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UNIFORM BOX PRODUCTS II

JOCELYN R. BELL AND SCOTT W. WILLIAMS

Abstract. The uniform box topology is defined on the product
set of infinitely many copies of a completely regular space. It is finer
than the Tychonoff topology but coarser than the box topology.
Here we study connectedness and separation properties.

1. Introduction

The uniform box product, introduced by Scott W. Williams in 2001, is
a generalization of the sup metric topology on the product of metric spaces
to powers of uniform spaces. Its topology is finer than the Tychonoff but
coarser than the box topology. Many questions open for box products [9]
are open for uniform box products as well.

On a compact space, there is a unique uniformity which generates the
topology. However, when a uniform space is not compact, there may be
many uniformities which generate the topology. Even if two uniformi-
ties generate the same topology on a space, their respective uniform box
products may differ. For example, in section 4 we show that the uniform
box product of copies of the real line is not connected when we use its
canonical uniformity, yet it is connected when we use the uniformity of a
homeomorph. The situation is somewhat less complex if we restrict our
attention to uniformities induced by a compactification (section 3) and
which are totally bounded. One consequence of our approach is that, by
restricting to totally bounded uniformities, the uniform box product of a
connected uniform space is connected.
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A well-known and difficult problem is determining whether a box prod-
uct is normal or paracompact, and many results rely on additional set-
theoretic axioms [12]. However, there are ZFC pseudonormal results. The
box product of compact spaces, no matter how many, is pseudonormal [2].
A box product of countably many spaces is pseudonormal if the spaces
are σ-compact [13]. Are similar results true for uniform box products?
This paper details partial positive results.

The countable uniform box product of a σ-compact, locally compact
space K is pseudonormal if every countable subset of K has countable
closure (section 5). From this it follows that the countable uniform box
product of a σ-compact ordinal space is pseudonormal. In section 6 we
extend to all ordinal spaces. This is of particular interest, since it is not
known whether the uniform box product of [0, ω1] is normal [8].

2. Preliminaries

This section contains background material on uniformities. All defini-
tions may be found in [3].

Suppose X is a set and D ⊆ X×X. We will use the following notation
throughout.

(1) The diagonal is the set △ = {(x, x) : x ∈ X}.
(2) D−1 = {(y, x) : (x, y) ∈ D}.
(3) D ◦D = {(x, z) : ∃ y ∈ X such that (x, y) ∈ D and (y, z) ∈ D}.
(4) For A ⊆ X D [A] = {y : (x, y) ∈ D for some x ∈ A}.

The D-ball about x ∈ X is D ({x}) = D (x) = {y : (x, y) ∈ D}. D is an
entourage of the diagonal if △ ⊆ D.

Definition 2.1. A uniformity D on a set X is a collection of entourages
of the diagonal such that

(1) if E ∈ D and E ⊆ D, then D ∈ D;
(2) if D1, D2 ∈ D, then D1 ∩D2 ∈ D;
(3) for every E ∈ D, there is D ∈ D such that D−1 ⊆ E;
(4) for every E ∈ D, there is D ∈ D such that D ◦D ⊆ E;
(5)

∩
D = △.

This last condition ensures the topology generated by D is Hausdorff
and some authors do not require this condition [4]. A collection of en-
tourages of the diagonal satisfying conditions (3) and (4) of Definition 2.1
is a uniformity subbase.

A uniform space is a pair (X,D), a set X together with a uniformity
D on X. If D is a uniformity base, we will refer to (X,D) as a uniform
space as well. The uniform topology on X generated by D is as follows:
A set G ⊆ X is open if, for each x ∈ X, there is D ∈ D with D (x) ⊆
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G. If X is a topological space, then the uniform topology is compatible
with the topology on X if the uniformity generates the topology on X.
The topological spaces which admit a compatible uniform topology are
precisely the completely regular spaces.

The following notion will be used frequently.

Definition 2.2. A uniformity D on a set X is totally bounded if, for every
D ∈ D, there is a finite open cover C of X such that for each A ∈ C we
have A × A ⊆ D, or, equivalently, for each D ∈ D there is a finite set
F ⊆ X such that D [F ] = X.

