http://topology.auburn.edu/tp/



http://topology.nipissingu.ca/tp/

# LIE FLOWS ON CONTACT MANIFOLDS

by

**NAOKI КАТО** 

Electronically published on May 18, 2015

**Topology Proceedings** 

| Web:                                                      | http://topology.auburn.edu/tp/         |
|-----------------------------------------------------------|----------------------------------------|
| Mail:                                                     | Topology Proceedings                   |
|                                                           | Department of Mathematics & Statistics |
|                                                           | Auburn University, Alabama 36849, USA  |
| E-mail:                                                   | topolog@auburn.edu                     |
| ISSN:                                                     | 0146-4124                              |
| COPYRIGHT © by Topology Proceedings. All rights reserved. |                                        |



E-Published on May 18, 2015

# LIE FLOWS ON CONTACT MANIFOLDS

#### NAOKI KATO

ABSTRACT. M. Llabrés and A. Reventós gave a necessary and sufficient condition for a Lie  $\mathfrak{g}$ -flow on a closed 3-manifold to be the characteristic foliation of a contact form. The aim of this paper is to generalize the Llabrés and Reventós's result for an arbitrary odd-dimensional closed manifold. Moreover, for a Lie flow  $\mathcal{F}$  satisfying some cohomological condition, we will construct a good contact form such that the characteristic foliation coincides with  $\mathcal{F}$ .

#### 1. INTRODUCTION

Throughout this paper, we suppose all manifolds to be closed, smooth, and orientable and all foliations to be smooth and transversely orientable.

Let M be a closed (2n+1)-dimensional manifold and let  $\alpha$  be a contact form on M. The Reeb vector field X on the contact manifold  $(M, \alpha)$  is the vector field on M defined by the equations  $\alpha(X) = 1$  and  $i_X \alpha = 0$ . The one-dimensional foliation  $\mathcal{F}$  defined by X is called the *characteristic foliation of*  $(M, \alpha)$ . The topology of the Reeb vector field X or the characteristic foliation  $\mathcal{F}$  is, in general, quite complicated. Therefore, for a given contact manifold, to decide the topology of the characteristic foliation is an important problem.

Related to this problem, for a given one-dimensional foliation  $\mathcal{F}$ , it is also an important problem to decide whether the foliation can be realized as the characteristic foliation of a contact form. In this paper, we study on this problem in the case where  $\mathcal{F}$  is a Lie foliation.

M. Nicolau and A. Reventós [7] gave a necessary and sufficient condition for a Seifert fibration  $\mathcal{F}$  on a closed 3-manifold to be the characteristic

O2015 Topology Proceedings.

<sup>2010</sup> Mathematics Subject Classification. Primary 57R30; Secondary 53C12, 57R17.

 $Key\ words\ and\ phrases.$  characteristic foliations, contact manifolds, Lie foliations, Reeb vector fields.

foliation of a contact form. M. Saralegui [12] gave a necessary and sufficient condition in the case where  $\mathcal{F}$  is an isometric flow on a closed 3-manifold. In [5], M. Llabrés and Reventós gave a necessary and sufficient condition in the case where  $\mathcal{F}$  is a Lie g-flow on a closed 3-manifold, which is a special case of Saralegui's result.

In this paper, we generalize the result of Llabrés and Reventós for an arbitrary odd-dimensional closed manifold. We obtained the following theorem.

**Theorem 3.1.** Let  $\mathcal{F}$  be a Lie  $\mathfrak{g}$ -flow on a (2n + 1)-dimensional closed manifold M. Then  $\mathcal{F}$  is a contact Lie  $\mathfrak{g}$ -foliation if and only if  $\mathcal{F}$  satisfies the following conditions.

- (a) Any orbit of  $\mathcal{F}$  is closed.
- (b) There exists a symplectic form  $\omega$  on the leaf space  $N = M/\mathcal{F}$  such that  $[\omega] \in H^2(N;\mathbb{Z})$  and  $e(\mathcal{F}) = -[\omega]$ .

If a Lie  $\mathfrak{g}$ -flow  $\mathcal{F}$  satisfies some cohomological condition, then  $\mathcal{F}$  is homogeneous. In this case, we can construct a homogeneous contact form such that  $\mathcal{F}$  coincides with the characteristic foliation of the homogeneous contact manifold.

