B → C is an epimorphism with kernel A.

The cardinality of a set X is |X|.

1.2. Preliminary facts.

We collect here several classical results of the Pontryagin duality the-
ory that will be frequently used in the article.

Theorem 1.1. The following are valid.
(i) A discrete group G is divisible if and only if its dual group G∧ =

G∗ is torsion-free [8, Theorem 24.23].
(ii) A Hausdorff compact group G is divisible if and only if G∧ is

torsion-free if and only if G is connected [8, Theorem 24.25].
(iii) If G is a compact Hausdorff group, then G is zero-dimensional if

and only if G∧ is a torsion group [8, Theorem 24.26].
(iv) (Pontryagin duality in the compact-discrete case) If G is discrete,

then G∗
p is compact and (G∗

p)
∧ ∼= G; if G is compact, then G∧ is

discrete and (G∧)∗p
∼= G [8, Theorem 24.8].

We also note that the groups ∆p with p ∈ P and ∆a are reduced.
Indeed, by [10, Theorem 18, p. 46], the additive group of p-adic integers
is indecomposable, i.e., ∆p cannot be represented as a direct sum of two
non-trivial subgroups. Since every abelian group is a direct sum of a
divisible subgroup and a reduced subgroup [6, Theorem 21.3] and ∆p is
not divisible, we see that ∆p is reduced. A similar argument applies to
the group ∆a.

2. Zero-Dimensionality of bG

In this section we study algebraic properties of G and G~ which are
necessary or sufficient for the zero-dimensionality of bG (Proposition 2.10,
Corollary 2.12, and Theorem 2.13). First we need a couple of definitions.

Let G be an abstract abelian group and Γ a nonempty subset of G∗.
The diagonal product △Γ of the family Γ is the mapping of G to TΓ

defined by the formula △Γ(x) = (χ(x))χ∈Γ ∈ TΓ, where x ∈ G. It is clear
that △Γ is a homomorphism and that △Γ is one-to-one if and only if Γ
separates points of G. Let bΓG = clTΓ(△Γ(G)). Using this terminology
we can say that bG∗G and bG~G are bG and bG, respectively.
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Lemma 2.1. If Γ ⊆ G∗, then (bΓG)
∧ ∼= ⟨Γ ⟩d and, in particular, (bG)∧ ∼=

G∗
d. Therefore, bΓG ∼= (⟨Γ ⟩)∗p and bG ∼= (G∗)∗p.

Proof. Given χ ∈ Γ, let πχ be the projection of TΓ onto the factor
T(χ) = T. Then πχ(△Γ(x)) = χ(x), for each x ∈ G. The projections πχ
are continuous homomorphisms of TΓ and when restricted to bΓG, they
become continuous homomorphisms of bΓG to T. The family {πχ : χ ∈ Γ}
separates points of bΓG. Indeed, take a ∈ bΓG such that a ̸= eTΓ . Then
there exists χ ∈ Γ such that πχ(a) = aχ ̸= 1.

Hence, [8, Theorem 23.20] (see also [3, Theorem 1.3]) implies that
(bΓG)

∧ consists of the homomorphisms πα1
χ1
πα2
χ2

· · ·παm
χm

, where α1 . . . αm

are integers and χ1, . . . , χm ∈ Γ. It is clear that πα1
χ1
πα2
χ2

· · ·παm
χm

≡ 1 in
bΓG if and only if χα1

1 χα2
2 · · ·χαm

m ≡ 1 in G. Hence, (bΓG)
∧ ∼= ⟨Γ ⟩d.

By the Pontryagin duality (see Theorem 1.1 (iv)), we have that bΓG ∼=
((bΓG)

∧)∗p
∼= (⟨Γ ⟩)∗p. �

Corollary 2.2. (bG)∧ ∼= G~
d and bG ∼= (G~)∗p.

Corollary 2.3. The group bZ is topologically isomorphic to ∆a, the ad-
ditive group of a-adic integers.

Proof. It is easy to see that Z~ ∼= tor(T) ∼= Q/Z. Indeed, the mapping
χ → χ(1) gives an isomorphism of Z~ onto tor(T), while tor(T) is evi-
dently isomorphic to Q/Z since an element eix is torsion if and only if x
is rational.

The group Q/Z is isomorphic to
⊕

p∈P Z(p∞), by [8, A.14]. Hence,
(bZ~Z)∧ = (bZ)∧ ∼= Z~

d
∼= (

⊕
p∈P Z(p∞))d and [8, Theorem 23.22, Theo-

rem 25.2, and Theorem 24.8] imply that bZ ∼= (Z~)∗p ∼=
∏

p∈P(Z(p∞))∗p
∼=∏

p∈P ∆p
∼= ∆a. This completes the proof. �

[2, Corollary 2.10] shows that b(G1 ×G2) ∼= bG1 × bG2, for arbitrary
abstract groups G1 and G2. In the following result we describe the torsion
Bohr compactification of an infinite finitely generated group. Its proof is
omitted since it suffices to combine the aforementioned equivalence and
Corollary 2.3.

Corollary 2.4. Let G be an infinite finitely generated group. Then G is
isomorphic to the group Zm ×K, where K is a finite group and m > 0 is
an integer. Therefore,

bG ∼= ∆m
a ×Kd.