Every compact space has exactly one uniformity generating its topol-
ogy and that uniformity is totally bounded. Every compactification of a
space generates a compatible totally bounded uniformity [3]. Explicitly,
let X ⊆ Y where Y is a compactification of X and U is the (unique,
totally bounded) uniformity on Y compatible with the topology on Y .
We may form the subspace uniformity in the obvious way: Let UX =
{U ∩ (X ×X) : U ∈ U}. Then (X,UX) is a uniform space. Each finite
open cover of Y defines a finite open cover of X. Let F = {A1, . . . , An}
be such a finite open cover of Y . Define the entourage determined by F

DF =
∪
i≤n

(Ai ×Ai) .

Then {DF : F is a finite open cover of Y } is a base for the uniformity U
on Y and so also for the uniformity UX on X. Then D-ball about x is

DF (x) =
∪

x∈Ai

Ai.

The collection of all compatible totally bounded uniformities on a space
form a partial order. However, this partial order need not have a mini-
mal element; in fact, a minimal element exists if and only if the space is
locally compact [11]. When it exists, this coarsest totally bounded uni-
formity corresponds to the Alexandroff, or one point, compactification of
the space.

3. Uniform Box Product

In this section we consider uniform box products of locally compact
spaces. The general definition may also be found in [1].

Let (X,D) be a uniform space. For any index set I, let
∏I

X denote
the product set. For each D ∈ D, define D̄ ⊆

∏I
X ×

∏I
X as

D̄ = {(x, y) : for all λ ∈ I (x (λ) , y (λ)) ∈ D} .
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Then D̄ =
{
D̄ : D ∈ D

}
is a uniformity on

∏I
X. The topology generated

on
∏I

X by D̄ is the D-uniform box topology, and
∏I

X with this topology
is the D-uniform box product. The uniform box topology is finer than the
Tychonoff topology on

∏I
X but coarser than the box topology. If D

is clear from context, we refer to
∏I

X as the uniform box product. If
I = ω, we say

∏ω
X is a countable uniform box product. If D has a

countable base, then X is metrizable, and the uniform box product is the
sup metric product, where the metric is induced by D.

If D is a uniformity base, rather than a uniformity, then D̄ is also unifor-
mity base. It is easy to see that if uniformity bases D and E generate the
same uniformity on a set X, then D̄ and Ē generate the same uniformity
on

∏I
X.

For metric spaces there may be several metrics which generate the
topology. Similarly, for a uniform space there may be several uniformities
compatible with its topology. In section 4, we show this may lead to
uniform box products of the same space with different properties. These
examples motivate the following restriction: For locally compact spaces,
we consider only the coarsest compatible totally bounded uniformity.

Definition 3.1. The U-uniform box product of a locally compact space,
where U is the coarsest compatible totally bounded uniformity, is the
uniform box product of a locally compact space.

A more explicit description is as follows. Let X be a locally compact
space and let Y = X∪{∞} be its one-point compactification. Let C ⊆ X
be any compact set and let {A1, . . . , Ak} be any finite open cover of C.
Then F = X\C∪

∪k
i=1 Ai is a finite open cover of X. It can be shown that

the entourages determined by such sets F form a basis for the coarsest
uniformity on X compatible with the topology. Its completion is Y .

If Y is also zero dimensional, we can require P = {A1, . . . , Ak} to be a
clopen (both closed and open) partition of Y . In this case, DP (x) is sim-
ply the unique element of P which contains x. If H1 and H2 are collections
of sets, we say H2 refines H1 provided, for all A ∈ H2, there is B ∈ H1

such that A is contained in B. Notice that
{
D̄P (x) : x ∈

∏I
X
}

is a

clopen partition of
∏I

X, and if P1 and P2 are partitions of X such that
P2 refines P1, then

{
D̄P2 (x) : x ∈

∏I
X
}

refines
{
D̄P1 (x) : x ∈

∏I
X
}

.

4. Connectedness in Uniform Box Products

For a connected uniform space X, its uniform box product will also be
connected provided the uniformity is totally bounded.
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Theorem 4.1. Suppose D is a totally bounded uniformity compatible with
the topology on a connected space X. Then, for any index set I, the
uniform box product

∏I
X is connected.