**Theorem 4.1.** Let  $\mathcal{F}$  be a Lie  $\mathfrak{g}$ -flow on a (2n + 1)-dimensional closed manifold M. Suppose that  $\mathcal{F}$  satisfies the conditions (a) and

(b') There exists an algebraic symplectic form  $\omega \in A_b^2(M, \mathcal{F}) = A^2(N)$ such that  $[\omega] \in H^2(N; \mathbb{Z})$  and  $e(\mathcal{F}) = -[\omega]$ .

Then

- (i) the Lie  $\mathfrak{g}$ -flow  $\mathcal{F}$  is homogeneous and
- (ii) there exists a contact form  $\alpha$  on M such that  $\alpha$  is homogeneous and the characteristic foliation of  $(M, \alpha)$  coincides with  $\mathcal{F}$ .

If the Lie algebra  $\mathfrak{g}$  is nilpotent, more generally of type (R), then the condition (b') is equivalent to the condition (b). In this case, we can show that any contact form whose characteristic foliation is a Lie  $\mathfrak{g}$ -flow is homotopic to a homogeneous contact form. More precisely, we obtained the following corollary.

**Corollary 4.3.** Let  $\mathcal{F}$  be a Lie  $\mathfrak{g}$ -flow on a (2n + 1)-dimensional closed manifold M. Suppose that  $\mathfrak{g}$  is of type (R). Then any contact form on M with the characteristic foliation  $\mathcal{F}$  is homotopic to a homogeneous contact form as a non-singular one-form.

## 2. Preliminaries

In this section we recall some basic definitions of Lie foliations and contact manifolds. We also describe Llabrés and Reventós's theorem.

## 2.1. LIE FOLIATIONS.

Let M be an n-dimensional closed manifold and let  $\mathcal{F}$  be a codimension q foliation of M. Let  $\mathfrak{X}(M)$  be the set of vector fields on M, let  $\mathfrak{X}(\mathcal{F})$  be the set of vector fields on M which are tangent to the leaves of  $\mathcal{F}$ , and let

$$L(M,\mathcal{F}) = \{ X \in \mathfrak{X}(M) \mid [X,\mathfrak{X}(\mathcal{F})] \subset \mathfrak{X}(\mathcal{F}) \}$$

be the set of projectable vector fields. By the bracket of vector fields, the set  $\mathfrak{X}(M)$  is a Lie algebra. Then  $\mathfrak{X}(\mathcal{F})$  and  $L(M, \mathcal{F})$  are Lie subalgebras of  $\mathfrak{X}(M)$ . By the definition,  $\mathfrak{X}(\mathcal{F})$  is an ideal of  $L(M, \mathcal{F})$  and, hence, the quotient

$$l(M,\mathcal{F}) = L(M,\mathcal{F})/\mathfrak{X}(\mathcal{F})$$

is a Lie algebra. We call it the Lie algebra of transverse vector fields.

A family  $\{\bar{X}_1, \ldots, \bar{X}_q\}$  of transverse vector fields which is linearly independent everywhere is called a *transverse parallelism of*  $\mathcal{F}$ . If there exists a transverse parallelism of  $\mathcal{F}$ , then the foliation  $\mathcal{F}$  is called *transversely parallelizable*.

For a transverse parallelism  $\{\bar{X}_1, \ldots, \bar{X}_q\}$  of  $\mathcal{F}$ , the  $A_b^0(M, \mathcal{F})$ -submodule spanned by  $\{\bar{X}_1, \ldots, \bar{X}_q\}$  is a Lie subalgebra of  $l(M, \mathcal{F})$ , where

$$A_b^0(M,\mathcal{F}) = \{ f \in C^\infty(M) \mid \forall X \in \mathfrak{X}(\mathcal{F}), X(f) = 0 \}$$

is the set of basic functions on  $(M, \mathcal{F})$ . Note that, in general, the vector subspace  $\langle \bar{X}_1, \ldots, \bar{X}_q \rangle_{\mathbb{R}}$  spanned by  $\{\bar{X}_1, \ldots, \bar{X}_q\}$  over  $\mathbb{R}$  may not be a Lie subalgebra; that is, it may not be closed under the Lie bracket.

