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CENTRAL STRIPS OF SIBLING LEAVES IN
LAMINATIONS OF THE UNIT DISK

DAVID J. COSPER, JEFFREY K. HOUGHTON, JOHN C. MAYER,
LUKA MERNIK, AND JOSEPH W. OLSON

Abstract. Quadratic laminations of the unit disk were intro-
duced by William P. Thurston as a vehicle for understanding the
(connected) Julia sets of quadratic polynomials and the parameter
space of quadratic polynomials. The Central Strip Lemma plays
a key role in Thurston’s classification of gaps in quadratic lami-
nations and in describing the corresponding parameter space. We
generalize the notion of “Central Strip” to laminations of all de-
grees d ≥ 2 and prove a Central Strip Lemma for degree d ≥ 2. We
conclude with applications of the Central Strip Lemma to identity
return polygons that show for higher degree laminations it may
play a role similar to Thurston’s lemma.

1. Introduction

Quadratic laminations of the unit disk were introduced by William
P. Thurston as a vehicle for understanding the (connected) Julia sets of
quadratic polynomials and the parameter space of quadratic polynomials.
The Central Strip Lemma plays a key role in Thurston’s classification of
gaps in quadratic laminations [12]. It is used to show that there are
no wandering polygons for the angle-doubling map σ2 on the unit circle.
Moreover, when a polygon returns to itself, the iteration of σ2 is transitive
on the vertices. For σ2 it is sufficient to prove these facts for triangles:
there are no wandering triangles, and no identity return triangles. From
these facts, the classification of types of gaps of a quadratic lamination,
and a parameter space for quadratic laminations, follows. Thurston posed
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a question in his notes on laminations that he deemed important to further
progress in the field: “Can there be wandering triangles for σ3 (and higher
degree)?” When Alexander Blokh and Lex Oversteegen [3] [4] showed that
the answer was “yes,” the need to define and understand central strips
for higher degree and their role in “controlling” wandering and identity
return polygons of a lamination became imperative. Contributions to
this understanding were made by Lisa R. Goldberg and John Milnor [7],
Milnor [10] [9], Jan Kiwi [8], Blokh and G. Levin [1], Douglas K. Childers
[6], and others.

New results in this paper include definitions of a sibling portrait (Def-
inition 1.9) and of a central strip (Definition 2.2), the statement and
proof of the Central Strip Structure (Theorem 2.3), the statement and
proof of the generalized Central Strip Lemma (Theorem 2.9), and count-
ing the number of different sibling portraits that could correspond to
the preimage of a given non-degenerate leaf (Theorem 3.1). The Central
Strip Lemma can be used to provide new proofs of known results that
the authors believe to be more transparent, yield more information about
the laminations, and yield new results for laminations of degree d ≥ 3.
Initial applications to identity return triangles under σ3 appear in this
paper (§4); other applications, particularly to higher degree, will appear
in subsequent papers.

1.1. Preliminaries.

Let C denote the complex plane, D ⊂ C the open unit disk, D the
closed unit disk, and S the boundary of the unit disk (i.e., the unit circle),
parameterized as R/Z. For d ≥ 2, define a map σd : S→ S by σd(t) = dt
(mod 1).

Definition 1.1. A lamination L is a collection of chords of D, which we
call leaves, with the property that any two leaves meet, if at all, in a point
of S, and such that L has the property that

L∗ := S ∪ {∪L}
is a closed subset of D.

It follows that L∗ is a continuum (compact, connected metric space).
We allow degenerate leaves – all points of S are degenerate leaves. If ` ∈ L
is a leaf, we write ` = ab, where a and b are the endpoints of ` in S. We
let σd(`) be the chord σd(a)σd(b). If it happens that σd(a) = σd(b), then
σd(`) is a point, called a critical value of L and we say ` is a critical leaf.

Proposition 1.2. Let σ∗d denote the linear extension of σd to leaves of
L, so that σ∗d is defined on L∗. Then σ∗d is continuous on L∗.

The proof is left to the reader.
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1.2. Leaf length function.

Fix the counterclockwise order < on S as the preferred (circular) order.
Let |(a, b)| denote the length in the parameterization of S of the arc in S
from a to b counterclockwise. Given a chord ab, there are two arcs of S
subtended by ab. Define the length of ab, denoted |ab|, to be the shorter
of |(a, b)| or |(b, a)|. The maximum length of a leaf is thus 1

2 . Note that
the length of a critical leaf is i

d for some i ∈ {1, 2, . . . j | j = bd2c}. See
Figure 1.

Figure 1. Graph of the leaf length function.

Lemma 1.3. Let x = |`| where ` ∈ L. Then the length τd(x) of σd(`) is
given by the function

τd(x) =



dx if 0 ≤ x ≤ 1
2d

1− dx if 1
2d ≤ x ≤

1
d

dx− 1 if 1
d ≤ x ≤

3
2d

2− dx if 3
2d ≤ x ≤

2
d

...
(−1)ddx+ (−1)d+1bd−12 c if

d−2
2d ≤ x ≤

d−1
2d

(−1)d+1dx+ (−1)d+2bd2c if
d−1
2d ≤ x ≤

1
2

defined on the interval [0, 1/2].

The proof is left to the reader.
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Proposition 1.4. The fixed points of τd are of the form

{0, 1

d+ 1
,

1

d− 1
,

2

d+ 1
,

2

d− 1
, . . . ,

j

d+ 1
,

j

d− 1
,
j + 1

d+ 1
. . . ,≤ 1

2
}.

Thus, if j
d+1 < |`| < j

d−1 for some j, then |σd(`)| < |`|, and if j
d−1 <

|`| < j+1
d+1 for some j, then |σd(`)| > |`|.

The proof is left to the reader.

Lemma 1.5. A leaf ` of length |`| < 1
d+1 will keep increasing in length

under iteration of σd until the length of some iterate |σi
d(`)| ≥ 1

d+1 .

Proof. Consider τd and the identity function. Each monotone interval of
the map τd and the identity function are linear. The first interval of τd,
defined on [0, 1/2d], has the equation τd(x) = dx; therefore, (0, 0) is the
only intersection on the first interval. On the second interval, [1/2d, 1/d],
τd(x) = 1 − dx. Therefore, the intersection is 1 − dx = x or x = 1

d+1 .
Since the graph of τd is above the identity function on interval (0, 1

d+1 ),
the length will keep increasing under iteration until it is at least 1

d+1 . �

1.3. Sibling invariant laminations.

Thurston’s definition [12] of invariant laminations did not involve sib-
ling leaves. Blokh, et al. showed in [2] that each sibling invariant lam-
ination (defined below) is a Thurston lamination, and each lamination
induced by a locally connected Julia set is a sibling invariant lamination.
They showed that to understand Julia sets via laminations, it is sufficient
to consider sibling laminations. (More precisely, they showed that the clo-
sure of the space of quadratic sibling laminations in the Hausdorff metric
contains all laminations induced by locally connected Julia sets.)