Let us denote by Σa the a-adic solenoid (see Definition 10.12 and The-
orem 10.13 in [8]). We know, by Corollary 2.3, that bZ ∼= ∆a. Making
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use of the Pontryagin duality in the compact-discrete case (see Theo-
rem 1.1(iv)), [8, Theorem 23.22], and the equality Q∗

p
∼= Σa (see [8, The-

orem 25.4]), we see that

bZ ∼= (Z∗)∗p
∼= T∗

p
∼= (Q(c) × Z~)∗p ∼= (Q(c) × (∆a)

∧)∗p
∼= (Q(c))∗p × ((∆a)

∧)∗p
∼= (Q∗

p)
c ×∆a

∼= Σc
a × bZ.

(2.1)

It also follows from [1, Corollary 9.9.12] that b(G1×G2) ∼= bG1× bG2,
for arbitrary groups G1 and G2, and the same equivalence holds for the
torsion Bohr compactification [2, Corollary 2.10]. The following result is
a simple combination of the latter fact and the equality (2.1).

Corollary 2.5. Let G = Zm, where m ≥ 1. Then bG ∼= bG× Σc
a.

The next fact is a slightly more general form of Corollary 2.5.

Corollary 2.6. Suppose that G = Zm ⊕K, where m is a positive integer
and K is a torsion group. Then bG ∼= bG× Σc

a.

Proof. Since K is a torsion group, it follows that bG = bG. Therefore,
we apply Corollary 2.5 (jointly with [1, Corollary 9.9.12] and [2, Corol-
lary 2.10]) to deduce that

bG ∼= (bZ)m × bK ∼= (bZ)m × Σc
a × bK ∼= b(Zm ⊕K)× Σc

a
∼= bG× Σc

a.

This finishes the proof. �

It is quite natural to ask, after corollaries 2.5 and 2.6, whether a torsion-
free group G satisfies the equality bG ∼= bG × Σc

a. More generally, it
would be interesting to characterize the groups G satisfying the equality
in Corollary 2.6; i.e., we wonder when the formula bG ∼= bG⊕Σc

a is valid.
Our answer to these questions requires the following useful fact.

Proposition 2.7. Let G be an abelian group. Then G∗ = hom(G,T) =
G~⊕hom(G,Q(c)) and bG ∼= bG⊕hom(G,Q(c))∗p. Further, the summand
hom(G,Q(c))∗p is divisible provided that the group hom(G,Q(c)) is trivial
or torsion-free.

Proof. Let us note that Td = tor(T)⊕Q(c), by [8, Theorem 25.13], where
the group Q(c) is torsion-free. Hence,

G∗ ∼= (bG)∧ ∼= hom(G,T) ∼= hom(G, tor(T)⊕Q(c))

∼= hom(G, tor(T))⊕ hom(G,Q(c)) ∼= (bG)∧ ⊕ hom(G,Q(c))

∼= G~ ⊕ hom(G,Q(c)).

(2.2)

To finish the proof it suffices to apply our Lemma 2.1 and [8, Theo-
rem 26.12]. �
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Theorem 2.8. The equality bG ∼= bG⊕ hom(G,Q(c))∗p is valid for every
torsion-free abelian group G.

Proof. It is clear that hom(G,Q(c)) is an uncountable, torsion-free, divis-
ible abelian group. Since maximal independent subsets of G constitute
a Q-basis of the divisible hull of G, hom(G,Q(c)) is in bijective corre-
spondence with (Q(c))A, for any maximal independent subset A of G.
Therefore,

hom(G,Q(c)) ∼= (Q(c))r0(G) ∼= Q(cr0(G))

and
bG ∼= bG× Σcr0(G)

a .

This completes the proof. �
The following corollary is immediate from Theorem 2.8; it answers the

question preceding Proposition 2.7

Corollary 2.9. A torsion-free abelian group G with r0(G) ≤ ω satisfies
bG ∼= bG×Σc

a. Further, under CH, the condition r0(G) ≤ ω is necessary.

We know that the groups G♮ and G# coincide, for every torsion group
G. Hence, bG = bG in this case. Theorem 2.8 and Corollary 2.9 present a
simple relation between the groups bG and bG in the case of a torsion-free
group G.

Let us recall that a space X with a base of clopen sets is called zero-
dimensional. The following result will be substantially refined in Theo-
rem 2.13.

Proposition 2.10. If bG is zero-dimensional, then the group G is re-
duced.

Proof. By (ii) and (iii) of Theorem 1.1, the group bG is not divisible.
Hence, G is not divisible according to [1, Exercise 9.11.f] (see also Propo-
sition 3.1). Therefore, G has the form G ∼= D × R, where D ̸= G is
divisible and R ̸= {0G} is reduced. [8, Theorem 24.26] implies that χ(D)
is a finite subgroup of T for each χ ∈ (bG)∧. Hence, D is trivial and G is
reduced. �
Observation 2.11. The converse to Proposition 2.10 is false. Indeed,
the torsion group G =

⊕∞
n=2 Z/nZ is reduced. Hence, G~ = G∗, for

G is torsion. Applying [8, theorems 23.22 and 23.27 (c)], we see that
G∗ = (

⊕∞
n=2 Z/nZ)∗ ∼=

∏∞
n=2 Z/nZ ∼= ∆a. It also follows from [8,

theorems 25.8 and 25.28(a)] that ∆a
∼=

∏
p∈P ∆p is a compact torsion-

free group. If H is a compact Hausdorff group, then H is divisible
(zero-dimensional) if and only if H∧ is torsion-free (torsion), by [8, the-
orems 24.25 and 24.26]. Therefore, bG ∼= (G∗)∗p = (∆a)

∗
p is divisible but

not zero-dimensional since (bG)∧ ∼= G∗
d
∼= (∆a)d is torsion-free.
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As a consequence of Corollary 2.2 and Theorem 1.1(iii), we obtain
a characterization of the groups whose torsion Bohr compactification is
zero-dimensional.