**Definition 2.1.** Let  $\mathfrak{g}$  be a *q*-dimensional Lie algebra. A codimension q foliation  $\mathcal{F}$  of M is a Lie  $\mathfrak{g}$ -foliation if there exists a transverse parallelism  $\{\bar{X}_1, \ldots, \bar{X}_q\}$  of  $\mathcal{F}$  such that the vector subspace  $\langle \bar{X}_1, \ldots, \bar{X}_q \rangle_{\mathbb{R}}$  is a Lie subalgebra of  $l(M, \mathcal{F})$  and is isomorphic to  $\mathfrak{g}$ .

We call such transverse parallelisms *transverse Lie* g-parallelisms.

Edmond Fedida [2] proved that Lie  $\mathfrak{g}$ -foliations have the following special property.

**Theorem 2.2** ([2]). Let  $\mathcal{F}$  be a codimension q Lie  $\mathfrak{g}$ -foliation of a closed manifold M and let G be the simply connected Lie group with the Lie algebra  $\mathfrak{g}$ . Let  $p: \widetilde{M} \to M$  be the universal covering of M. Then there exists a locally trivial fibration  $D: \widetilde{M} \to G$  and a homomorphism  $h: \pi_1(M) \to G$ such that

- (1)  $D(\alpha \cdot \widetilde{x}) = h(\alpha) \cdot D(\widetilde{x})$  for any  $\alpha \in \pi_1(M)$  and any  $\widetilde{x} \in M$  and
- (2) the lifted foliation  $\widetilde{\mathcal{F}} = \pi^* \mathcal{F}$  coincides with the foliation defined by the fibers of the fibration D.

The fibration  $D: \widetilde{M} \to G$  is called the developing map, the homomorphism  $h: \pi_1(M) \to G$  is called the holonomy homomorphism, and the image of h is called the holonomy group of  $(M, \mathcal{F})$ .

Conversely, if there exist such D and h satisfying condition (1) above, then the foliation of  $\widetilde{M}$  defined by the fibers of the fibration D induces a Lie g-foliation  $\mathcal{F}$  of M such that the developing map is D and the holonomy homomorphism is h.

Example 2.3. Let

$$1 \to K \to H \xrightarrow{D} G \to 1$$

be a exact sequence of simply connected Lie groups. Assume that H has a uniform lattice  $\Delta$ . Then the surjective homomorphism  $D: H \to G$  defines a Lie g-foliation  $\mathcal{F}_0$  of the homogeneous space  $\Delta \setminus H$ . We call this Lie g-foliation a homogeneous Lie g-foliation.

**Definition 2.4.** A Lie g-foliation  $\mathcal{F}$  of a closed manifold M is said to be *homogeneous* if there exists a homogeneous Lie g-foliation  $\mathcal{F}_0$  of a homogeneous space  $\Delta \setminus H$  such that  $(M, \mathcal{F})$  is diffeomorphic to  $(\Delta \setminus H, \mathcal{F}_0)$ ; that is, there exists a diffeomorphism  $f: M \to \Delta \setminus H$  such that  $f(L) \in \mathcal{F}_0$ for any  $L \in \mathcal{F}$ .

## 2.2. BASIC COHOMOLOGY.

Let  $\mathcal{F}$  be a codimension q foliation of a closed manifold M. Let  $A^k(M)$  be the set of differential k-forms on M. A k-form  $\omega$  is said to be basic if  $\omega$  satisfies  $i_X \omega = 0$  and  $i_X d\omega = 0$  for any  $X \in \mathfrak{X}(\mathcal{F})$ . We denote the set of basic k-forms by  $A_b^k(M, \mathcal{F})$ .

For a basic form  $\omega$ , the exterior derivative  $d\omega$  of  $\omega$  is also a basic form. Hence, the set of basic k-forms  $A_b^*(M, \mathcal{F})$  is a subcomplex of the de Rham complex  $A^*(M)$ . The cohomology defined by the subcomplex  $A_b^*(M, \mathcal{F})$ is called the *basic cohomology* of the foliated manifold  $(M, \mathcal{F})$  and denoted by  $H_b^*(M, \mathcal{F})$ .

If M is a fiber bundle over a closed manifold N and  $\mathcal{F}$  is a foliation of M defined by the set of fibers, then the set of basic k-forms  $A_b^k(M, \mathcal{F})$  is identified with the set of k-forms  $A^k(N)$  on N via the fibration  $\pi: M \to N$ . In this paper, if M is a fiber bundle over N and  $\mathcal{F}$  is a foliation defined by the set of fibers, we always identify the set of basic k-forms of  $(M, \mathcal{F})$  with the set of k-forms on N.