Definition 1.6 (Sibling Leaves). Let `1 ∈ L be a leaf and suppose
σd(`1) = `′ for some non-degenerate leaf `′ ∈ L. A leaf `2 ∈ L, disjoint
from `1, is called a sibling of `1 provided σd(`2) = `′ = σd(`1). A col-
lection S = {`1, `2, . . . , `d} ⊂ L is called a full sibling collection provided
that for each i, σd(`i) = `′, and for all i 6= j, `i ∩ `j = ∅.

Definition 1.7. A lamination L is said to be sibling d-invariant (or sim-
ply invariant if no confusion will result) provided that

(1) (Forward Invariant) for every ` ∈ L, σd(`) ∈ L;
(2) (Backward Invariant) for every non-degenerate `′ ∈ L, there is a

leaf ` ∈ L such that σd(`) = `′;
(3) (Sibling Invariant) for every `1 ∈ L with σd(`1) = `′, a non-

degenerate leaf, there is a full sibling collection {`1, `2, . . . , `d} ⊂
L such that σd(`i) = `′.



CENTRAL STRIPS OF SIBLING LEAVES 73

Definition 1.8. A gap in a lamination L is the closure of a component
of D \ L∗. A gap is critical if and only if two points in its boundary map
to the same point. A finite gap is usually called a polygon. The leaves
bounding a finite gap are called the sides of the polygon. A polygon is
called all-critical if every side is a critical leaf.

Definition 1.9 (Sibling Portrait). The sibling portrait S of a full col-
lection of sibling leaves is the collection of regions complementary to the
sibling leaves. We call a complementary region a C-region provided all
of the arcs in which the closure of the region meets the circle are short
(length < 1

2d ) and call it an R-region if all of the arcs are long (length
> 1

2d ). The degree of a complementary region T , denoted deg(T ), is the
number of leaves in the boundary of T or, equivalently, the number of
circular arcs in the boundary of T .

C-regions which meet the circle in more than one short arc will consti-
tute the components of the central strip, see Definition 2.2. We show in
Theorem 2.3, subject to the condition that no sibling maps to a diameter,
that each region is either a C-region or an R-region.

Topologically, a graph is a finite union of arcs (homeomorphic images
of the interval [0, 1]) meeting only at endpoints. Endpoints of these arcs
are called vertices and the arcs themselves are called edges. The degree of
a vertex v is the number of edges that share v as an endpoint. A tree is
a graph with no closed loops of edges in it.

Definition 1.10. The dual graph TS of the sibling portrait S of a full
collection S of sibling leaves is defined as follows: Let each complemen-
tary region correspond to a vertex of TS and let each sibling leaf on the
boundary of two regions correspond to an edge of TS between the vertices
corresponding to the two regions.

Proposition 1.11. The dual graph of a sibling portrait under σd is a
connected tree consisting of d+1 vertices (components of the portrait) and
d edges (sibling leaves between components that meet on their boundaries).

The proof is left to the reader. See Figure 5 (page 76) for an example.

Proposition 1.12. Let S be the sibling portrait of a full collection S
of sibling leaves under σd. Let T denote a complementary region of S
and let T ′ denote the corresponding vertex of the dual graph TS. Then
deg(T ) = deg(T ′).

The proof is left to the reader.

In Theorem 2.3 below, we show that if the image leaf of a full sibling
collection is not a diameter, then each of the complementary regions of
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the sibling portrait is either a C-region or an R-region of degree d ≥ 2,
or a terminal C- or R-region of degree 1. (By “terminal” region we mean
a region corresponding to an endpoint of the dual graph.) Examples of
sibling portraits for degrees d = 2 and d = 3 are in figures 2 and 3.

Figure 2. Example of a sibling portrait with a central
strip for σ2.

Figure 3. Examples of all sibling portraits with a cen-
tral strip for σ3 with the same spacing of xi and yi points,
up to rotational symmetry.

Remark 1.13. Note that up to labeling of vertices and rotation, there
are only three sibling portraits for d = 3. Moreover, the sibling leaves,
`1, `2, and `3 in the non-symmetric case are of three different lengths:
1
3 < |`1| <

1
2 ,

1
6 < |`2| <

1
3 , and |`3| <

1
6 . See Theorem 3.1 for the count

for d > 3.
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Figure 4 shows one of many possibilities for a sibling portrait for σ6.

Figure 4. Example of a sibling portrait for σ6. (Not
to scale; though chords are straight, we sometimes draw
them curved to stand out.)

Proposition 1.14. Suppose S is a sibling portrait. Then the following
formula holds. ∑

T∈S
(deg(T )− 1) = d− 1.

The proof is a direct consequence of the Euler characteristic of a tree.

Remark 1.15. Note that the degree of a C-region T is the number of
times the boundary of T wraps, under σd, around the analog of the sector
of the disk labeled C on the right side of Figure 4. A similar statement
holds for R-regions.

2. Central Strips

Let L be a sibling d-invariant lamination.

Remark 2.1. If S is a full sibling collection mapping to leaf ` = xy, then
endpoints xi and yi of the preimage leaves alternate counterclockwise
around S: x1 < y1 < x2 < y2 < · · · < xd < yd < x1. (Here we do not
suppose that `i = xiyi.) If a leaf is a multiple of 1

2d long, then it maps
to a leaf of length 1

2 , a diameter. A diameter leaf is either of fixed length
or is critical (depending upon whether d is odd or even). As these can
be handled as special cases, we consider only full sibling collections not
having any leaf mapping to a diameter.
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Definition 2.2 (Central Strip). Consider the sibling portrait of a full
collection S of sibling leaves. Then the central strip C corresponding to
S is the closure of the union of all C-regions Ci with degree at least 2.
The degree of the central strip is deg(C) = min{deg(Ci)}.

A tree with vertices labeled with two colors, and such that no edge
connects vertices of the same color, is said to be bicolored. See Figure 5.

y3

y6

x1

y1
x2y2

x3

x4
y4

x5 y5

x6

C

R

C
R

R
R

C

Figure 5. Mapping of a sibling portrait to a bicolored tree.

Theorem 2.3 (Central Strip Structure). Let S be a full sibling collection
of leaf `1 and its siblings such that σd(`1) is not a diameter. Then the
following hold.

(1) If some leaf in S is of length > 1
2d , then there is a nonempty

central strip C.
(2) The dual graph of the sibling portrait corresponding to S is a pla-

nar bicolored tree where C-regions are colored one color and R-
regions the other.

Proof. Suppose S = {`1, `2, . . . , `d}. As in Remark 2.1, we label the
endpoints of the sibling leaves x1 < y1 < · · · < xd < yd < x1 in counter-
clockwise order so that xi is an endpoint of `i. Note that the lengths of
circular arcs between successive x and y points alternate between short
(length < 1

2d ) and long (length > 1
2d ), provided the full sibling collection

does not map to a diameter. Without loss of generality assume (xi, yi) is
short.

