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LIE FLOWS ON CONTACT MANIFOLDS

NAOKI KATO

Abstract. M. Llabrés and A. Reventós gave a necessary and suf-
ficient condition for a Lie g-flow on a closed 3-manifold to be the
characteristic foliation of a contact form. The aim of this paper is
to generalize the Llabrés and Reventós’s result for an arbitrary odd-
dimensional closed manifold. Moreover, for a Lie flow F satisfying
some cohomological condition, we will construct a good contact
form such that the characteristic foliation coincides with F .

1. Introduction

Throughout this paper, we suppose all manifolds to be closed, smooth,
and orientable and all foliations to be smooth and transversely orientable.

Let M be a closed (2n+1)-dimensional manifold and let α be a contact
form on M . The Reeb vector field X on the contact manifold (M,α) is
the vector field on M defined by the equations α(X) = 1 and iXα = 0.
The one-dimensional foliation F defined by X is called the characteristic
foliation of (M,α). The topology of the Reeb vector field X or the charac-
teristic foliation F is, in general, quite complicated. Therefore, for a given
contact manifold, to decide the topology of the characteristic foliation is
an important problem.

Related to this problem, for a given one-dimensional foliation F , it is
also an important problem to decide whether the foliation can be realized
as the characteristic foliation of a contact form. In this paper, we study
on this problem in the case where F is a Lie foliation.

M. Nicolau and A. Reventós [7] gave a necessary and sufficient condi-
tion for a Seifert fibration F on a closed 3-manifold to be the characteristic
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124 N. KATO

foliation of a contact form. M. Saralegui [12] gave a necessary and suf-
ficient condition in the case where F is an isometric flow on a closed
3-manifold. In [5], M. Llabrés and Reventós gave a necessary and suffi-
cient condition in the case where F is a Lie g-flow on a closed 3-manifold,
which is a special case of Saralegui’s result.

In this paper, we generalize the result of Llabrés and Reventós for an
arbitrary odd-dimensional closed manifold. We obtained the following
theorem.

Theorem 3.1. Let F be a Lie g-flow on a (2n + 1)-dimensional closed
manifold M . Then F is a contact Lie g-foliation if and only if F satisfies
the following conditions.

(a) Any orbit of F is closed.
(b) There exists a symplectic form ω on the leaf space N = M/F such

that [ω] ∈ H2(N ;Z) and e(F) = −[ω].

If a Lie g-flow F satisfies some cohomological condition, then F is
homogeneous. In this case, we can construct a homogeneous contact form
such that F coincides with the characteristic foliation of the homogeneous
contact manifold.

Theorem 4.1. Let F be a Lie g-flow on a (2n + 1)-dimensional closed
manifold M . Suppose that F satisfies the conditions (a) and

(b′) There exists an algebraic symplectic form ω ∈ A2
b(M,F) = A2(N)

such that [ω] ∈ H2(N ;Z) and e(F) = −[ω].
Then

(i) the Lie g-flow F is homogeneous and
(ii) there exists a contact form α on M such that α is homogeneous

and the characteristic foliation of (M,α) coincides with F .

If the Lie algebra g is nilpotent, more generally of type (R), then the
condition (b′) is equivalent to the condition (b). In this case, we can
show that any contact form whose characteristic foliation is a Lie g-flow
is homotopic to a homogeneous contact form. More precisely, we obtained
the following corollary.

Corollary 4.3. Let F be a Lie g-flow on a (2n + 1)-dimensional closed
manifold M . Suppose that g is of type (R). Then any contact form on M
with the characteristic foliation F is homotopic to a homogeneous contact
form as a non-singular one-form.

2. Preliminaries

In this section we recall some basic definitions of Lie foliations and
contact manifolds. We also describe Llabrés and Reventós’s theorem.
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2.1. Lie foliations.