Proof. For each finite partition P = {A1, A2, . . . , An} of the index set I,
we let ∏

P
=

{
x ∈

∏I
X : ∀ i ≤ n ∀ j1, j2 ∈ Ai x (j1) = x (j2)

}
that is, the set of all points whose restriction to an element of the partition
is constant. As P is finite,

∏
P is homeomorphic to the finite product

X |P | of connected spaces, and hence is also connected [3]. For each y ∈∏
{I} (a constant point) and for every partition P , y ∈

∏
P . Thus, Z =∪

{
∏

P : P is a finite partition of I} is connected in
∏I

X.
For each D ∈ D, choose a finite set FD ⊆ X such that D [FD] = X.

Then for any x ∈
∏I

X and for any i ∈ I, we have FD ∩ D (x (i)) ̸= ∅.
Hence,

∏I
FD ∩D (x) ̸= ∅. Thus, there is a finite partition P of I such

that some element of
∏I

FD ∩D (x) is constant on each member of P . So∏
P ∩D (x) ̸= ∅. Therefore, Z is dense in the uniform box product

∏I
X.

As Z is connected,
∏I

X is connected. �

Example 4.2. Note that
∏ω R with the canonical uniformity derived

from the Euclidean metric on R is not connected. To see this, let C ⊆∏ω R
C = {x : ∃ a, b ∈ R such that ∀n, x (n) ∈ [a, b]} .

Then C and its complement are both open in
∏ω R. However, the canon-

ical uniformity on the open unit interval (0, 1), a homeomorph of R, is
totally bounded. This illustrates the strength of total boundedness.

However, the assumption of total boundedness is not necessary.

Example 4.3 (The metric hedgehog with uncountably many spines). Let
I be an uncountable set and for all i ∈ I, set

X (i) =

{
x ∈

∏I
[0, 1] : ∀ j ̸= i x (j) = 0

}
.

Let X =
∪

i∈I X (i). On X we define a metric d by d (x, y) = |x (i)− y (i)|
if there exists i ∈ I such that x, y ∈ X (i). Otherwise, find j ̸= i such
that x ∈ X (i) and y ∈ X (j), and define d (x, y) = x (i) + y (j). Each
(X (i) , d) is homeomorphic to [0, 1] and contains the constant 0 function
0; thus, each X (i) and hence, the metric space (X, d) is connected. As
X is not separable, it is not totally bounded. Therefore, the uniformity
D induced by d is not totally bounded.
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Now consider the uniform box product
∏ω

X. For all f : ω → I, the
uniform space

(∏
i∈I X (f (i)) , D

)
is homeomorphic to

∏ω
[0, 1] with the

sup-metric, and is therefore connected by Theorem 4.1 above. Since the
constant 0 function belongs to each

∏
i∈I X (f (i)),

∏ω
X =

∪
f∈ωI X (f (i))

is connected.

5. Pseudonormality in Uniform Box Products

As it is a uniform space, a uniform box product is completely regu-
lar. There are uniform spaces whose uniform box product is normal and
countably paracompact [1] but not paracompact [7].

In this section we show that the countable uniform box product of
a certain class of σ-compact, locally compact spaces is pseudonormal.
Recall that a topological space is pseudonormal provided that, for any
two disjoint closed sets, if one of them is countable, then they can be
separated by disjoint open sets.

5.1. Scattered spaces.

A topological space is scattered if every subset has an isolated point.
Assuming CH, the box product of compact scattered spaces is paracom-
pact [5]. A Fort space (the one-point compactification of an uncountable
discrete space) is an example of a compact scattered space whose count-
able uniform box product is normal [1]. However, it is unknown whether
the countable uniform box product of a compact scattered space is nec-
essarily normal.

For any space X, the Cantor-Bendixson sequence is formed inductively
as follows: X0 = X , Xα+1 is the set of all non-isolated points of Xα, and
if α is a limit ordinal, Xα =

∩
γ<α Xγ . A space is scattered if and only if

there exists an ordinal α such that Xα = ∅; when it exists, the smallest
such α is the rank of X. If a scattered space is compact, then its rank is
a successor ordinal β + 1 and Xβ is finite. Compact scattered spaces are
zero dimensional.

For an element x of a scattered space X, let rank (x) be the ordinal
α such that x ∈ Xα\Xα+1, and for A ⊆ X, we let rank (A) be the least
ordinal α such that A ⊆ Xα.

We will need the following facts, which we show here for completeness.

Fact 5.1. A locally compact scattered Hausdorff space is zero dimensional.

Proof. Let X be a locally compact scattered space and fix x ∈ X. Let
U ⊆ X be a compact set containing x. Since U is closed and every
compact scattered space is zero-dimensional, there is a clopen set V ⊆ U
with x ∈ V . �
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Fact 5.2. Suppose X is a compact scattered space. Then X is sequentially
compact.