To prove (1), assume that some leaf is more than 1
2d long. Let `i be

a long leaf. We know by assumption that `i = xiyj for some j 6= i. We
claim that the region T with arc (xi, yi) in its boundary is a C-region and
the region on the other side of `i is an R-region. To see this we traverse
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the region T with arc (xi, yi) in its boundary counterclockwise. Refer to
Figure 4. All sibling leaves map to a single image leaf xy. All short arcs
map to the shorter (counterclockwise) arc (x, y), and all long arcs map to
the longer (counterclockwise) arc (y, x). Thus, as we move from xi to yi
in the domain, we traverse the (shorter) arc (x, y) in the range; then as we
move from yi along a leaf emanating from it, we traverse the leaf xy from
y to x in the range. Since short and long arcs alternate, we are now again
at some xk in the domain; we cannot be at xi again, else `i with endpoint
xi is a short leaf; we thus traverse the arc (xk, yk) in the domain while we
again traverse the arc (x, y) in the range. Proceeding counterclockwise
around the region T , we see that we encounter only short arcs in the
domain, each mapping to the counterclockwise arc (x, y) in the range.
Note that we traversed at least two short arcs in the domain: (xi, yi) and
(xk, yk). Moreover, we encounter only long leaves in the boundary of T .
Thus, T is a C-region with only long leaves and short arcs in its boundary,
and deg(T ) ≥ 2.

On the other side of leaf `i, by a similar argument, the region T ′ is an
R-region bounded only by long arcs, though it may have both long and
short leaves in its boundary. However, the short leaves in the boundary of
T ′ can bound only degree 1 C-regions. Thus, T ′, sharing long boundary
leaf `i with T , is an R-region.

In the above argument, we have shown both that when some leaf has
length > 1

2d , the central strip is nonempty, establishing conclusion (1) of
the theorem, for we found at least one C-region of degree ≥ 2, and that
any leaf bounds a C-region on one side and an R-region on the other. So,
if a pair of complementary regions share a boundary leaf, then one is a
C-region and the other is an R-region.

To prove (2), we form the dual graph TS of the complementary regions
of the sibling collection S as follows: Let each complementary region cor-
respond to a vertex of TS and each sibling leaf on the common boundary
of two regions correspond to an edge of TS . Since D is connected and each
sibling leaf disconnects D, TS is a connected tree. Refer to Figure 5. The
proof of part (1) shows that the tree is bicolored, with C-regions being
one color and R-regions the other. If no leaves are of length > 1

2d , then all
leaves are short and the regions bounded by them are degree 1 C-regions.
The central region bounded by all of them and long arcs of the circle is a
degree d R-region. In this case, there is no central strip. This completes
part (2) of the proof. �

Proposition 2.4. Let Ci enumerate the complementary components of
the full sibling collection S meeting the circle in short arcs and let Ri

enumerate the complementary components of the full sibling collection
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meeting the circle in long arcs. Let TS be the corresponding bicolored
tree, where C ′i and R′i denote vertices corresponding to regions Ci and Ri,
respectively. Then the number of edges of TS =∑

i

deg(Ci) =
∑
i

deg(C ′i) = d =
∑
i

deg(R′i) =
∑
i

deg(Ri).

The proof is left to the reader.

Proposition 2.5. The maximum number of disjoint critical chords that
can be contained in a component T of a sibling portrait is deg(T )− 1.

Proof. Let T be a component of a sibling portrait under σd of degree
k ≤ d. Without loss of generality, let the (closed) arcs of T ∩ S be

V = {[x1, y1], [x2, y2], . . . , [xk, yk]}.
Note that a critical chord must join one component of T ∩ S to another
going from a point xi+ εi ∈ [xi, yi], 0 ≤ εi ≤ |(xi, yi)|, to a point xj + εi ∈
[xj , yj ], j 6= i. Let E be a maximal collection of disjoint critical chords in
T . It is not hard to see that the cardinality of E is at least k − 1; just
draw critical chords from k − 1 different points of (x1, y1) in succession
to points, one in each of V − {[x1, y1]}, in succession in counterclockwise
order.

Let G(T ) be a graph whose vertices are the elements of V and whose
edges are elements of E joining elements of V. The proposition follows
from the following claims about G(T ):

(1) There are no cycles in G(T ).
(2) G(T ) is connected.

Given the claims, it follows that G(T ) is a tree with k vertices, and thus
k − 1 edges. Hence, T contains at most k − 1 disjoint critical chords.

To prove (1), suppose, by way of contradiction, that there is a cycle
in G(T ) of length m ≤ k. Without loss of generality, assume the cycle
includes exactly the first m elements of V. Then in T there is a critical
chord from a point x1+ε1 ∈ (x1, y1), ε1 ≥ 0, to the point x2+ε1 ∈ (x2, y2).
Then there is a critical chord from a point x2 + ε2 ∈ (x2, y2), ε2 > ε1
since the critical chords are disjoint, to the point x3 + ε2 ∈ (x3, y3).
Proceeding in this fashion around the cycle, we finally have a critical
chord from a point xm+ εm ∈ (xm, ym), εm > εm−1 > · · · > ε1, to a point
x1 + εm ∈ (x1, y1). But then the first and last critical chords meet in T
since εm > ε1, a contradiction.

To prove (2), suppose, by way of contradiction, that G0 and G1 are
two components of G(T ) that are adjacent in counterclockwise order of
vertices on S. Suppose that (xr, yr) is the last vertex in G0 and (xs, ys)
is the last vertex of G1 in counterclockwise order. Then we can add the
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critical chord from yr to ys, connecting G0 to G1, contradicting maximal-
ity of E . It may be necessary to move slightly the endpoints in S of up to
two elements of E if they happen to have a yr or ys as an endpoint. �

2.1. Central strip lemma.

The Central Strip Lemma for σ2, stated below, was used by Thurston
[12] to show that there could be no wandering triangle for a lamination
invariant under σ2. A triangle in a lamination is a union of three leaves
meeting only at endpoints pairwise and forming a triangle inscribed in S.
A triangle wanders if its forward orbit consists only of triangles (i.e., no
side is ever critical), and no two images of the triangle ever meet. This was
the first step in Thurston’s classification and description of a parameter
space for quadratic laminations. The Central Strip Lemma for σ2 is also
used to show that any polygon that returns to itself must return transitive
on its vertices; hence, an invariant quadratic lamination cannot have an
identity return triangle (see Definition 4.1). In a subsequent paper, we
will recover and strengthen Kiwi’s theorems that a d-invariant lamination
cannot have a wandering (d+ 1)-gon, nor an identity return (d+ 1)-gon.

Theorem 2.6 (Thurston). Let C be the central strip in a quadratic lam-
ination of leaf ` with |`| > 1

3 . Then the following hold:
(1) The first image `1 = σ2(`) cannot reenter C.
(2) If an iterate `j = σj

2(`) of ` reenters C, for at least j > 1, then it
must connect the two components of C ∩ S.

Remark 2.7. |`| = 1
3 is a special case: (2) holds with j = 1 and ` = 1

3
2
3

maps to itself in reverse order.

