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Abstract. We note that, for any natural k and every natural l

between k and 2k, there exists a group π with catK(π, 1) = k and
TC(K(π, 1)) = l. Because of this, we can set up a problem for
searching for a purely group-theoretical description of TC(K(π, 1))
as an invariant of π.

Below catX denotes the Lusternik–Schnirelmann category (normal-
ized, i.e., catSn = 1, see [2]). Furthermore, we denote by TC(X) the
topological complexity of X defined by Michael Farber [5], but we use the
normalized version in [7], [8].

Because of results of Alexander Dranishnikov [3, Lemma 2.7 and The-
orem 3.6], we get the following inequalities:

(1) cat(G×H) ≤ TC(G ∨H) ≤ catG+ catH.

Farber asked about calculation of TC(K(π, 1))’s. It is known that
catX ≤ TC(X) ≤ cat(X × X) for all X [5]. The following observation
tells us that, in the class of K(π, 1)-spaces, the above mentioned inequality
gets no new bounds.

Theorem 1. For every natural k and every natural l with k ≤ l ≤ 2k,
there exists a discrete group π such that π with catK(π, 1) = k and
TC(K(π, 1)) = l. In fact, we can put π = Zk ∗ Zl−k.

Proof. Let Tm be the m-torus. Then catTm = m. Put r = l − k and
consider the free product π := Zk ∗Zr. Then K(π, 1) = T k ∨ T r, because
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