#### 2.3. Contact manifolds.

Let M be a (2n+1)-dimensional closed manifold.

**Definition 2.5.** A non-singular one-form  $\alpha$  on M is called a *contact form* on M if  $\alpha$  satisfies

(2.1) 
$$\alpha \wedge (d\alpha)^n \neq 0$$

everywhere on M.

The pair  $(M, \alpha)$  is called a contact manifold.

**Definition 2.6.** Let  $(M, \alpha)$  be a contact manifold. The non-singular vector field X on M defined by the following equations

(2.2) 
$$i_X \alpha = 1 \quad \text{and} \\ i_X d\alpha = 0.$$

is called the *Reeb vector field* or the *characteristic vector field* of the contact manifold  $(M, \alpha)$ .

The one-dimensional foliation  $\mathcal{F}$  defined by the integral curves of X is called the *characteristic foliation* of the contact manifold  $(M, \alpha)$ .

By equations (2.1) and (2.2), the exterior derivative  $d\alpha$  of the contact form  $\alpha$  is a basic 2-form and a transverse symplectic form of the characteristic foliation  $\mathcal{F}$ .

**Example 2.7.** Let H be a simply connected Lie group with a uniform lattice  $\Delta$ . Suppose that H has a left-invariant contact form  $\tilde{\alpha}_0$ . Then  $\tilde{\alpha}_0$  induces a contact form  $\alpha_0$  on the homogeneous space  $\Delta \setminus H$ .

We call the contact form  $\alpha_0$  on the homogeneous space  $\Delta \backslash H$  a homogeneous contact form and call the contact manifold  $(\Delta \backslash H, \alpha_0)$  a homogeneous contact manifold.

**Definition 2.8.** A contact form  $\alpha$  on a closed manifold M is said to be *homogeneous* if there exists a homogeneous contact form  $\alpha_0$  on a homogeneous space  $\Delta \backslash H$  and a diffeomorphism  $f: M \to \Delta \backslash H$  such that  $f^*\alpha_0 = \alpha$ . A contact manifold  $(M, \alpha)$  is said to be homogeneous if the contact form  $\alpha$  is homogeneous.

#### 2.4. Contactization.

Let  $\omega$  be a symplectic form on a 2*n*-dimensional closed manifold *N*. We assume that the cohomology class  $[\omega]$  of  $\omega$  is in the second cohomology of integer coefficients  $H^2(N;\mathbb{Z})$ .

Let M be a principal  $S^1$ -bundle over N whose Euler class is  $-[\omega]$  and  $\mathcal{F}$  be the flow on M defined by the fundamental vector field X on M. Then we can take a connection form  $\alpha$  on M such that the curvature form  $d\alpha$  coincides with  $\omega$  as follows.

First, we take an arbitrary connection form  $\alpha'$  on M. Then the curvature form is given by  $d\alpha' \in A_b^2(M, \mathcal{F}) = A^2(N)$  and the Euler class of the

 $S^1$ -bundle is given by  $-[d\alpha']$ . On the other hand, since the Euler class of M is  $-[\omega]$ , we have  $-[\omega] = -[d\alpha'] \in H^2_{dR}(N) = H^2_b(M, \mathcal{F})$ . Hence, there exists a basic one-form  $\beta \in A^1_b(M, \mathcal{F})$  such that  $-\omega = -d\alpha' + d\beta$ . Take  $\alpha = \alpha' - \beta$ . Then  $\alpha$  is a connection form and the curvature form is

$$d\alpha = d(\alpha' - \beta) = \omega$$

Let  $\alpha$  be a connection form on M such that  $d\alpha = \omega$ . Then  $\alpha$  satisfies

(2.3) 
$$i_X(\alpha \wedge (d\alpha)^n) = (d\alpha)^n = \omega^r$$

Since  $\omega$  is a symplectic form, equation (2.3) shows that the connection form  $\alpha$  is a contact form on M.

This contact manifold  $(M, \alpha)$  is called the *contactization* of the symplectic manifold  $(N, \omega)$ .

By the construction, the characteristic foliation of the contact manifold  $(M, \alpha)$  coincides with the foliation  $\mathcal{F}$  defined by the fibers.