In order to state and prove a Central Strip Lemma for d > 2, we will
need to consider the fact that higher degree laminations can have more
than one critical leaf or gap. To discuss the distance between chords, we
use a metric on chords defined by Childers [6] which we call the endpoint
metric.

Definition 2.8. Suppose `1 = x1y1 and `2 = x2y2 are chords in D,
meeting at most in one pair of endpoints. We may suppose the circular
order of the endpoints is x1 < x2 < y2 ≤ y1. Define the endpoint distance
between `1 and `2 to be

dE(`1, `2) = |(x1, x2)|+ |(y2, y1)|.
If `1 = `2, we define the distance to be 0.

See Figure 6 for an example. We define the endpoint metric only
between non-crossing chords. The reader can check that on such chords
it is a metric.



80 COSPER, HOUGHTON, MAYER, MERNIK, AND OLSON

Figure 6. Endpoint distance between two disjoint
chords: dE(x1y1, x2y2) = |(x1, x2)|+ |(y2, y1)|.

See the proof of Theorem 2.3 for the definition of long and short arc
lengths in the following theorem and its proof.

Theorem 2.9 (Central Strip Lemma). Let C be a central strip of leaf `
and its siblings with long arc length > 1

d+1 . Let η be the short arc length.
Then the following hold.

(1) The first image `1 = σd(`) cannot reenter C.
(2) The second image `2 = σ2

d(`) cannot reenter C with both endpoints
in a single component of C ∩ S.

(3) If an iterate `j = σj
d(`) of ` reenters C, for least j > 1, and has

endpoints lying in one component of C ∩ S, then iterate `k, for
some k ≤ j − 1, gets at least as close in the endpoint metric as
η

dj−k
to a critical chord in D \ C.

Proof. Suppose C is a central strip with long arc length > 1
d+1 , so there

is leaf ` = xy in its boundary such that |`| > 1
d+1 and no leaf is a multiple

of 1
2d long. Let the short arc length be η. Then

η <
1

d
− 1

d+ 1
=

1

d(d+ 1)
.

Let {` = `0, `1, `2, . . . } be the orbit of `. Note that the length of `1 is

|`1| = |σd(`0)| = |(σd(x), σd(y)| = dη < d(
1

d(d+ 1)
) =

1

d+ 1
.

Since the length of a component of C ∩ S is η, the endpoints of `1 cannot
lie in one component of C ∩ S. On the other hand, since the length of `1
is less than 1

d+1 , it cannot connect two components, because the long arc
length is > 1

d+1 . This establishes conclusion (1) of the theorem.
By Lemma 1.5, the length of `i, for i > 1, will grow until it is at least

1
d+1 long, so will continue not to fit into one component of C ∩ S. It
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may be that the orbit of ` never reenters C, or it may be that it reenters
connecting two components of C ∩ S.

Suppose now that `j = xjyj is the first iterate of ` that reenters C,
and suppose that the endpoints of `j lie in one component of C ∩S. Then
|`j | ≤ η. The only way `j can get to η or less in length is by approaching a
critical chord D = ab not contained in C sufficiently close in the endpoint
metric. (See Definition 2.8 and Figure 7. In Figure 7 the endpoints of
`j−1 are denoted e and f .)

Figure 7. An iterate of ` approaches a critical chord D.

Suppose

dE(`j−1, D) = |(xj−1, a)|+ |(b, yj−1)| ≤
η

d
.

Then, since σd(a) = σd(b), we have |`j | = |(xj , yj)| =

= |(σd(xj−1), σd(a))|+ |(σd(b), σd(yj−1)|

= |(σd(xj−1), σd(yj−1)| ≤ d(
η

d
) = η.

If the last close approach to a critical chord D before entering C were at
an iterate k < j−1, it would have to be even closer (by additional factors
of 1

d ). This establishes part (3) of the theorem.
To see that the first iterate `j of ` that might enter C with both end-

points in one component of C ∩ S must have j > 2, suppose by way of
contradiction that `2 has both endpoints in one component. By the proof
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of part (3), we have

dη = |xy| < 1

d+ 1
<

1

d
.

Now `1 must be sufficiently close to a critical chord D = ab outside central
strip C to shrink `2, so that

dE(xy,D) = |(a, x)|+ |(y, b)| ≤ η

d
.

But since |xy| < 1
d , `1 must be under D. Hence,

dE(xy,D) + xy =
1

d
.

By the above, we can compute that

dE(xy,D) =
1− d2η

d
.

Our supposition that `2 has both endpoints in one component implies
that

1− d2η
d

≤ η

d
.

From this and our definition of η, it follows that
1

d2 + 1
≤ η < 1

d(d+ 1)
,

a contradiction for all d ≥ 2. This completes the proof of part (2). �

Corollary 2.10 (Unicritical Central Strip Lemma). Let C be a central
strip of degree d of leaf ` and its siblings for the map σd. Then no image
of ` can reenter C with both endpoints in a single component of C ∩ S.

Proof. Since C is a central strip of degree d for σd, there must be a full
sibling collection (d leaves) in its boundary. Since, by definition, it is a
central strip, |`| > 1

2d , as is the length of all its siblings. But to have
room for an all-critical d-gon inside the strip, |`| < 1

d . If |`| <
1

d+1 , it will
grow in length under future iterates. So we lose no generality in assuming
|`| ≥ 1

d+1 . The case where |`| is fixed at 1
d+1 is trivial. Since there is no

critical chord outside C, it follows from Theorem 2.9(3), that no future
image of ` can reenter C with both endpoints in a single component of
C ∩ S. �

3. Counting Sibling Portraits and Central Strips

In the proof of Theorem 2.3, we showed that each sibling portrait
corresponds to a bicolored tree. Now we show that the correspondence is
one-to-one up to rotational symmetry.
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Theorem 3.1. If ` is a non-degenerate leaf, not a diameter, then there
are N(d) different full sibling collections which map onto `, distinct up to
rotational symmetry, where

N(d) =
1

d

 1

d+ 1

(
2d
d

)
+

∑
n|d,n<d

φ

(
d

n

)(
2n
n

)
and φ(x) is Euler’s totient function, the number of positive integers less
than, and relatively prime to, x.

Proof. The goal is to show that there are just as many different full sibling
families (equivalently, sibling portraits) which map to the same leaf under
σd as there are different bicolored trees with d edges, up to rotation in the
plane. The number of bicolored trees with d edges is known to be N(d)
[5, Theorem 21]. Thus, we will use this correspondence to show there
are N(d) different sibling portraits mapping to the same leaf. Refer to
Figure 8 during this proof.

y3

y6
x1y1

x2
y2

x3

x4 y4

x5

y5

x6

x6

y6

x 1y1

x2
y2

x3
y3

x4

y4 x5

y5

Figure 8. Mapping a bicolored tree to a sibling portrait.

The proof of Theorem 2.3 illustrates how to map a sibling portrait to a
bicolored tree. It is easy to check that if two sibling portraits map to the
same bicolored tree (up to rotation), then those two sibling portraits are
the same (up to rotation in the plane). Therefore, since for every sibling
portrait we can find a unique bicolored tree, there must be at least as
many bicolored trees as sibling portraits.