Corollary 2.12. For an abelian group G, bG is zero-dimensional if and
only if G~ is a torsion group.

The following theorem is the main result of this section.

Theorem 2.13. Let G be an abelian group. The torsion Bohr compact-
ification bG of G is zero-dimensional if and only if the torsion part of
G, tor(G), is bounded torsion and G ∼= Zm ⊕ tor(G), where m is a non-
negative integer.

Proof. By Corollary 2.12 it suffices to show that the group G~ is torsion
if and only if G is isomorphic to the group Zm ⊕ tor(G), for some m ≥ 0,
and tor(G) is bounded torsion.

Suppose that G~ is a torsion group. First we show that r0(G) < ω;
i.e., every linearly independent system of elements of infinite order in G is
finite. Suppose for a contradiction that {x1, x2, . . .} is an infinite system
of linearly independent elements of infinite order in G. Let tk = eπi/k, for
each integer k ≥ 1. Clearly, tk ∈ tor(T). Denote by H the subgroup of
G generated by the set {xk : k ∈ N}. Let also χ be a homomorphism of
H to tor(T) such that χ(xk) = tk for each k ∈ N. It is clear that χ is of
infinite order in H~. Denote by χ̄ an extension of χ to a homomorphism
of G to tor(T). Then χ̄ has infinite order in G~, which is a contradiction.
We have thus proved that m = r0(G) is finite.

Let a1, . . . , am be a maximal linearly independent system of elements
of infinite order in G. Denote by L the subgroup of G generated by the
set {a1, . . . , am}. Let us note that the group L is torsion-free and the
quotient group K = G/L is torsion. We claim that K is bounded torsion.
First we verify that the group K~ is torsion. Indeed, let π : G→ G/L be
the quotient homomorphism. Denote by π~ the dual homomorphism of
K~ to G~ defined by π∧(ϕ) = ϕ ◦ π for each ϕ ∈ K~. It clear that π~

is a monomorphism. Thus, K~ is isomorphic to a subgroup of G~, and
hence it is a torsion group as well.

Suppose for a contradiction that K is an unbounded torsion group and
choose a sequence {bk : k ∈ N} of elements of K such that o(bk) < o(bk+1)
for each k ∈ N. We define a sequence {ck : k ∈ N} ⊂ K such that
sck+1 /∈ ⟨c1, . . . ck⟩ if |s| ≤ k and s ̸= 0. Let c1 = b1 and suppose that
we have defined elements c1, . . . , ck in K for some k ≥ 1. Since K is a
torsion group, the subgroup Ck of K generated by the elements c1, . . . , ck
is finite. Take an element bn such that o(bn) > |Ck| · k. Then sbn /∈ Ck

if |s| ≤ k and s ̸= 0. Indeed, if sbn ∈ Ck and s ̸= 0, then sMbn = 0K ,
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where M = |Ck|. Hence, Mk < o(bn) ≤ |s| · M , whence k < |s|. It
remains to put ck+1 = bn. This finishes our definition of the sequence
{ck : k ∈ N} ⊂ K.

Since sck+1 /∈ Ck if 0 < s ≤ k, for each k ∈ N, we can define by
induction a homomorphism ϕ of K to tor(T) such that ϕ(ck) = e2πi/nk ,
where nk ∈ N and nk > k for each k ∈ N. Again, this implies that ϕ
has infinite order in K~. This contradiction proves that K is a bounded
torsion group.

We show now that G is isomorphic with Zm⊕tor(G), wherem = r0(G).
It is easy to see that the subgroup tor(G) is bounded torsion. Indeed, let
N be the exponent of the quotient group K = G/L. Then Ny = 0K ,
for each y ∈ K and, hence, Nx ∈ L for each x ∈ G. Suppose that
x ∈ tor(G). Then Nx ∈ tor(G) ∩ L and since L is torsion-free, we
conclude that Nx = 0K . We have thus shown that tor(G) is bounded
torsion. Clearly, the torsion part of G is a pure subgroup of G. Since
tor(G) is bounded torsion, it follows from [13, 4.3.8] that G is isomorphic
with the group tor(G)⊕G/tor(G). Further, our definition of the subgroup
L of G implies that G/tor(G) ∼= L ∼= Zm. Therefore, G ∼= Zm ⊕ tor(G).

Conversely, suppose that G ∼= Zm ⊕ K, where m is a non-negative
integer and K is a bounded torsion group. Then tor(G) ∼= K and G~ ∼=
(Z~)m ⊕K~ ∼= (tor(T))m ⊕K~. Since K is bounded torsion, so is K~

and, therefore, G~ is a torsion group. This finishes the proof of the
theorem. �

3. Divisibility of bG

In this section we study the question of when the torsion Bohr com-
pactification of an abelian group is divisible. The following result is well
known (see [1, Exercise 9.11.f]).

Proposition 3.1. Let H be a dense subgroup of a compact group G. If
H is divisible, so is G.