#### 2.5. Llabrés and Reventós's theorem.

A Lie g-flow  $\mathcal{F}$  on a closed manifold M is said to be a contact Lie g-foliation if there exists a contact form  $\alpha$  on M such that the onedimensional foliation  $\mathcal{F}$  coincides with the characteristic foliation of the contact manifold  $(M, \alpha)$ .

Llabrés and Reventós gave a necessary and sufficient condition for a Lie  $\mathfrak{g}$ -flow on a closed 3-manifold to be a contact Lie  $\mathfrak{g}$ -foliation.

**Theorem 2.9** ([5], Theorem 2). Let  $\mathcal{F}$  be a unimodular Lie  $\mathfrak{g}$ -flow on a closed 3-manifold M. Then the following conditions are equivalent.

- (1) The Euler class  $e(\mathcal{F})$  of  $\mathcal{F}$  is non-zero.
- (2)  $\mathcal{F}$  is a contact Lie g-foliation.

A codimension q foliation  $\mathcal{F}$  is said to be unimodular if  $H^q_g(M, \mathcal{F}) \neq \{0\}$ . If  $\mathcal{F}$  is a unimodular Lie  $\mathfrak{g}$ -flow, then  $\mathcal{F}$  is an isometric flow with respect to some Riemannian metric g. The Euler class  $e(\mathcal{F})$  means the Euler class of the isometric flow  $(\mathcal{F}, g)$ . This class does not depend on the choice of Riemannian metric g up to a non-zero constant multiple. In particular, the vanishing of the Euler class of  $\mathcal{F}$  does not depend on the choice of the Riemannian metric g.

If  $\mathcal{F}$  is a unimodular Lie  $\mathfrak{g}$ -flow on a closed 3-manifold, then the dimension of  $\mathfrak{g}$  is two. Since  $\mathcal{F}$  is unimodular, the Lie algebra  $\mathfrak{g}$  is unimodular and, hence, is isomorphic to  $\mathbb{R}^2$ . If the one-dimensional Lie  $\mathbb{R}^2$ -foliation  $\mathcal{F}$  has no closed orbits, the M is diffeomorphic to the 3-dimensional torus  $T^3$  and  $\mathcal{F}$  is diffeomorphic to a linear flow on  $T^3$  (see [1]). Hence, if  $\mathcal{F}$ has no closed orbits, then  $e(\mathcal{F}) = 0$ . Thus, in this case, the condition that  $e(\mathcal{F}) \neq 0$  is equivalent to the condition that any orbit of  $\mathcal{F}$  is closed and the Euler class of the oriented  $S^1$ -bundle  $\pi: M \to M/\mathcal{F}$  is non-trivial.

# 3. A GENERALIZATION OF LLABRÉS AND REVENTÓS'S THEOREM

In this section, we prove the following theorem, which is a generalization of Theorem 2.9.

**Theorem 3.1.** Let  $\mathcal{F}$  be a Lie  $\mathfrak{g}$ -flow on a (2n + 1)-dimensional closed manifold M. Then  $\mathcal{F}$  is a contact Lie  $\mathfrak{g}$ -foliation if and only if  $\mathcal{F}$  satisfies the following conditions.

- (a) Any orbit of  $\mathcal{F}$  is closed.
- (b) There exists a symplectic form  $\omega$  on the leaf space  $N = M/\mathcal{F}$  such that  $[\omega] \in H^2(N; \mathbb{Z})$  and  $e(\mathcal{F}) = -[\omega]$ .

*Proof.* Let  $\mathcal{F}$  be a Lie  $\mathfrak{g}$ -flow on a (2n+1)-dimensional closed manifold. Let  $\{\bar{X}_1, \ldots, \bar{X}_{2n}\}$  be a transverse Lie  $\mathfrak{g}$ -parallelism of  $\mathcal{F}$ .

Suppose that there exists a contact form  $\alpha$  on M such that  $\mathcal{F}$  is a characteristic foliation of the contact manifold  $(M, \alpha)$ . Let X be the Reeb vector field of the contact manifold  $(M, \alpha)$ .

Since Lie foliations are Riemannian foliations, by [10, Proposition 1] and [11, Corollary 1], there exists a closed orbit of  $\mathcal{F}$ . Hence, any orbit of  $\mathcal{F}$  is closed.