Now assume we are given a bicolored tree with d edges like the one in
Figure 8. Since each edge corresponds to a leaf in the full sibling family
and each leaf has two endpoints, we may correlate each side of an edge
with an endpoint of the leaf. Label the sides of the edges in the tree in a
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counterclockwise order x1, y1, x2, y2, . . . , xd, yd. Since we consider sibling
portraits to be the same if one is a rotation of the other, then it does not
matter which edge you choose to label x1. However, since we generally
assume (xi, yi) to be a short arc, the vertex of the tree between xi and
yi must correspond to a C-region. Then in the unit circle, connect a leaf
between xi and yj if they are two sides of the same edge in the tree. This
will construct a full sibling family. Similarly, it is easy to check that if
two bicolored trees map to the same sibling portrait, then they are the
same bicolored tree. Therefore, for every bicolored tree there is a unique
sibling portrait. It then follows that there are exactly as many sibling
portraits as bicolored trees. �

The corollary below follows immediately since the only time a sibling
portrait does not have a central strip is when all the boundary leaves are
short.

Corollary 3.2. If ` is a non-degenerate leaf, not a diameter, then the
number of different central strips, distinct up to rotational symmetry,
whose boundary leaves map onto ` is N(d)− 1.

4. Applications to Identity Return Polygons
for σd, d ≥ 3

It will be convenient to be able to refer to points on the circle by their
d-nary expansions. The pre-images under σd of 0 partition the circle into
d half-open intervals [k−1d , kd ), for 1 ≤ k ≤ d, labeled successively from
0 with symbol {0, 1, . . . , d − 1}. A point x of the circle is then labeled
with its itinerary, an infinite sequence t0t1t2 . . . tn . . . of symbols selected
from {0, 1, . . . , d− 1}, based upon which labeled interval σn

d (x) lies in. If
a sequence of symbols repeats infinitely a finite sequence of length n, we
write t0t1t2 . . . tn to indicate the infinite sequence. For example, the point
1
3 is of period 2 under σ2. Thus, its σ2-itinerary, or binary expansion, is 01.
However, the σ3-itinerary, or ternary expansion, of 1

3 is 10 since σ3( 13 ) = 0

and the point 0 is represented in ternary by 0 since 0 is a fixed point of
σ3. Using the d-nary expansion of a point x, the map σd is the forgetful
shift since the map sends

t0t1t2 . . . tn . . . 7→ t1t2t3 . . . tn . . . .

Definition 4.1. A (leaf or) polygon P in a d-invariant lamination is called
an identity return polygon if and only if P is periodic under iteration of
σd, the polygons in the orbit of P are pairwise disjoint, and on its first
return, each vertex (and thus each side) of P is carried to itself by the
identity.
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Note that we require the identity return polygon P be in a sibling d-
invariant lamination. This is because without this restriction, one can
produce examples of identity return polygons that satisfy the other con-
ditions of Definition 4.1, but could not correspond to a Julia set. (See
Figure 15 (page 91) in connection with the proof of Lemma 4.7 for an
example.) A periodic polygon in a sibling d-invariant lamination corre-
sponds to a periodic branch point in a Julia set. Locally, the circular
order of the branches is preserved by the polynomial. It is a non-obvious
consequence of the definitions that in a sibling d-invariant lamination, a
polygon maps under σd preserving the circular order of its vertices [2,
Theorem 3.2]. An identity return polygon as we have defined it corre-
sponds to a periodic branch point in a connected Julia set of a polynomial
that returns to itself with no rotation around the branch point. Figure 9
illustrates an example of Kiwi [8].

Figure 9. A period 4 identity return triangle for σ3 and
a corresponding polynomial Julia set with the orbit of the
branch point indicated (after Kiwi).

Example 4.2. There are identity return d-gons of period 3 for all d ≥ 3.
The vertices of an example of such a d-gon for σd in d-nary expansion are

{001, 002, 003, . . . , 00(d− 1), (d− 1)(d− 1)0}.
In Figure 10 we illustrate an example of an identity return triangle

of period 3 for σ3 and identity return quadrilateral of period 3 for σ4.
As shown by Thurston, invariant quadratic laminations cannot have an
identity return triangle [12], though they can have multiple identity return
leaves. Generalizing Thurston’s result for quadratic laminations, Kiwi [8,
Theorem 3.1] proved the next theorem.
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Figure 10. Examples of identity return d-gons for d = 3
and d = 4 under σ3 and σ4, respectively; the vertices are
labeled by their (periodic) expansions.

Theorem 4.3 (Kiwi). A d-invariant lamination cannot have an identity
return k-gon for any k > d.

4.1. Properties of identity return polygons.

In what follows, we extract some facts about identity return polygons
in general. Examples 4.2 and 4.5 show that the following theorem is sharp.

Theorem 4.4. There can be no period 2 identity return k-gon for σd for
k ≥ d.

Proof. It suffices to show that there does not exist an identity return d-
gon of period 2 for σd, since an identity return k-gon for k > d would
contain an identity return d-gon. We argue by induction on d. It can be
easily checked that there does not exist a period 2 identity return triangle
for the map σ3; all possible examples result in circular order reversing
(see Figure 15, page 91). Now assume as the induction hypothesis that
there does not exist an identity return (d−1)-gon of period 2 under σd−1.
By way of contradiction assume that there does exist an identity return
d-gon of period 2 under σd. Let a1b1, a2b2, ..., adbd denote the itineraries
of vertices of the identity return d-gon, with ai, bi ∈ B = {0, 1, ..., d − 1}
for all i = 1, ..., d. Consider the list of symbols A = (a1, ..., ad, b1, ..., bd).
Each element of B must appear in at least one entry of A, else we could
define an identity return d-gon of period 2 for σd−1, which would contain
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an identity (d−1)-gon, contradicting the induction hypothesis. This leads
to two cases.

Case 1. Suppose that for some symbol 0 ≤ k ≤ d − 1, the symbol k
appears more than twice in list A.

By the pigeon-hole principle, this means that some other symbolm 6= k
will only appear once in A. Note that any such identity return polygon
will be of the form shown in Figure 11 (illustrated for d = 4 andm = 3, up
to some rotational symmetry). By removing the vertex with that symbol
from the polygon, one obtains a (d − 1)-gon which uses d − 1 symbols.
This contradicts the induction hypothesis.

Figure 11. Case 1 for σ4 where m = 3.

Case 2. Suppose that each symbol 0 ≤ k ≤ d− 1 appears exactly twice
in list A.