Proof. For every positive integer n, let Mn be the mapping of G to itself
defined byMn(x) = xn for each x ∈ G. IfH is divisible, thenMn(H) = H
for each n ≥ 1. Since the mapping Mn is continuous and G is compact,
Mn(G) is closed in G. It is clear that H = Mn(H) ⊆ Mn(G) is dense in
G, so Mn(G) = G for each n ≥ 1. Hence, G is divisible. �

For the (torsion) Bohr compactification, Proposition 3.1 can be given
a more precise form (see also Theorem 3.4).

Lemma 3.2. The group G is divisible if and only if bG is divisible.
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Proof. By Theorem 1.1(i), the group G is divisible if and only if G∗ is
torsion-free, and by (ii) of the same theorem, G∗ is torsion-free if and only
if bG is divisible. �

The relation between bG and bG established in Proposition 2.7 enables
us to deduce the following.

Corollary 3.3. Let G be an abelian group. Then bG is divisible if and
only if bG is as well.

Theorem 3.4. A group G is divisible if and only if bG is divisible.

Proof. It suffices to combine Lemma 3.2 and Corollary 3.3. �
In the next proposition we describe the algebraic structure of the group

bG in the case when G is divisible. Our argument is based on [8, Theo-
rem 25.23].

Proposition 3.5. If G is divisible and non-trivial, then bG is alge-
braically isomorphic to

Q(22
|G|

) ×
⊕
p∈P

Z(p∞)(bp),

where bp is finite or equals 2ep for some infinite cardinal ep ≤ 2|G|.

Proof. Suppose that the group G is divisible. It is clear that G is infi-
nite. Theorem 3.5 implies that the compact group bG is divisible, while
[8, Theorem 25.23] says that a compact divisible group of weight κ is
algebraically isomorphic to

Q(2κ) ×
⊕
p∈P

Z(p∞)(bp),

where bp is finite or equals 2ep for some infinite cardinal ep ≤ κ. [2,
Lemma 6.1 and Theorem 6.5] imply that κ = 2|G|. This finishes the
proof. �

4. Torsion Bohr Compactification of Quotient Groups

We will show in this section that the torsion Bohr compactification
of the quotient group G/H is topologically isomorphic to quotient group
bG/bH. This requires several auxiliary results.

Let ψ : A → B be a homomorphism of discrete groups. For χ ∈ B~,
we define ψ~(χ) : A→ tor(T) by

ψ~(χ)(a) = χ(ψ(a))

for each a ∈ A. It is clear that ψ~ is a homomorphism of B~ to A~.
The following lemmas (4.1–4.5) are quite elementary.
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Lemma 4.1. Let ψ : A → B be a monomorphism of discrete groups.
Then ψ~ is an epimorphism of B~ to A~.

Proof. Since tor(T) is divisible, every homomorphism χ : ψ(A) → tor(T)
extends to a homomorphism of B to tor(T). Therefore, ψ~ is an epimor-
phism. �

Lemma 4.2. Let ψ : A→ B be an epimorphism of discrete groups. Then
ψ~ is a monomorphism of B~ to A~.

Proof. Suppose that χ ∈ B~ satisfies ψ~(χ) ≡ 1. Then ψ~(χ)(A) = {1},
i.e., χ(B) = χ(ψ(A)) = {1}. Hence, χ ≡ 1 and so ψ~ is a monomorphism.

�

Lemma 4.3. Let A be a subgroup of a discrete group B and let R : B~ →
A~ be the restriction mapping, R(χ) = χ�A for each χ ∈ B~. Then the
kernel of R is isomorphic to (B/A)~.

Proof. Given a homomorphism ψ : B/A → tor(T), we define χ ∈ B~ by
χ(b) = ψ(π(b)), where π : B → B/A is the quotient homomorphism. Then
χ(A) = ψ(π(A)) = {1} and ψ ≡ 1 if and only if χ ≡ 1. Let us note that
if g ∈ B~ is an element of the kernel of R, then g ◦ π−1 ∈ (B/A)~ and
g = (g ◦π−1)◦π. Therefore, the kernel of R is isomorphic to (B/A)~. �

Lemma 4.4. Let 0 → A
f→ B

g→ C → 0 be a short exact sequence of
discrete groups. Then the sequence

0 → C~ g~
−→ B~ f~

−→ A~ → 0

is also exact. Furthermore, B~/C~ is isomorphic to A~.

Proof. Lemma 4.2 implies that g~ : C~ → B~ is a monomorphism, so
we can identify C~ with the subgroup g~(C~) of B~. It follows from
Lemma 4.1 that f~ : B~ → A~ is an epimorphism with kernel C~, by [4,
Exercise 1.6.15]. Then the first isomorphism theorem for groups guaran-
tees that B~/C~ is isomorphic to A~. �

The functor ∗ also satisfies lemmas 4.1, 4.2, 4.3, and 4.4. In fact, we
have the following lemma.

Lemma 4.5. Let 0 → A
f→ B → C → 0 be an exact sequence of discrete

groups. Then there exists an exact sequence with continuous homomor-
phisms

0 → C∗
p → B∗

p
f∗

−→ A∗
p → 0.