Proof. Suppose {x1, x2, . . .} is a sequence of points in X. Let Y be the
set of all limit points of {x1, x2, . . .}. Then Y contains an isolated point
x. So there is a neighborhood U of x such that U ∩ Y = {x}, and U
contains infinitely many points of {x1, x2, . . .}. Thus, there is a convergent
subsequence. �
5.2. Countable-closure spaces.

We will need a special topological property which we define here.

Definition 5.3. A Hausdorff space X is a countable-closure space if for
every countable subset A ⊆ X, the closure of A is countable.

The following is folklore.

Lemma 5.4. If X is a locally compact Hausdorff space such that the
closure of every countable set has cardinality less than the continuum,
then X is scattered.

Proof. Suppose X is locally compact Hausdorff and not scattered. Since
X is not scattered, there is an infinite closed subspace A with no isolated
points. Fix x ∈ A and let U be a compact, regular-closed neighborhood
of x. Then A ∩ U has no isolated points, and so any infinite subset of
A ∩ U has closure of cardinality at least continuum. �

Thus, by Lemma 5.4, a locally compact countable-closure space is scat-
tered. Not every countable-closure space is scattered; in a private commu-
nication, Peter Nyikos provided an example of an uncountable Lindelöf
countable-closure space with no isolated points. Furthermore, not ev-
ery compact scattered space is a countable-closure space. The following
example may be found in [10].

Example 5.5. A compact scattered Hausdorff space which is not a
countable-closure space: the Cantor Tree. Take the one point compact-
ification of all sequences of zeros and ones of length ≤ ω topologized as
follows: Every finite sequence is isolated and a neighborhood of an infinite
sequence α contains α as well as all but finitely many of its initial seg-
ments. Then let C be all the isolated points; there are countably many,
but the closure of C is the entire space, which has continuum many points.

The next lemma is obvious: The countable-closure property is finitely
productive.

Lemma 5.6. If X1, . . . , Xn are countable-closure spaces, then so is∏n
i=1 Xi.
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The following partial converse to Lemma 5.4 is due to Gadi Moran [6].

Theorem 5.7 ([6]). Let K be a non-empty compact linearly ordered space.
Then K is scattered if and only if for every A ⊆ K, |cl (A)| = |A|.

In particular, it follows that every compact ordinal space is a countable-
closure space. Since countable-closure is a hereditary property, any ordi-
nal space is a countable-closure space. Finite products of ordinal spaces
are also countable-closure spaces. There are compact countable-closure
spaces which are not linearly ordered; a Fort space is one such example.

5.3. Convergent sequences.

Let K be a σ-compact, locally compact countable-closure space and
let

∏ω
K be the countable uniform box product of K. We will need some

conditions which guarantee that a sequence in
∏ω

K converges. First
we fix some notation. We may write K =

∪
n∈N Xn where each Xn is

compact clopen and Xn ⊆ Xn+1 for all n. We assume this factorization
of K is fixed. If K is itself compact, then we consider Xn = K for all
n ∈ N in all definitions in this section.

Basic clopen sets in K are defined as follows.

Definition 5.8. Suppose K is a σ-compact, locally compact scattered
space, where K =

∪
n∈N Xn and each Xn is compact clopen and Xn ⊆

Xn+1. A clopen set A ⊆ K is basic provided
(1) if there is a point in A of maximal rank, then

(a) if rank (A) = α, then there is a unique point z ∈ A with
rank (z) = α and

(b) if n is least such that z ∈ Xn, then A ⊆ Xn;
(2) if A has no points of maximal rank, then A = K\Xn for some

integer n.

A finite partition consisting of basic sets will be called a basic partition.

Definition 5.9. A finite partition P = {A1, A2, . . . , An} of K is basic if
P is a finite set and each Ai is a basic clopen set.

We use the basic partitions to generate a uniformity base. If P =
{A1, A2, . . . An} is a basic partition of K, denote the corresponding ele-
ment of K ×K by DP . That is,

DP =
∪
i≤n

(Ai ×Ai) .

Then for x ∈ K, DP (x) = Ai where x ∈ Ai (i.e, DP (x) chooses which
piece of P contains x). {DP : P is a basic partition} is a basis for the
coarsest totally bounded uniformity on K.
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For any set A ⊆ K, define the top of A to be the set

top (A) = {a ∈ A : rank (a) = rank (A)} .
If A is basic, then top (A) is empty or a one point set. Since each Xn is
compact scattered, top (Xn) is non-empty and finite for each n.