Then there are two vertices of the polygons in each 1/d section of the
circle corresponding to the symbols in B. Thus, one of the two polygons in
the orbit must have two vertices in a 1/d section of the circle corresponding
to the symbol 0 in B or to the symbol d− 1 in B; otherwise the polygons
would cross. First, let us assume two vertices of a polygon are in the
“0” section (see Figure 12). The vertex in this section closest to the point
0 ∈ S, denote it 0j, represents the first vertex (in counterclockwise circular
order from 0 ∈ S) of the identity return polygon on the circle. The next
vertex in order will be 0k for some k > j ∈ B. Since the first coordinates
of these vertices are 0, then mapping them forward under σd will yield
vertices j0 and k0. Since j < k, these vertices cannot map to the same
1/d section.

Since circular order must be preserved, and all symbols are used, the
two vertices must map either to vertices in adjacent 1

d sections (see Fig-
ure 12 on right), or j0 must be the largest (in circular order) vertex in
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the image polygon (see Figure 12 on left). Since both vertices have 0 as
their second coordinate, they must each be the first vertex of the poly-
gons in the sections in which they appear. If the vertices map to adjacent
1
d sections, this is impossible because j0 (preceding k0 in circular order
in the image polygon) would not be the smallest in its section. If j0 is
the largest vertex in the image polygon, then preserving circular order
requires k0 to be the smallest vertex in the image polygon, contradicting
j < k. All options lead to a contradiction, so no such polygon orbit is
possible.

The argument is similar if an identity return polygon has two vertices
in the (d− 1) section. �

0

1

2

3

4

0j

0k

j0

k0

0

1

2

3

4

0j

0k

k0

j0

0

1

2

3

4

0j

0k

k0

j0

Figure 12. Case 2 for σ5 with two vertices of a polygon
in the “0” section.

Example 4.5. Period 2 identity return (d − 1)-gons exist under σd for
all d > 3. See Figure 13 for d = 4. The vertices of an example of such a
(d− 1) -gon for σd in d-nary expansion are

{01, 02, 03, . . . , 0(d− 1).
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01

02
0310

20

30
Figure 13. Period 2 identity return triangle for σ4.

4.2. Some properties of identity return triangles
for σ3.

The following propositions present a series of elementary facts about
identity return triangles for σ3.

Proposition 4.6. Let ` be a leaf in a 3-invariant lamination which is
not eventually of fixed length. Then ` must eventually get within 1

12 of a
critical length.

Proof. Let ` be a leaf in an invariant lamination under σ3 whose length
is not eventually fixed. By Proposition 1.4, the fixed lengths under the
leaf length function τ3 are 1

4 and 1
2 . By Lemma 1.5, each leaf of length

< 1
4 must eventually iterate to a leaf `i = σi

3(`) of length ≥ 1
4 (see “spider

web diagrams” in Figure 14). So assume |`| > 1
4 . If

1
4 < |`| <

5
12 , then we

can place a critical chord so that in the endpoint metric (Definition 2.8),
` is within 1

12 of the critical chord. So we may assume 5
12 < |`| < 1

2 .
We apply the leaf length function τ3 iteratively, observing that τ3(|`|) is
repelled from 1

2 because the graph of τ3 is below the identity on the interval
( 13 ,

1
2 ). Thus, we see that there is a first k ≥ 1 such that 1

4 < τk3 (|`|) < 5
12

(see Figure 14 on right). Hence, σk
3 (`) is within

1
12 of a critical chord. �

Proposition 4.7. An identity return triangle in a 3-invariant lamination
cannot have a side of fixed length.

Proof. By Proposition 1.4, the fixed lengths under the leaf length function
τ3 are 1

4 and 1
2 . Let ` be a side of fixed length of an identity return triangle
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0 1/2
0

1/2

1/6 1/3
1/4 5/12

0 1/2
0

1/2

1/6 1/3
1/4 5/12

Figure 14. Spider web diagrams for leaf length function τ3.

T . If |`| = 1
2 , then ` is a diameter, and if ` is not fixed, σ3(`) will cross

`, a contradiction of ` being a leaf of an invariant lamination. On the
other hand, if ` is fixed, then σ3(T ) meets T , contradicting T being an
identity return triangle. If |`| = 1

4 , then the period of ` cannot be greater
than 3 or it will meet its iterated image. If the period of ` were 3, then
both endpoints of ` would have period 3 repeating ternary expansions
(see Figure 10 for an example). But if we add 1

4 = 01 to a repeating
ternary expansion for one endpoint of `, the other endpoint of ` will not
be period 3 repeating in ternary. It is possible to construct a period 2
triangle which appears to satisfy the definition (see Figure 15) and has a
side of fixed length. However, there is no room for critical chords disjoint
from the triangles in the orbit, and the triangle maps forward reversing
circular order; thus, it cannot be in a sibling d-invariant lamination. �

Remark 4.8. By way of notation, if T is an identity return triangle
of least period n in a 3-invariant lamination, we denote the sides of the
triangle by T = ABC, and the orbit of the triangle by

T = T0 = A0B0C0 7→ σ3(T0) = T1 = A1B1C1 7→ . . .

7→ Tn = AnBnCn = T0.

This notation can be extended to any identity return polygon.

Proposition 4.9. Let ABC be an identity return triangle of period k.
If two sides A and B are of the same length, then there exists a unique
i ∈ [0, k) such that Ai and Bi are within 1

12 of critical. Further, there
is no critical chord c such that Ai and Bi are both within 1

12 of c in the
endpoint metric.
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01
02

10

20
12 21

Figure 15. Example of an “almost” identity return tri-
angle for σ3 of period 2; it fails because the triangle maps
forward reversing circular order.

Proof. Suppose that T0 = A0B0C0 is an identity return triangle and that
|A0| = |B0|. Then for all i, we have |Ai| = |Bi|. By propositions 4.6 and
4.7, there is an i such that 1

4 < |Ai| = |Bi| < 5
12 . If |Ai| < 1

3 , as illustrated
on the left in Figure 16, then, similar to the proof of Proposition 4.7, there
is no room for two critical chords disjoint from Ti, since Ai and Bi together
occupy more than half the circle’s arc. Hence, there is no room for siblings
of Ti, so no such sibling invariant lamination.

If |Ai| > 1
3 , then there are two regions in D \ Ti where one can place

critical chords sufficiently close to Ai and Bi, the region with only Ai on
its boundary and the region with only Bi on its boundary. See Figure 16
Right where we include the siblings T ′i and T ′′i of triangle Ti. Since
|Ai| < 5

12 , each of Ai and Bi is within 1
12 of a critical chord. That the ith

iterate is unique with this property is clear, since any other such iterate
would cross Ti. �

Proposition 4.10. Let T be an identity return n-gon (n ≥ 3) in a 3-
invariant lamination. Then, in the orbit of T , two sides will simultane-
ously approach within 1

12 of a critical length. In fact, one of the following
happens:

(1) Two sides of T approach within 1
12 of two different critical chords

at the same iterate.
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Ai

Bi Ai

Bi
Ci

T'i

T"i

Figure 16. Left: a triangle with two equal sides of
length between 1

4 and 1
3 . Right: the length is between

1
3 and 5

12 .

(2) Two sides of T approach within 1
12 of one side of the same critical

chord at the same iterate.
Furthermore, at that iterate these two sides are longer than any other
side.