Furthermore, B∗
p/C

∗
p is topologically isomorphic to A∗

p.
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Proof. The groups B∗
p and A∗

p are compact when endowed with the point-
wise convergence topology. The continuous epimorphism f∗ of B∗

p to A∗
p

is closed and has the kernel C∗
p. The first isomorphism theorem for topo-

logical groups implies that B∗
p/C

∗
p
∼= A∗

p. �

If H is a subgroup of a group G, then the identity monomorphism
i : H → G extends to a topological monomorphism φ : bH → bG; i.e.,
bH is topologically isomorphic to the subgroup clbGH of the group bG
[2, Corollary 2.8]. We use this fact in the proof of the next result.

Theorem 4.6. Let G/H be the quotient group of an abelian group G with
respect to its subgroup H. Then b(G/H) ∼= bG/bH.

Proof. Given the short exact sequence

0 → H → G→ G/H → 0,

it follows from lemmas 4.4 and 4.5 that there exist short exact sequences

0 → (G/H)~d → G~
d → H~

d → 0

and
0 → (H~)∗p → (G~)∗p → ((G/H)~)∗p → 0

with (G~)∗p/(H
~)∗p ∼= ((G/H)~)∗p. By Corollary 2.2 we have that (G~)∗p ∼=

bG, (H~)∗p ∼= bH, and ((G/H)~)∗p ∼= b(G/H). This implies the conclu-
sion of the theorem. �

The following theorem has a proof similar to the proof of Theorem 4.6;
one has only to replace the functor ~ with ∗.

Theorem 4.7. Let G/H be the quotient group of G with respect to its
subgroup H. Then b(G/H) ∼= bG/bH.

5. Several Structure Theorems

In this section we describe the torsion Bohr compactifications of various
classic groups such as Z(p∞), tor(T), Q, R, etc.

Theorem 5.1. The following are valid:
(1) Z(p∞)∗ = Z(p∞)~ ∼= ∆p and bZ(p∞) = bZ(p∞) ∼= (∆p)

∗
p for

each p ∈ P.
(2) tor(T)∗ = tor(T)~ ∼= ∆a and btor(T) = btor(T) ∼= (∆a)

∗
p.

(3) Q~ ∼= Q×∆a and bQ ∼= Σa × (∆a)
∗
p.

Proof. (1) Since Z(p∞) is a torsion group, we see that Z(p∞)∗ = Z(p∞)~.
[8, Theorem 24.8 and Theorem 25.2] imply that Z(p∞)∗ = ∆p. Finally,
we use Corollary 2.2.
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(2) Once again, tor(T) is a torsion group; hence, tor(T)∗ = tor(T)~.
[8, Theorem 25.13] implies that tor(T) =

⊕
p∈P Z(p∞). Further, [8, The-

orem 23.22] implies that tor(T)∗ = (
⊕

p∈P Z(p∞))∗ =
∏

p∈P Z(p∞)∗ ∼=∏
p∈P ∆p

∼= ∆a. It remains to apply Corollary 2.2.
(3) By [8, theorems 25.4 and 25.7], Q~ ∼= Q ×

∏
p∈P ∆p

∼= Q × ∆a.
The required equality follows from the fact that Q∗

p
∼= Σa (see [8, Theo-

rem 25.4] and Corollary 2.2). �
Theorem 5.2. The following equalities are valid:

(1) R~ ∼= (Q~)c ∼= (Q×∆a)
c and bR ∼= (Qc ×∆c

a)
∗
p
∼= Σ2c

a × (∆c
a)

∗
p.

(2) (∆a)
~
p
∼= btor(T)/hom(∆a,Q(c))p and hence, b∆a is topologically

isomorphic to the group (btor(T))∗p/hom(∆a,Q(c))∗p.

Proof. (1) By [8, Theorem A.14, Theorem 23.22, and Theorem 25.4], we
conclude that R∗

p = (Q(c))∗p
∼= (Q∗

p)
c ∼= Σc

a. [8, Theorem 23.22 and Theo-
rem 25.4] imply that the homomorphisms of (Q(c))d = Rd to tor(T) ⊂ T
correspond to the subgroup (Q ×

∏
p∈P ∆p)

c ∼= (Q × ∆a)
c of Σc

a. Then
we use Corollary 2.2. Finally, we know that Qc is a linear space over Q
which has dimension 2c. Hence, the Pontryagin dual (Qc)∗p is the compact
group Σ2c

a
∼= (Q∗

p)
2c .

(2) By Theorem 5.1(2) and Proposition 2.7, we have that

btor(T) ∼= (∆a)
∗
p
∼= (∆a)

~
p × hom(∆a,Q(c))p

and

(btor(T))∗p ∼= (((∆a)
∗)∗p

∼= b∆a
∼= b∆a × hom(∆a,Q(c))∗p.

This implies the required conclusion. �
Since T ∼= R/Z and tor(T) ∼= Q/Z, the following corollary is immediate

from Theorem 4.6, and theorems 5.1 and 5.2.

Corollary 5.3. The following are valid:
(1) bT ∼= bR/∆a, where bR ∼= Σ2c

a × (∆c
a)

∗
p and ∆a

∼= clbRZ.
(2) b(tor(T)) ∼= bQ/∆a, where bQ ∼= Σa × (∆a)

∗
p and ∆a

∼= clbQZ.

For our further calculations we need various auxiliary results.

