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Abstract. We note that, for any natural k and every natural l

between k and 2k, there exists a group π with catK(π, 1) = k and
TC(K(π, 1)) = l. Because of this, we can set up a problem for
searching for a purely group-theoretical description of TC(K(π, 1))
as an invariant of π.

Below catX denotes the Lusternik–Schnirelmann category (normal-
ized, i.e., catSn = 1, see [2]). Furthermore, we denote by TC(X) the
topological complexity of X defined by Michael Farber [5], but we use the
normalized version in [7], [8].

Because of results of Alexander Dranishnikov [3, Lemma 2.7 and The-
orem 3.6], we get the following inequalities:

(1) cat(G×H) ≤ TC(G ∨H) ≤ catG+ catH.

Farber asked about calculation of TC(K(π, 1))’s. It is known that
catX ≤ TC(X) ≤ cat(X × X) for all X [5]. The following observation
tells us that, in the class of K(π, 1)-spaces, the above mentioned inequality
gets no new bounds.

Theorem 1. For every natural k and every natural l with k ≤ l ≤ 2k,
there exists a discrete group π such that π with catK(π, 1) = k and
TC(K(π, 1)) = l. In fact, we can put π = Zk ∗ Zl−k.

Proof. Let Tm be the m-torus. Then catTm = m. Put r = l − k and
consider the free product π := Zk ∗Zr. Then K(π, 1) = T k ∨ T r, because
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cat(X ∨ Y ) = max(catX, catY ) (for good enough spaces X and Y, like
CW spaces). So cat(K(π, 1)) = k. On the other hand, because of (1), we
have

l = cat(T l) = cat(T k × T r) ≤ TC(T l ∨ T r)

= TC(K(π, 1)) ≤ catT k + catT r = k + r = l.

Thus, TC(K(π, 1)) = l. �

The TC of groups Zk ∗ Zr also appear (implicitly) in [1].
Note that the invariant cat(K(π, 1)) has a known purely group-

theoretical description. In fact, catK(π, 1) is equal to the cohomologi-
cal dimension cd(π) of π. Indeed, Samuel Eilenberg and Tudor Ganea [4]
proved that catK(π, 1) = cd(π) except, possibly, in the following case:
cat(K(π, 1)) = 2 while cd(π) = 1. However, John Stallings [9] and
Richard G. Swan [10] proved that if cd(π) = 1, then π is free. So, in
this case, K(π, 1) is homotopy equivalent to a wedge of circles, and thus
cat(K(π, 1)) = 1.

Now, in view of Theorem 1, the problem of describing of TC(K(π, 1))
in purely group-theoretical terms turns out to be essential.
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