Suppose P is a partition of K. The top of P is

top (P ) =
∪
A∈P

top (A) .

A sequence of points x1, x2, . . . in K is cofinal provided that, for all
n, there is i ≥ n such that for all j > i xj /∈ Xn. This is equivalent
to converging to the extra point in the one-point compactification of K.
There are no cofinal sequences when K is compact.

Lemma 5.10. Let K be a σ-compact, locally compact countable-closure
space, suppose a1, a2, . . . is a sequence of points in K, and suppose P1, P2,
. . . is a sequence of basic partitions of K such that for all i, ai+1 ∈
DPi (ai), Pi+1 refines Pi, and cl ({a1, a2, . . .}) ⊆

∪
i∈N top (Pi). Then

either a1, a2, . . . is cofinal in K or there exists b ∈ K such that a1, a2, . . .
converges to b.

Proof. Suppose a1, a2, . . . is not cofinal in K. Then there exists n so
that {i : ai ∈ Xn} is infinite. Since Xn is sequentially compact, there
is b ∈ Xn and a subsequence of a1, a2, . . . which converges to b. Since
b ∈ cl ({a1, a2, . . .}) there is m large enough so that b ∈ top (Pm). Choose
j > m such that aj ∈ DPm (b). Since DPj (aj) ⊇ {aj , aj+1, . . .}, we have
b ∈ DPj (aj). Thus, top

(
DPj (aj)

)
= b. Suppose c is another limit point

of a1, a2, . . . . Then there is k > m with c ∈ top (Pk). Choose r > k so
that ar ∈ DPk

(c). Then DPr (ar) ⊇ {ar, ar+1, . . .} and so c ∈ Dpr (ar)
and top (DPr (ar)) = c. But b ∈ DPr (ar) and so b = c. Thus, a1, a2, . . .
converges to b. �
Definition 5.11. Suppose K is a σ-compact, locally compact scattered
space of rank β, where K =

∪
n∈N Xn, X1 ⊆ X2 ⊆ . . . and each Xn is

compact clopen. A sequence of basic partitions P1, P2, . . . of K is tidy
with respect to X1 ⊆ X2 ⊆ . . . provided that, for all i,

(1) Pi+1 refines Pi;
(2) top (Xi) ⊆ top (Pi);
(3) if K is not compact, then the unique element of Pi with rank β

is contained in K\Xi.

Note that if Pi and Pi+1 are elements of a tidy sequence of partitions,
then top (Pi) ⊆ top (Pi+1). Notice also that by (3) above and Definition
5.8(2), if K is not compact, the unique element of Pi with rank β is some
K\Xj where j ≥ i. Thus, the restriction of Pi to Xj is a partition of Xj .
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Lemma 5.12. Let K =
∪

n∈N Xn be a σ-compact, locally compact countable-
closure space written as an increasing union of compact open sets, and let
x1, x2, . . . be a sequence of points in

∏ω
K. Let A = {xi (n) : i < ω, n < ω}

and let f : N → cl (A) be a bijection. If there exists a sequence of tidy
partitions P1, P2, . . . of K such that, for all i,

(1) xi+1 ∈ D̄Pi (xi) and
(2) f (i) ∈ top (Pi) ,

then either
∩

n∈N D̄Pn
(xn) = ∅ or there exists a point z ∈

∏ω
K with

z ∈
∩

n∈N D̄Pn (xn) for which x1, x2, . . . converges to z.

Proof. Suppose
∩

n∈N D̄Pn (xn) ̸= ∅. First we show that in every coordi-
nate n, DPi (xi (n)) ⊆ Xk for some i and some k. This is clear if K is
compact. If K is not compact, then if DPi (xi (n)) * Xk for any k, then
for all i, DPi (xi (n)) ⊆ K\Xi as the sequence of partitions is tidy; hence,
⟨xi (n) : i ∈ N⟩ is cofinal and so

∩
i∈N DPi (xi (n)) = ∅.

