

http://topology.nipissingu.ca/tp/

ON TOPOLOGICAL COMPLEXITY OF EILENBERG-MACLANE SPACES

by Yuli Rudyak

Electronically published on April 17, 2015

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on April 17, 2015

ON TOPOLOGICAL COMPLEXITY OF EILENBERG-MACLANE SPACES

YULI RUDYAK

ABSTRACT. We note that, for any natural k and every natural l between k and 2k, there exists a group π with $\operatorname{cat} K(\pi,1) = k$ and $\operatorname{TC}(K(\pi,1)) = l$. Because of this, we can set up a problem for searching for a purely group-theoretical description of $\operatorname{TC}(K(\pi,1))$ as an invariant of π .

Below cat X denotes the Lusternik–Schnirelmann category (normalized, i.e., cat $S^n = 1$, see [2]). Furthermore, we denote by TC(X) the topological complexity of X defined by Michael Farber [5], but we use the normalized version in [7], [8].

Because of results of Alexander Dranishnikov [3, Lemma 2.7 and Theorem 3.6], we get the following inequalities:

(1)
$$\operatorname{cat}(G \times H) < \operatorname{TC}(G \vee H) < \operatorname{cat} G + \operatorname{cat} H.$$

Farber asked about calculation of $\mathrm{TC}(K(\pi,1))$'s. It is known that $\mathrm{cat}\, X \leq \mathrm{TC}(X) \leq \mathrm{cat}(X \times X)$ for all X [5]. The following observation tells us that, in the class of $K(\pi,1)$ -spaces, the above mentioned inequality gets no new bounds.

Theorem 1. For every natural k and every natural l with $k \leq l \leq 2k$, there exists a discrete group π such that π with $\operatorname{cat} K(\pi, 1) = k$ and $\operatorname{TC}(K(\pi, 1)) = l$. In fact, we can put $\pi = \mathbb{Z}^k * \mathbb{Z}^{l-k}$.

Proof. Let T^m be the m-torus. Then $\operatorname{cat} T^m = m$. Put r = l - k and consider the free product $\pi := \mathbb{Z}^k * \mathbb{Z}^r$. Then $K(\pi, 1) = T^k \vee T^r$, because

²⁰¹⁰ Mathematics Subject Classification. Primary 55M30. Secondary 68T40.

 $Key\ words\ and\ phrases.$ Lusternik–Schnirelmann theory, robotics, Schwarz genus, topological complexity.

The work was partially supported by a grant from the Simons Foundation (#209424 to Yuli Rudyak).

^{©2015} Topology Proceedings.

66 Y. RUDYAK

 $\operatorname{cat}(X \vee Y) = \max(\operatorname{cat} X, \operatorname{cat} Y)$ (for good enough spaces X and Y, like CW spaces). So $\operatorname{cat}(K(\pi, 1)) = k$. On the other hand, because of (1), we have

$$\begin{split} l &= \operatorname{cat}(T^l) = \operatorname{cat}(T^k \times T^r) \leq \operatorname{TC}(T^l \vee T^r) \\ &= \operatorname{TC}(K(\pi, 1)) \leq \operatorname{cat} T^k + \operatorname{cat} T^r = k + r = l. \end{split}$$

Thus, $TC(K(\pi, 1)) = l$.

The TC of groups $\mathbb{Z}^k * \mathbb{Z}^r$ also appear (implicitly) in [1].

Note that the invariant $\operatorname{cat}(K(\pi,1))$ has a known purely group-theoretical description. In fact, $\operatorname{cat} K(\pi,1)$ is equal to the cohomological dimension $\operatorname{cd}(\pi)$ of π . Indeed, Samuel Eilenberg and Tudor Ganea [4] proved that $\operatorname{cat} K(\pi,1) = \operatorname{cd}(\pi)$ except, possibly, in the following case: $\operatorname{cat}(K(\pi,1)) = 2$ while $\operatorname{cd}(\pi) = 1$. However, John Stallings [9] and Richard G. Swan [10] proved that if $\operatorname{cd}(\pi) = 1$, then π is free. So, in this case, $K(\pi,1)$ is homotopy equivalent to a wedge of circles, and thus $\operatorname{cat}(K(\pi,1)) = 1$.

Now, in view of Theorem 1, the problem of describing of $TC(K(\pi, 1))$ in purely group-theoretical terms turns out to be essential.

Acknowledgments. I am grateful to Peter Landweber for his help. I am grateful to the anonymous referee for useful remarks.

References

- [1] Daniel C. Cohen and Goderdzi Pruidze, Topological complexity of basis-conjugating automorphism groups, Pacific J. Math. 238 (2008), no. 2, 233–248.
- [2] Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann Category. Mathematical Surveys and Monographs, 103. Providence, RI: American Mathematical Society, 2003.
- [3] Alexander Dranishnikov, Topological complexity of wedges and covering maps, Proc. Amer. Math. Soc. 142 (2014), no. 12, 4365–4376.
- [4] Samuel Eilenberg and Tudor Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. (2) 65 (1957), 517-518.
- [5] Michael Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211–221.
- [6] ______, Instabilities of robot motion, Topology Appl. 140 (2004), no. 2-3, 245–266.
- [7] Yuli B. Rudyak, On higher analogs of topological complexity, Topology Appl. 157 (2010), no. 5, 916–920.
- [8] _____, Erratum to "On higher analogs of topological complexity," Topology Appl. **157** (2010), no. 6, 1118.
- [9] John Stallings, Groups of dimension 1 are locally free, Bull. Amer. Math. Soc. 74 (1968), 361–364.

[10] Richard G. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585–610.

Department of Mathematics; 1400 Stadium Rd.; University of Florida; Gainesville, FL 32611

 $E\text{-}mail\ address{:}\ \mathtt{rudyak@ufl.edu}$