Lemma 5.4. Let ∆p be the group of p-adic integers with a prime p and let
u = (1, 0, 0, 0, . . .) ∈ ∆p. Let also Cp = ⟨u⟩ and let π : ∆p → ∆p/Cp = Xp

be the canonical homomorphism. Then the following hold:
(a) if p does not divide n, then the equation nx = b has a solution in

∆p for each b ∈ ∆p, i.e., n∆p = ∆p;
(b) pk∆p ∩ Cp =

⟨
pku

⟩
, for each k ∈ N;

(c) the group Xp = ∆p/Cp is divisible;
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(d) the group Xp is algebraically isomorphic with

Q(c) ⊕
⊕

q∈P∧q ̸=p

Z(q∞).

Proof. Item (a) follows from [1, Problem 1.1.F]. To verify (b), note first
that

⟨
pku

⟩
⊆ pk∆p ∩ Cp, for each k ∈ N. Conversely, suppose that

pkx = mu, for some x ∈ ∆p, and k,m ∈ N. We have to show that pk
divides m. Suppose not, then x /∈ Cp. Since the group ∆p is torsion-free,
the equality pkx = mu can be rewritten after dividing it by an appropriate
power of p in the equivalent form plx = nu, where 1 ≤ l ≤ k and p does
not divide n. By (a) of the lemma, there exists y ∈ ∆p such that ny = x,
whence ply = u. Since Cp = ⟨u⟩ is dense in the compact group ∆p, the
latter equality implies that pl∆p = ∆p, which is a contradiction.

Let us deduce (c). Let k ∈ N. Since Cp is dense in ∆p and pk∆p

is open in ∆p, we have that ∆p = Cp + pk∆p. Therefore, pkπ(∆p) =
π(pk∆p) = π(∆p), i.e., pkXp = Xp for each k ∈ N, where Xp = ∆p/Cp.
Further, since n∆p = ∆p for each n ∈ N which is not a multiple of p, we
have that nXp = Xp for such an integer n. This proves that the group
Xp is divisible.

It remains to deduce (d). The groups Q(c) ×
⊕

q∈P∧q ̸=p Z(q∞) and
Xp = ∆p/Cp are isomorphic. Indeed, the group Xp is divisible by (c) of
the lemma. We note that the equality r0(∆p) = |∆p| = c follows from
the fact that r0(H) = |H| for each uncountable torsion-free group H. Let
π : ∆p → ∆p/Cp be the quotient homomorphism. Since the kernel of π is
countable, we infer that r0(Xp) = c.

We claim that the group Xp does not contain elements of order p. If
x∗ ∈ Xp is distinct from zero and px∗ = 0, take x ∈ ∆p with π(x) = x∗.
Then px ∈ Cp and, hence, px = mu for some m ∈ Z. By item (b) of the
lemma this implies that m = pn for n ∈ Z, whence px = mu = pnu and
x = nu ∈ Cp. We conclude that x∗ = π(x) = 0 in Xp, which contradicts
our choice of the element x∗. In particular, rp(Xp) = 0.

Let q ∈ P, q ̸= p. Let us show that rq(Xp) = 1. By (a) of the
lemma, there exists an element z ∈ ∆p such that qz = u. Then the
elements z, 2z, . . . , (q − 1)z are not in Cp; otherwise, kz = nu for some
k ∈ {1, 2, . . . , q − 1} and n ∈ Z. Hence, kz = nqz and k = nq, which is
impossible since 1 ≤ k < q. Since qz = u, the element z∗ = π(z) ∈ Xp

is distinct from zero and satisfies qz∗ = 0. So the order of z∗ in Xp is
equal to q. If t∗ ∈ Xp and qt∗ = 0, take t ∈ ∆p with π(t) = t∗. Then
q(z − t) ∈ Cp, whence it follows that q(z − t) = mu for some integer m.
Since qz = u, we infer that (1−m)u = qt or, equivalently, (1−m)qz = qt.
Therefore, t = (1−m)z; i.e., t ∈ ⟨z⟩ and t∗ ∈ ⟨z∗⟩. We conclude that all
the elements of Xp of order q are in ⟨z∗⟩. Thus, rq(Xp) = 1.
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Summing up, the divisibility of Xp implies that the group Xp is iso-
morphic to Q(c) ×

⊕
q∈P, q ̸=p Z(q∞). �

Our next step is to calculate several algebraic invariants of a group
that will appear in the further proofs.

Lemma 5.5. Let Xp = ∆p/Cp, where Cp is the cyclic subgroup of ∆p

generated by the element u = (1, 0, 0, . . .). Then the group X =
∏

p∈PXp

satisfies r0(X) = c and rp(X) = c for each p ∈ P.

Proof. By Lemma 5.4(d) we have that rq(Xp) = 1 for each prime q ̸= p.
In particular, for each p ∈ P distinct from q, Xp contains a subgroup
isomorphic to the group Z/qZ. Hence, the group X =

∏
p∈PXp contains

a subgroup isomorphic to (Z/qZ)ω. Since rq((Z/qZ)ω) = |(Z/qZ)ω| = c,
we deduce that rq(X) = c for each q ∈ P. It is also easy to see that
r0(X) = |X| = c since X contains a subgroup isomorphic to Xp, for each
prime p, and r0(Xp) = c. �

We are now in the position to describe the torsion Bohr compactifica-
tion of the group Q.

Proposition 5.6. The group bQ ∼= (Q~)∗p = (Q×∆a)
∗
p contains a closed

subgroup N ∼= Σc
a × ∆c

a such that bQ/N ∼= Σa × (Zω)∗p
∼= (Q × Zω)∗p.