Remark 4.11. Example 9 shows that the first case can occur. The cubic
example in Figure 10 shows that the second case can occur.

Proof. Let T0 = A0B0C0 . . . be an identity return n-gon in a 3-invariant
lamination. By Lemma 4.6 all the sides will eventually get within 1

12 of a
critical chord. In case (1), the polygon must lie between the two critical
chords. Hence, those two sides are longer than 1

3 , so all other sides are
shorter than 1

3 . Now assume case (1) does not occur.
Without loss of generality, suppose that side A0 is within 1

12 of a critical
chord `. So there exists an iterate i 6= 0 such that side Bi is within 1

12 of
a critical chord, not necessarily `, and there exists an iterate 0 6= j 6= i
such that Cj is within 1

12 of a critical chord, not necessarily `, else we are
done.

Suppose that the three sides A0, Bi, and Cj are close to the same
critical chord ` and approach no other critical chord closely. Without loss
of generality, let A0 be the side furthest away from `, while still being
within 1

12 of `. See Figure 17 Center. Then Ti is closer to ` and by the
Central Strip Lemma (Theorem 2.9) sides Ai and Bi are long, since side
A has not closely approached a different critical chord before iterate i.
Triangle Tj cannot be closer to ` since then, by the Central Strip Lemma,
the three sides are simultaneously close to 1

3 in length. Therefore, Tj is
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between Ti and T0 (or siblings). Let T be of period k, so T0 = Tk. Then
the iterate Tk+i is the first time the central strip of Cj is re-entered, and
since side C is never close to a different critical chord, Ck+i needs to
connect two components of the central strip by the Central Strip Lemma.
But Tk+i = Ti has Ci inside one component, a contradiction.

Suppose that all three sides are close to three different critical chords
at iterates 0, i, and j. Then the three critical chords must form an all-
critical triangle. See Figure 17 Left. One of the polygons, say T0, must
be outermost with respect to the all-critical triangle. As argued in the
previous paragraph, Ti and Tj are then within the central strip of A0,
contradicting in a similar fashion the Central Strip Lemma.

Therefore, the three sides A0, Bi, and Cj must approach exactly two
different critical chords. By the pigeon hole principle, two sides must
approach the same critical chord `. Without loss of generality, let those
sides be A0 and Bi. Let A0 be the one further away from the critical
chord `, but still within 1

12 of `. Suppose that Bi is within 1
12 of critical

chord at iterate i. Then Ti is inside the central strip of A0 and its sibling
A′0. Hence, two sides of the polygon Ti are within 1

12 of a critical chord
` at the same iterate and all other sides are within a central strip, so
shorter. �

A0Bi

Cj
A0

Bi
Ai

Cj

Aj
A0

A0'

Bi

Figure 17. Left: an identity return polygon ap-
proaches three different critical chords. Center: an iden-
tity return polygon approaches just one critical chord.
Right: an identity return polygon approaches exactly
two critical chords (only one shown).



94 COSPER, HOUGHTON, MAYER, MERNIK, AND OLSON

Proposition 4.12. Let T be an identity return n-gon in a 3-invariant
lamination. Let A and B be two sides that are within 1

12 of a critical chord
and let C be the longest remaining side. If A and B are simultaneously
within 1

12 of
(1) two different critical chords at the same iterate, or
(2) the same critical chord at the same iterate,

then the following occur, respectively:
(a) σ3(C) becomes the longest side, or
(b) σ3(A) or σ3(B) becomes the longest side.

Proof. Let T = ABCD4...Dn.
Suppose (1) holds. Then T lies between two critical chords. Since there

is a critical chord between A and its sibling A′, there must be a critical
value underneath σ3(A). Similarly, there is a critical value underneath
σ3(B). Furthermore, those two critical values are different since A and B
approach two different critical chords. See Figure 18 on left.

σ3(A)
σ3(B)

σ3(A)

σ3(B)

Figure 18. Image of a polygon with critical values marked.

Now, since T lies between two critical chords, σ3(T ) lies in one half of
the circle (else it crosses T ). Since σ3(T ) is an n-gon, there must be a
side C ′ with σ3(A) and σ3(B) underneath C ′. Since σ3(T ) lies in one half
of the circle, C ′ is longer than both σ3(A) and σ3(B).

To see that C ′ = σ(C), consider two cases.
Case 1. |C| ≥ 1

6 . Let |A| = 1
3 + α, |B| = 1

3 + β, and γ =
∑n

k=4 |Dk|
Clearly, γ < 1

6 and |Di| < 1
6 for all i = 4, ...n. Then |C| = 1

3 − α− β − γ.
Then |σ3(A)| = 3|A| − 1 = 3α, |σ3(B)| = 3|B| − 1 = 3β, |σ3(Di) = 3|Di|
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for all i = 4, ...n, and |σ3(C)| = 1 − 3|C| = 3α + 3β + 3γ = |σ3(A)| +
|σ3(B)|+

∑n
k=4 |σ3(Dk)|. Therefore, σ3(C) is the longest side.

Case 2. |C| < 1
6 . Then all sides except A and B are shorter than 1

6 .
Thus, under the application of σ3, the side lengths of σ3(C), σ3(D4), ...,
σ3(Dn) triple. Since C was the longest among C,D4, ..., Dn, σ3(C) must
be the longest among σ3(C), σ3(D4), ..., σ3(Dn). However, we have shown
above that there exists at least one side that is longer than σ3(A) and
σ3(B). Thus, σ3(C) must be the longest.

Cases 1 and 2 establish that (1) implies (a).
Now suppose (2) occurs. See Figure 18 Right. By the hypothesis, both

A and B are within 1
12 of a critical chord `. Then there is the same

critical value underneath σ3(A) and σ3(B). Since all remaining sides are
between σ3(A) and σ3(B), and since |σ3(A)|, |σ3(B)| < 1

4 , one of those
(the outermost from the critical value) will be the longest. Thus, we have
that (2) implies (b). �

We conclude this section by proving the special case of Kiwi’s Theorem
(4.3) for σ3.

Theorem 4.13. There are no identity return quadrilaterals under σ3.

Proof. Suppose that such a quadrilateral T of period n exists. Let A, B,
C, and D be the sides of T , not necessarily in circular order.

Case 1. Suppose, for no iterate i, that two sides are within 1
12 of two

different critical chords.
Then by Proposition 4.10 there exists an iterate T0 where two sides of

T0 are within 1
12 of the same critical chord `. Let A0 and B0 be those

sides. The remaining sides must also eventually approach critical chords
within 1

12 (Proposition 4.6).
Claim. We may assume without loss of generality that every approach

to a given critical chord is closer than the previous approach to that
critical chord.

To see this, suppose that at some iterate we have a quadrilateral Tj
further away from a given critical chord than quadrilateral Ti, i < j,
while at least one of the sides of Tj is different from the sides of Ti that
are within 1

12 of a critical chord. Then, the different “long” side of Ti
must approach a different critical chord at some iterate before returning
to itself. Otherwise, the Central Strip Lemma is contradicted upon the
return to Ti. In that case, we could take Tj as a starting point instead of
Ti, establishing the claim.