Since any orbit of the Lie  $\mathfrak{g}$ -flow  $\mathcal{F}$  is closed, the leaf space  $M/\mathcal{F}$  is a closed manifold and M is a principal  $S^1$ -bundle over  $M/\mathcal{F}$ . The transverse symplectic form  $d\alpha$  defines a symplectic form on  $M/\mathcal{F}$ . The cohomology class of this 2-form is opposite of the Euler class  $e(\mathcal{F})$ , so is an integral class.

Conversely, we assume that the Lie  $\mathfrak{g}$ -flow  $\mathcal{F}$  satisfies conditions (a) and (b). Then the leaf space  $N = M/\mathcal{F}$  is a closed manifold and M is a principal  $S^1$ -bundle over N with the Euler class  $-[\omega]$ .

By using the contactization of the symplectic manifold  $(N, \omega)$ , we obtain a contact manifold  $(M', \alpha')$ , where the manifold M' is a principal  $S^1$ -bundle M' over N whose Euler class is  $-[\omega]$ . Since  $e(\mathcal{F}) = -[\omega]$ , the principal  $S^1$ -bundle M is diffeomorphic to the principal  $S^1$ -bundle M'. Hence, M has a contact form  $\alpha$  such that the characteristic foliation coincides with  $\mathcal{F}$ .

**Remark 3.2.** In the case where n = 1, conditions (a) and (b) are equivalent to the conditions that  $\mathcal{F}$  is unimodular and  $e(\mathcal{F}) \neq 0$ . Hence, Theorem 3.1 is a generalization of Theorem 2.9.

# 4. CONTACT LIE FOLIATIONS WITH THE ALGEBRAIC EULER CLASS

In the case where the Euler class of  $\mathcal{F}$  is algebraic, then we can construct a homogeneous contact form on M.

Fix a developing map  $D: \widetilde{M} \to G$  and a holonomy homomorphism  $h: \pi_1(M) \to G$ . Let  $\Gamma$  be the holonomy group. Then the set of basic k-forms  $A_{h}^{k}(M, \mathcal{F})$  is identified with the set of  $\Gamma$ -invariant k-forms on G

$$A^k_{\Gamma}(G) = \{ \omega \in A^k(G) \mid \forall \gamma \in \Gamma, \gamma^* \omega = \omega \}$$

via the developing map D. On the other hand, by identifying  $\mathfrak{g}$  with the set of left-invariant vector fields on G, we identify  $\bigwedge^k \mathfrak{g}^*$  with the set of left-invariant k-forms on G. Hence, we obtain the natural inclusion map

$$\iota\colon \bigwedge^k \mathfrak{g}^* \to A^k_\Gamma(G).$$

A basic k-form  $\omega \in A_b^k(M, \mathcal{F})$  is said to be algebraic if  $\omega$  is in  $\bigwedge^k \mathfrak{g}^*$  via the above identification. A cohomology class  $[\omega]$  is said to be algebraic if  $[\omega]$  is represented by an algebraic form.

**Theorem 4.1.** Let  $\mathcal{F}$  be a Lie g-flow on a (2n + 1)-dimensional closed manifold M. Suppose that  $\mathcal{F}$  satisfies conditions (a) and

(b') there exists an algebraic symplectic form  $\omega \in A_b^2(M, \mathcal{F}) = A^2(N)$ such that  $[\omega] \in H^2(N;\mathbb{Z})$  and  $e(\mathcal{F}) = -[\omega]$ .

Then

- (i) the Lie  $\mathfrak{g}$ -flow  $\mathcal{F}$  is homogeneous and
- (ii) there exists a contact form  $\alpha$  on M such that  $\alpha$  is homogeneous and the characteristic foliation of  $(M, \alpha)$  coincides with  $\mathcal{F}$ .

To prove Theorem 4.1, we use the following theorem (see [4, Theorem 5.1] and its proof.

**Theorem 4.2** ([4]). Let  $\mathcal{F}$  be a unimodular Lie  $\mathfrak{g}$ -flow on a closed manifold M. If the Euler class of  $\mathcal{F}$  is algebraic, then  $\mathcal{F}$  is homogeneous.