Therefore, there exists a short exact sequence

0 → Σc
a ×∆c

a → bQ → Σa × (Zω)∗p → 0.

Proof. Let Cp and Xp, with p ∈ P, be as in Lemma 5.4, and let X =∏
p∈PXp. We know that (Q×

∏
p∈P ∆p)/(Q×

∏
p∈P Cp) is isomorphic to

X. By lemmas 5.4(c) and 5.5, the group X is divisible and isomorphic to
Q(c) ⊕

⊕
p∈P Z(p∞)(c). Therefore, there exists a short exact sequence

0 → Q×
∏
p∈P

Cp → Q~
d → Q(c) ⊕

⊕
p∈P

Z(p∞)(c) → 0.

So Lemma 4.5 implies that bQ ∼= (Q~)∗p contains a closed subgroup N ∼=
Σc

a ×∆c
a
∼= X∗

p such that bQ/N ∼= Σa × (Zω)∗p
∼= (Q× Zω)∗p, and

0 → Σc
a ×∆c

a → bQ → Σa × (Zω)∗p → 0. �

Lemma 5.7. Let G = Q(κ) ⊕
⊕

p∈P Z(p∞)(λp), where κ and λp with
p ∈ P are cardinal numbers. Then G∗

p
∼= Σκ

a ×
∏

p∈P ∆
λp
p and G~ ∼=

Qκ ×
∏

p∈P ∆
κ+λp
p .
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Proof. By [8, Theorem 23.22, Theorem 25.2, and Theorem 24.8] we have
that (⊕

p∈P
Z(p∞)(λp)

)∗

p

∼=
∏
p∈P

((Z(p∞))∗p)
λp ∼=

∏
p∈P

∆λp
p .

[8, Theorem 23.22 and Theorem 25.4] imply that (Q(κ))∗p
∼= (Q∗

p)
κ ∼= Σκ

a .
Hence, G∗

p
∼= Σκ

a ×
∏

p∈P ∆
λp
p . Applying [8, Theorem 23.22 and Theorem

25.4], we see that the homomorphisms of Q(κ) to tor(T) ⊂ T correspond to
the subgroup (Q×

∏
p∈P ∆p)

κ of Σκ
a . Therefore, G~ ∼= (Q×

∏
p∈P ∆p)

κ×∏
p∈P ∆

λp
p

∼= Qκ ×
∏

p∈P ∆
κ+λp
p . �

The following lemma will be used in the proof of Proposition 5.9.

Lemma 5.8. If G = Q(κ) ⊕
⊕

p∈P Z(p∞)(λp), then

bG ∼= Σ2κ

a ×
(∏

p∈P

∆κ+λp
p

)∗

p

and bG ∼= bG⊕ hom(G,Q(c))∗p.

Proof. Corollary 2.2 and Lemma 5.7 imply that

bG ∼= (Qκ)∗p × (
∏
p∈P

∆κ+λp
p )∗p

and by Proposition 2.7, bG ∼= bG⊕hom(G,Q(c))∗p. We know that Qκ is a
linear space over Q which has dimension 2κ. Hence, its Pontryagin dual
group (Qκ)∗p is the compact group Σ2κ

a
∼= (Q∗

p)
2κ . �

Proposition 5.9. Let G = Q(λ), where λ ≥ ω. Then bG contains a
closed subgroup N ∼= Σ2λ

a ×∆2λ

a such that

bG/N ∼= Σ2λ

a ×
(
Zλ

)∗

p

∼=
(
Qλ × Zλ

)∗

p
.

Therefore, there is a short exact sequence

0 → Σ2λ

a ×∆2λ

a → bG→ Σ2λ

a ×
(
Zλ

)∗
p
→ 0.

Proof. We use notation of Lemma 5.4. Evidently, the quotient group(
Q×

∏
p∈P

∆p

)λ

/
(
Q×

∏
p∈P

Cp

)λ

is isomorphic to
∏

p∈PX
λ
p = Xλ, where Xp = ∆p/Cp and X =

∏
p∈PXp.

Note thatXλ is divisible and isomorphic to Q(r0(X
λ))⊕

⊕
p∈P Z(p∞)(rp(X

λ)).
Since Cp

∼= Z for each p ∈ P, Lemma 5.8 implies that bG ∼= Σ2λ

a ×
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((
∏

p∈P ∆
λ
p)d )

∗
p and by Lemma 5.8 and Lemma 4.5, the group bG con-

tains a closed subgroup N ∼= Σ
r0(X

λ)
a ×

∏
p∈P ∆

rp(X
λ)

p
∼= (Xλ)∗p such that

bG/N ∼= Σ2λ

a ×
(
Zλ

)∗
p
∼=

(
Qλ

)∗
p
×
((∏

p∈P
Cp

)λ)∗
p
.

Since Qλ is a linear space over Q which has dimension 2λ, its Pontryagin
dual (Qλ)∗p is the compact group Σ2λ

a
∼= (Q∗

p)
2λ . The group Zλ is not free,

but it contains a subgroup F isomorphic to a free abelian group of rank
r0(F ) = |F | = |Zλ| = 2λ. Hence, F is a subgroup of the minimal divisible
extension D(Zλ) of Zλ. The linear space D(Zλ) over Q has dimension 2λ,
so its Pontryagin dual (D(Zλ))∗p is Σ2λ

a
∼= (Q∗

p)
2λ . Therefore, the dual

(Zλ)∗p is in the sandwich

Σ2λ

a →
(
Zλ

)∗
p
→ T2λ .