So for each n, let i and k be such that DPi (xi (n)) ⊆ Xk. Then
in each coordinate n, ⟨xi (n) : i ∈ N⟩ satisfies the hypotheses of Lemma
5.10, and since it is not a cofinal sequence, there is z (n) ∈ K such that
x1 (n) , x2 (n) , . . . converges to z (n). Define a point z ∈

∏ω
K as z =

(z (1) , z (2) , . . .).
By the first condition, for each m and each i we have DPm (xm (i)) ⊇

{xm+1 (i) , xm+2 (i) , . . .}, so that z (i) ∈ DPm (xm (i)). We show x1, x2, . . .
converges to z.

Suppose not, and let P be a basic partition of K such that there is
an infinite set I ⊆ N so that, for every n ∈ I, there exists jn ∈ N
such that xjn (n) /∈ DP (z (n)). By pointwise convergence, for every n
{m : xm (n) /∈ DP (z (n))} is finite, so we may assume j1 < j2 < . . . .

We show ⟨xjn (n) : n ∈ I⟩ cannot be a cofinal sequence in K; i.e., we
find s ∈ N so that Xs contains infinitely many terms from this sequence.
This is clear if K is compact. If K is not compact, there are two cases to
consider.

Case 1: If {z (n) : n ∈ I} * Xt for any t ∈ N, then there exists
an infinite subset J ⊆ I such that DP (z (n)) = K\Xs where K\Xs is
the unique element of P without maximal rank. Since by assumption
xjn (n) /∈ DP (z (n)), for each i ∈ J we have xji (i) ∈ Xs.

Case 2: Suppose {z (n) : n ∈ I} ⊆ Xt for some t ∈ N. The unique
element of Pt without maximal rank is K\Xs for some s where s ≥ t. We
cannot have DPt (xt (n)) = K\Xs for any n ∈ I since if so, then because
z(n) ∈ DPt (xt (n)) = K\Xs, then z (n) /∈ Xs ⊇ Xt whence z (n) /∈ Xt.
Thus, for each n ∈ I, DPt (xt (n)) ⊆ Xs and so for every m ∈ I with
m ≥ t, xjm (m) ∈ Xs.
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Since Xs contains infinitely many terms from ⟨xjn (n) : n ∈ I⟩, there
exists an infinite subset J ⊆ I and a y ∈ Xs such that ⟨xjn (n) : n ∈ J⟩
is a sequence in Xs which converges to y. We show ⟨z (n) : n ∈ J⟩ has a
subsequence which converges to y.

Choose m ∈ N large enough so that y ∈ top (Pm) and m ≥ s. Choose
l so that DPm (y) contains all but the first l terms of ⟨xjn (n) : n ∈ J⟩.
Fix q > max {m, l} so that for all i > q with i ∈ J , ji > max {m, l} as
well. Then, for i > q with i ∈ J , xji (i) ∈ DPm (xm (i)) and also xji (i) ∈
DPm (y); since Pm is a partition, we have DPm (xm (i)) = DPm (y). Thus,
we have z (i) ∈ DPm (xm (i)) = DPm (y). Thus,

DPm (y) ⊇ {z (i) : i ∈ J and i > q} ,
and so ⟨z (n) : n ∈ J⟩ has a limit point w. We must have w = y: Choose
m′ ≥ m such that w ∈ top (Pm′), which can be done since w ∈ cl (A).
Then either DPm′ (y) ∩ DPm′ (w) = ∅ or w = y. By similar reasoning,
DPm′ (y) contains all but finitely many terms of ⟨z (n) : n ∈ J⟩, and so
also contains w. Thus, w = y by choice of m′.

But then DP (z (i)) = DP (y) for infinitely many i ∈ J , and xjn (n) /∈
DP (z (n)) for all n ∈ J ⊆ I by assumption. So DP (y) is a neighborhood
of y which misses infinitely many terms of ⟨xjn (n) : n ∈ J⟩, contradicting
that ⟨xjn (n) : n ∈ J⟩ converges to y. �

5.4. Pseudonormality.

Our strategy to prove the main result of this section is to inductively
build a tree of clopen sets surrounding a given countable closed set which
is contained in a given open set. This tree will be constructed so that
if an infinite branch exists, the intersection of the sets in that branch is
empty. Then we observe that the union of certain elements of the tree is
closed.

Theorem 5.13. The countable uniform box product of a σ-compact, lo-
cally compact countable-closure space is pseudonormal.