Sketch of Proof: Let  $\mathcal{F}$  be a unimodular Lie  $\mathfrak{g}$ -flow on a closed manifold M. Suppose that there exists a 2-form  $\beta \in \bigwedge^2 \mathfrak{g}^*$  such that the Euler class  $e(\mathcal{F})$  of  $\mathcal{F}$  is represented by an algebraic 2-form  $-\iota(\beta) \in A_b^2(M, \mathcal{F})$ . Then there exists a transverse Lie  $\mathfrak{g}$ -parallelism  $\{\overline{X}_1, \ldots, \overline{X}_{2n}\}$  of  $\mathcal{F}$  and a non-singular vector field  $X \in \mathfrak{X}(\mathcal{F})$  which satisfy the following equations

(4.1) 
$$[X_i, X_j] = \sum_{i=1}^{2n} a_{ij}^k X_k + b_{ij} X \text{ and} [X, X_j] = 0,$$

where  $a_{ij}^k$  are the structure constants of  $\mathfrak{g}$  with respect to the basis  $\{\bar{X}_1,\ldots,\bar{X}_{2n}\}$  and  $b_{ij} = -2\beta(\bar{X}_i,\bar{X}_j)$  are constants. Hence,  $\langle X, X_1,\ldots,X_{2n}\rangle_{\mathbb{R}}$  is a Lie algebra, which is a central extension

 $0 \to \mathbb{R} \to \mathfrak{h} \xrightarrow{p} \mathfrak{g} \to 0$ 

of  $\mathfrak{g}$  by  $\mathbb{R}$  with the Euler class  $[-2\beta] \in H^2(\mathfrak{g})$ . Then the simply connected Lie group H of  $\mathfrak{h}$  acts transitively on M.

This action induces a diffeomorphism  $f: (\Delta \setminus H, \mathcal{F}_0) \to (M, \mathcal{F})$ , where  $\Delta$  is an isotropy subgroup of H, which is a uniform lattice of H, and  $\mathcal{F}_0$  is the homogeneous flow on  $\Delta \setminus H$  defined by  $p: \mathfrak{h} \to \mathfrak{g}$ .

Now, we prove Theorem 4.1.

Proof of Theorem 4.1: Let  $\omega = \iota(\beta) \in A_b^2(M, \mathcal{F})$  be an algebraic symplectic form such that  $e(\mathcal{F}) = -[\omega]$ .

By assumption (a),  $\mathcal{F}$  is unimodular. Hence, by Theorem 4.2, the Lie  $\mathfrak{g}$ -flow  $\mathcal{F}$  is homogeneous.

Let  $(\Delta \setminus H, \mathcal{F}_0)$  be the homogeneous Lie  $\mathfrak{g}$ -flow and  $f: \Delta \setminus H \to M$ be the diffeomorphism constructed in the proof of Theorem 4.2. Let  $\{\eta, \eta^1, \ldots, \eta^{2n}\}$  be the dual basis of  $\mathfrak{h}^*$  for the basis  $\{X, X_1, \ldots, X_{2n}\}$  of  $\mathfrak{h}$ . By equations (4.1), we have

$$d\eta = -\frac{1}{2}\sum_{i< j} b_{ij}\eta^i \wedge \eta^j.$$

On the other hand, we have

$$f^*\omega(X_i, X_j) = \omega(X_i, X_j) = \beta(\bar{X}_i, \bar{X}_j) = -\frac{1}{2}b_{ij} \text{ and } f^*\omega(X, X_i) = 0$$

for each i and j. Hence, we have

$$f^* \omega = -\frac{1}{2} \sum_{i < j} b_{ij} \eta^i \wedge \eta^j.$$

Therefore, the one-form  $\eta$  satisfies

$$d\eta = f^*\omega.$$

By assumption (b'), the 2-form  $\omega \in \bigwedge^2 \mathfrak{g}^*$  is a symplectic form. Hence, the one-form  $\eta \in \mathfrak{h}^*$  is a left-invariant contact form on H. Therefore,  $(M, f^*\eta)$  is a contact manifold with the characteristic foliation  $\mathcal{F}$  which is diffeomorphic to the homogeneous contact manifold  $(\Delta \setminus H, \eta)$ .  $\Box$ 

Let  $\mathfrak{g}$  be a Lie algebra, let G be the simply connected Lie group with the Lie algebra  $\mathfrak{g}$ , and let  $\Gamma$  be a uniform lattice of G. If the cohomology group  $H^*(\mathfrak{g})$  of the Lie algebra  $\mathfrak{g}$  is isomorphic to the de Rham cohomology group  $H^*_{dR}(\Gamma \setminus G)$  of the homogeneous space  $\Gamma \setminus G$  via the map

$$\iota \colon H^*(\mathfrak{g}) \to H^*_{dR}(\Gamma \backslash G)$$

which is induced by the natural inclusion map  $\iota \colon \bigwedge^* \mathfrak{g}^* \to A^*_{\Gamma}(G)$ , then condition (b) is equivalent to condition (b').