Finally, since r0(X) = c and rp(X) = c for each p ∈ P (see Lemma 5.5),
we see that r0(Xλ) = 2λ and rp(Xλ) = cλ = 2λ for each p ∈ P. �

Since the groups R and Q(c) are algebraically isomorphic, the next
result follows from Proposition 5.9 if we take λ = c.

Corollary 5.10. The group bR ∼= ((Q~)c)∗p with Q~ ∼= Q×∆a contains
a closed subgroup N ∼= Σ2c

a × ∆2c

a such that bR/N ∼= Σ2c

a × (Zc)∗p
∼=

(Qc × Zc)∗p. Hence, there is a short exact sequence

0 → Σ2c

a ×∆2c

a → bR → Σ2c

a ×
(
Zc

)∗
p
→ 0.

Proposition 5.11. Let G =
⊕

p∈P Z(p∞)(λp), where λp is an arbitrary
cardinal number for each p ∈ P. Let also κ =

∑
p∈P λp, κp =

∑
q∈P, q ̸=p λq,

and µp = κp if κp < ω or µp = 2κp if κp ≥ ω, for each p ∈ P. If |G| ≥ ω,
then bG contains a closed subgroup N ∼= Σ2ω·κ

a ×
∏

p∈P ∆
µp
p such that

bG/N ∼=
(
Zκ

)∗
p
.

Therefore, there is an exact sequence

0 → Σ2ω·κ

a ×
∏
p∈P

∆µp
p → bG→

(
Zκ

)∗
p
→ 0.

Proof. Once again we use notation of Lemma 5.4. Evidently, the quotient
group ∏

p∈P

∆λp
p /

∏
p∈P

Cλp
p

is isomorphic to
∏

p∈PX
λp
p . Notice that the group

∏
p∈PX

λp
p is divisi-

ble and isomorphic to Q(r0(
∏

p∈P X
λp
p )) ×

⊕
p∈P Z(p∞)(rp(

∏
p∈P X

λp
p )). Since
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Cp
∼= Z for each p ∈ P, Lemma 5.8 and Lemma 4.5 imply that bG ∼=

(
∏

p∈P ∆
λp
p )∗p contains a closed subgroup

N ∼= Σ
r0(

∏
p∈P X

λp
p )

a ×
∏
p∈P

∆
rp(

∏
p∈P X

λp
p )

p
∼= (

∏
p∈P

Xλp
p )∗p

such that
bG/N ∼=

(∏
p∈P

Zλp

)∗

p

∼=
(
Zκ

)∗

p
.

If κ =
∑

p∈P λp is finite, then [8, Theorem 23.27(b)] implies that (Zκ)∗p
∼=

(Z∗
p)

κ ∼= Tκ. Otherwise, we argue as in the proof of Proposition 5.9.
Finally, since r0(Xp) = c and rp(Xp) = 0 for each p ∈ P, and rq(Xp) = 1

if q ̸= p (we apply Lemma 5.4(d) here), we have that r0(
∏

p∈PX
λp
p ) =∏

p∈P c
λp = cκ = 2ω·κ and rp(

∏
q∈PX

λq
q ) = rp(

∏
q∈P, q ̸=p Z

λp
p ), where

Zp = Z/pZ. Hence, rp(
∏

q∈PX
λq
q ) is equal to κp if κp is finite and is 2κp

otherwise. �

Taking λp = 1 for a given p ∈ P and λq = 0 for each q ̸= p in
Proposition 5.11, we obtain the following corollary.

Corollary 5.12. The compact group Kp = bZ(p∞) ∼= (∆p)
∗
p, with a

prime p, contains a closed subgroup Np
∼= Σc

a×
∏

q∈P, q ̸=p ∆q
∼= (Xp)

∗
p such

that Kp/Np
∼= T, where the group Xp = ∆p/Cp is defined in Lemma 5.4.

In other words, there is a short exact sequence

0 → Σc
a ×

∏
q∈P, q ̸=p

∆q → bZ(p∞) → T → 0.

Taking λp = 1 for each p ∈ P in Proposition 5.11, we get the following
result as a corollary.

Corollary 5.13. Let K = btor(T) ∼= (∆a)
∗
p. Then K contains a closed

subgroup N ∼= Σc
a ×∆c

a such that K/N ∼= (Zω)∗p. Hence, there is a short
exact sequence

0 → Σc
a ×∆c

a → btor(T) → (Zω)∗p → 0.

Combining propositions 5.9 and 5.11, we obtain the following theorem.

Theorem 5.14. Let G = Q(λ)⊕
⊕

p∈P Z(p∞)(λp), where λ ≥ ω and λp is
an arbitrary cardinal number for each p ∈ P. Then bG contains a closed
subgroup N ∼= Σ2λ+κ

a ×
∏

p∈P ∆
2λ+κp

p such that

bG/N ∼= Σ2λ

a ×
(
Zλ+κ

)∗

p
,
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where κ =
∑

p∈P λp and κp =
∑

q∈P, q ̸=p λq. Therefore, there is a short
exact sequence

0 → Σ2λ+κ

a ×
∏
p∈P

∆2λ+κp

p → bG→ Σ2λ

a ×
(
Zλ+κ

)∗
p
→ 0.
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