By Proposition 4.12 let B1 be the longest side. Since |B1| < 1
4 , it will

grow by Lemma 1.5. Let Bi be the next close approach of side B to a
critical chord. If Ai is the second longest side, then we can take this as
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a starting point. So, without loss of generality, we can suppose that Ci

is the second longest. Then by the Claim and the Central Strip Lemma,
the two sides must be close to a different critical chord `′. Now we have
a central strip of sides A0 and B0 around ` and a central strip of Bi and
Ci around `′. Denote this state of affairs by [` : A0, B0] and [`′ : Bi, Ci].
See Figure 19 Left. By Proposition 4.12 and without loss of generality,
we may assume that Ci+1 is the longest side. Let j be the iterate when
Cj next approaches a critical chord.

A0B0

C0 D0

B0'
C0'

A0'

D0'

A0"

B0"

C0"

D0"

A0
B0

C0
D0

Bi

Ci

Ai

Di

CjDj

Aj
Bj

Figure 19. Impossible quadrilaterals under σ3.
Left: Case 1; Right: Case 2.

If Aj is second longest then Tj , by the Claim and the Central Strip
Lemma, must be close to `. But this gives us [` : Aj , Cj ], [`′ : Bi, Ci],
which is up to renaming what we had before. If Bj is second longest then
by the Claim and the Central Strip Lemma Tj must be close to `′. This
gives us [` : A0, B0], [`′ : Cj , Bj ], which is what we had before but at a
later iterate. If Dj is the second longest, then Tj cannot be within 1

12 of
either critical chord, without, by the Claim, violating the Central Strip
Lemma. Therefore, no such quadrilateral exists.

Case 2: Now suppose that there is an iterate i where two sides, Ai and
Bi, approach two different critical chords.

Since this iterate is unique, if we find a subsequent iterate where both
sides are within 1

12 of the same critical chord, then we can follow the
argument in Case 1 to see that no such quadrilateral exists.

Refer to Figure 19 Right. Let |A0| = 1
3 +α, |B0| = 1

3 +β, and note that
α, β < 1

12 . Then |C0|+ |D0| = 1
3 − α− β >

1
6 . First suppose that neither
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C0 nor D0 is longer than 1
6 . Then by Lemma 1.3 with d = 3, |A1| = 3α,

|B1| = 3β, |C1| = 3|C0|, and |D1| = 3|D0|, and so |A1|+|B1|+|C1|+|D1| =
1. This means that T1 is on both sides of the diameter, so it will intersect
T0. Therefore, we may suppose that |C0| > 1

6 . Then |A1| = 3α, |B1| = 3β,
|C1| = 1− 3|C0|, and |D1| = 3|D0|. Hence, |C1| = |A1|+ |B1|+ |D1|.

If C0 is not within 1
12 of a critical chord, then C grows, so Ci must be

within a central strip formed by A0 or B0 on its first approach to critical
length; let it be B0. Then by the Central Strip Lemma, Ci and Bi must
be the two longest sides. Now we can follow the argument in Case 1 to
see that no such quadrilateral exists.

Therefore, we may assume that C0 is within 1
12 of a critical chord. Since

|C1| < 1
4 , C1 will continue to grow. So it must approach a critical length

at some iterate i. If it approaches a critical chord within the central strip
of A0 or B0, we can follow the argument in Case 1. So we may suppose
that it approaches the same critical chord as at iterate 0. Then it must
go underneath C0, as otherwise side D never gets within 1

12 of a critical
chord. There exists an iterate i when side Di is within 1

12 of a critical
length. If quadrilateral Ti is inside either of the central strips we can
follow the Case 1 argument. So we may suppose that Di is within 1

12
of the same critical chord as C0. Then, by the Central Strip Lemma,
sides Ci and Di must be the two longest sides, so one of them remains
the longest. Eventually, one of the sides A or B will become the second
longest; otherwise, T cannot return to T0. Without loss of generality, let
C and A be the two longest sides. Then as they approach critical length
at iterate j, by the Central Strip Lemma the quadrilateral Tj must be
inside the central strip of A0. Again, we can follow the argument in Case
1. Therefore, there is no such identity return quadrilateral. �

4.3. Questions.

We conclude with a series of questions and remarks.

Question 4.14. What is the appropriate generalization of Proposition 4.6
to σd for d > 3?

In order to be able to use the full power of the Central Strip Lemma,
we want leaves of an identity return polygon for σd to get within 1

d(d+1) of
a critical chord. This need not happen even for a d-gon for σd, in general.
For example, the period 3 quadrilateral with vertices {132, 032, 022, 200}
under σ4 has a side, namely 022 200, which never gets within 1

20 of a
critical chord.

Question 4.15. With reference to Proposition 4.7, can an identity return
polygon have a side of fixed length?
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Question 4.16. With reference to Proposition 4.9, if an identity return
polygon has two sides of the same length, must they simultaneously ap-
proach two different critical chords?

Question 4.17. What are the appropriate generalizations of propositions
4.10 and 4.12 to σd for d > 3?

We can show that if the two longest sides of an identity return polygon
P in a d-invariant lamination are simultaneously within 1

2d of the same
critical chord, then one of the two longest sides of σd(P ) remains longest.

One can define “identity return polygon” without assuming it is in a
d-invariant lamination.

Definition 4.18 (Alternate Definition of Identity Return Polygon). A
polygon P in the closed unit disk is called an identity return polygon if
and only if P is periodic under iteration of σd, the polygons in the orbit
of P are pairwise disjoint, circular order of vertices of P is preserved by
the action of σd on P , and, on its first return, each vertex (and thus each
side) of P is carried to itself by the identity.

Question 4.19. Does the existence of an identity return polygon P de-
fined as in Definition 4.18 imply the existence of a d-invariant lamination
containing P?

Question 4.20. What polynomials have Julia sets with a vertex that
returns to itself in the pattern of the identity return polygons of Figure 10?
Of Example 4.2, in general?

Question 4.21. What is the “simplest” 3-invariant lamination that con-
tains a given identity return triangle?

Here “simplest” might mean an invariant lamination with no leaves
other than preimages of the triangle or their limit leaves and with each
of two sides of the triangle bordering a (different) infinite gap of the
lamination.

Question 4.22. Is there any bound on the number of identity return
triangle orbits that a 3-invariant lamination can contain?

It is clear from proofs above that a 3-invariant lamination can contain
only one identity return triangle orbit where two sides of the triangle
approach within 1

12 of two different critical chords on the same iterate.

Question 4.23. Given d > 2 and a period p > 2 (necessarily), how many
distinct identity return d-gon orbits of period p can be formed under σd?

Question 4.24. Given d > 2 orbits of period p > 2 under σd, is it the
case that they form at most one identity return d-gon orbit?
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That for d = 2, the answer is “yes” appears to be intimately connected
to the detailed structure of parameter space [12].
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