The condition that  $H^*(\mathfrak{g})$  is isomorphic to  $H^*_{dR}(\Gamma \setminus G)$  always holds if  $\mathfrak{g}$  is nilpotent (see [8]). More generally, if  $\mathfrak{g}$  is of type (R), then  $H^*(\mathfrak{g})$  is isomorphic to  $H^*_{dR}(\Gamma \setminus G)$  (see [3]), where a Lie algebra  $\mathfrak{g}$  is of type (R) if all the eigenvalues of the adjoint representation  $\operatorname{ad}(X) \in \mathfrak{gl}(\mathfrak{g})$  are real for any  $X \in \mathfrak{g}$ . Thus, we have the following corollary.

**Corollary 4.3.** Let  $\mathcal{F}$  be a Lie  $\mathfrak{g}$ -flow on a (2n + 1)-dimensional closed manifold M. Suppose that  $\mathfrak{g}$  is of type (R). Then any contact form on M with the characteristic foliation  $\mathcal{F}$  is homotopic to a homogeneous contact form as a non-singular one-form.

*Proof.* Let  $\alpha_0$  be a contact form on M with the characteristic foliation  $\mathcal{F}$ . Let X be the Reeb vector field of  $(M, \alpha_0)$ . By Theorem 3.1, Theorem 4.1, and the above remark,  $(M, \mathcal{F})$  is diffeomorphic to a homogeneous Lie  $\mathfrak{g}$ -flow and there exists an homogeneous contact form  $\alpha_1$  on M such that the characteristic foliation of  $(M, \alpha_1)$  is  $\mathcal{F}$ . Then two contact forms  $\alpha_0$  and  $\alpha_1$  have the same characteristic foliation. Since  $\mathcal{F}$  is the characteristic foliation of  $(M, \alpha_1)$ , we may assume that  $\alpha_1(X) > 0$ .

Then  $\alpha_t = t\alpha_0 + (1-t)\alpha_1$  is a homotopy between non-singular oneforms  $\alpha_0$  and  $\alpha_1$ . Since  $\alpha_0(X) = 1$  and  $\alpha_1(X) > 0$ ,  $\alpha_t$  is non-singular for any  $t \in [0, 1]$ .

#### References

- Patrick Caron and Yves Carrière, Flots transversalement de Lie R<sup>n</sup>, flots transversalement de Lie minimaux, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 7, A477–A478.
- [2] Edmond Fedida, Sur les feuilletages de Lie, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A999–A1001.
- [3] Akio Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 289–331.
- [4] M. Llabrés and A. Reventós, Unimodular Lie foliations, Ann. Fac. Sci. Toulouse Math. (5) 9 (1988), no. 2, 243–255.
- [5] \_\_\_\_\_, Some remarks on Lie flows, Publ. Mat. 33 (1989), no. 3, 517–531.
- [6] Pierre Molino and Vlad Sergiescu, Deux remarques sur les flots riemanniens, Manuscripta Math. 51 (1985), no. 1-3, 145–161.
- [7] M. Nicolau and A. Reventós, On some geometrical properties of Seifert bundles, Israel J. Math. 47 (1984), no. 4, 323–334.
- [8] Katsumi Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. (2) 59 (1954), 531–538.
- [9] Philippe Rukimbira, Some remarks on R-contact flows, Ann. Global Anal. Geom. 11 (1993), no. 2, 165–171.
- [10] \_\_\_\_\_, Vertical sectional curvature and K-contactness, J. Geom. 53 (1995), no. 1-2, 163–166.

- [11] \_\_\_\_\_, Topology and closed characteristics of K-contact manifolds, Bull. Belg. Math. Soc. Simon Stevin 2 (1995), no. 3, 349–356.
- [12] M. Saralegui, The Euler class for flows of isometries in Differential Geometry (Santiago de Compostela, 1984). Ed. L. A. Cordero. Research Notes in Mathematics, 131. Boston, MA: Pitman, 1985. 220–227.

Graduate School of Mathematical Sciences; University of Tokyo; 3-8-1 Komaba Meguro-ku; Tokyo 153-9814, Japan

E-mail address: knaoki@ms.u-tokyo.ac.jp