Proof. Let K be a σ-compact, locally compact countable-closure space of
rank β. Suppose C = {c1, c2, . . .} ⊆

∏ω
K is countable and closed with

C ⊆ G where G is open in
∏ω

K. We will construct a tree of clopen sets
by recursion. Write K =

∪
n∈N Xn where each Xn is compact clopen and

Xn ⊆ Xn+1 for all n. If K is compact, then Xn = K for each n.
Let A = {ci (n) : i ∈ N, n ∈ N} and fix f : N → cl (A) a bijection. Let

k1 = c1 and choose a basic clopen partition P1 such that D̄P1 (k1) ⊆ G,
top(P1) ⊇ {f (1)}∪top (X1), and, if K is not compact, the unique element
of P1 with rank β is contained in K\X1. Let T1 = Q1 ∪R1 where

Q1 =
{
D̄P1 (c) : c ∈ C and D̄P1 (c) ⊆ G

}
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R1 =
{
D̄P1 (c) : c ∈ C and D̄P1 (c) * G

}
.

At stage n+ 1, let kn+1 be cj , where j = min {i : ci ∈ C ∩ (
∪
Rn)}, that

is, the first member of C which is not in any Qi yet. Choose a basic clopen
partition Pn+1 so that Pn+1 refines Pn, D̄Pn+1 (kn+1) ⊆ G, top(Pn+1) ⊇
{f (n+ 1)} ∪ top (Xn+1) and if K is not compact, the unique element of
Pn+1 with rank β is contained in K\Xn+1. Let Tn+1 = Qn+1 ∪ Rn+1

where

Qn+1 =
{
D̄Pn+1 (c) : c ∈ C ∩

(∪
Rn

)
and D̄Pn+1 (c) ⊆ G

}
Rn+1 =

{
D̄Pn+1 (c) : c ∈ C ∩

(∪
Rn

)
and D̄Pn+1 (c) * G

}
.

So for every c ∈ C, there is n such that c ∈ A ∈ Qn. We claim H =∪
n∈N

∪
Qn is closed. Let y ∈ cl

(∪
n∈N

∪
Qn

)
and suppose y /∈

∪
Qn

for any n. Then D̄P1 (y) ∩ R1 ̸= ∅ and so there exists a unique (since
R1 is pairwise disjoint) A1 ∈ R1 with A1 = D̄P1 (y); A1 cannot be in
Q1 since y /∈

∪
Q1. So, for every n, there is a unique An ∈ Rn with

D̄Pn (y) = An. By construction, we have A1 ⊇ A2 ⊇ . . . and so y ∈∩
n∈N An. But {k1, k2, k3, . . .} ⊆ C and P1, P2, . . . satisfy the hypotheses

of Lemma 5.12, and hence {k1, k2, k3, . . .} converges to a point in C since∩
n∈N DPn (kn) ̸= ∅; however, this point must be in

∪
Qr for some r, a

contradiction. Therefore, y ∈
∪

n∈N
∪
Qn and so H is closed. Clearly, H

is also open and C ⊆ H ⊆ G. �

In particular, the countable uniform box product of a compact countable-
closure space is pseudonormal.

6. Ordinal Spaces

Ordinal spaces are of particular interest, since it is not known if the
uniform box product of the simplest non-trivial compact ordinal space,
[0, ω1], is normal. Nyikos [8] has shown that the uniform box product of
[0, ω1) is collectionwise normal.

Theorem 6.1. The countable uniform box product of any ordinal space
is pseudonormal.

Proof. Since successor ordinals are compact countable-closure spaces, and
limit ordinals with countable cofinality are σ-compact, locally compact
countable-closure spaces, as a corollary to Theorem 5.13, we have that
the countable uniform box product of an ordinal space α is pseudonormal
if α is a successor ordinal or is of countable cofinality.

Let α be an ordinal of uncountable cofinality. Suppose C ⊆
∏ω

[0, α)
is countable and closed, with C ⊆ G where G is open. Then

Y = {ci (n) : i ∈ N, n ∈ N}
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is a countable collection of ordinals, and hence has a supremum β. Since
α has uncountable cofinality, β + 1 < α and C ⊆

∏ω
[0, β + 1]. Since∏ω

[0, β + 1] is an open subspace of
∏ω

[0, α), G ∩
∏ω

[0, β + 1] is open;
since

∏ω
[0, β + 1] is pseudonormal, there is an open set H ⊆

∏ω
[0, β + 1]

with C ⊆ H ⊆ G. �
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