Let M be an n-dimensional closed manifold and let F be a codimension
q foliation of M . Let X(M) be the set of vector fields on M , let X(F) be
the set of vector fields on M which are tangent to the leaves of F , and let

L(M,F) = {X ∈ X(M) | [X,X(F)] ⊂ X(F) }

be the set of projectable vector fields. By the bracket of vector fields, the
set X(M) is a Lie algebra. Then X(F) and L(M,F) are Lie subalgebras
of X(M). By the definition, X(F) is an ideal of L(M,F) and, hence, the
quotient

l(M,F) = L(M,F)/X(F)

is a Lie algebra. We call it the Lie algebra of transverse vector fields.
A family {X̄1, . . . , X̄q} of transverse vector fields which is linearly inde-

pendent everywhere is called a transverse parallelism of F . If there exists
a transverse parallelism of F , then the foliation F is called transversely
parallelizable.

For a transverse parallelism {X̄1, . . . , X̄q} of F , the A0
b(M,F)-sub-

module spanned by {X̄1, . . . X̄q} is a Lie subalgebra of l(M,F), where

A0
b(M,F) = { f ∈ C∞(M) | ∀X ∈ X(F), X(f) = 0 }

is the set of basic functions on (M,F). Note that, in general, the vector
subspace ⟨X̄1, . . . , X̄q⟩R spanned by {X̄1, . . . , X̄q} over R may not be a
Lie subalgebra; that is, it may not be closed under the Lie bracket.

Definition 2.1. Let g be a q-dimensional Lie algebra. A codimension q
foliation F of M is a Lie g-foliation if there exists a transverse parallelism
{X̄1, . . . X̄q} of F such that the vector subspace ⟨X̄1, . . . X̄q⟩R is a Lie
subalgebra of l(M,F) and is isomorphic to g.

We call such transverse parallelisms transverse Lie g-parallelisms.
Edmond Fedida [2] proved that Lie g-foliations have the following spe-

cial property.

Theorem 2.2 ([2]). Let F be a codimension q Lie g-foliation of a closed
manifold M and let G be the simply connected Lie group with the Lie alge-
bra g. Let p : M̃ → M be the universal covering of M . Then there exists a
locally trivial fibration D : M̃ → G and a homomorphism h : π1(M) → G
such that

(1) D(α · x̃) = h(α) ·D(x̃) for any α ∈ π1(M) and any x̃ ∈ M̃ and
(2) the lifted foliation F̃ = π∗F coincides with the foliation defined

by the fibers of the fibration D.
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The fibration D : M̃ → G is called the developing map, the homomor-
phism h : π1(M) → G is called the holonomy homomorphism, and the
image of h is called the holonomy group of (M,F).

Conversely, if there exist such D and h satisfying condition (1) above,
then the foliation of M̃ defined by the fibers of the fibration D induces
a Lie g-foliation F of M such that the developing map is D and the
holonomy homomorphism is h.

Example 2.3. Let

1 → K → H
D−→ G → 1

be a exact sequence of simply connected Lie groups. Assume that H
has a uniform lattice ∆. Then the surjective homomorphism D : H → G
defines a Lie g-foliation F0 of the homogeneous space ∆\H. We call this
Lie g-foliation a homogeneous Lie g-foliation.

Definition 2.4. A Lie g-foliation F of a closed manifold M is said to
be homogeneous if there exists a homogeneous Lie g-foliation F0 of a
homogeneous space ∆\H such that (M,F) is diffeomorphic to (∆\H,F0);
that is, there exists a diffeomorphism f : M → ∆\H such that f(L) ∈ F0

for any L ∈ F .

2.2. Basic cohomology.

Let F be a codimension q foliation of a closed manifold M . Let Ak(M)
be the set of differential k-forms on M . A k-form ω is said to be basic if
ω satisfies iXω = 0 and iXdω = 0 for any X ∈ X(F). We denote the set
of basic k-forms by Ak

b (M,F).
For a basic form ω, the exterior derivative dω of ω is also a basic form.

Hence, the set of basic k-forms A∗
b(M,F) is a subcomplex of the de Rham

complex A∗(M). The cohomology defined by the subcomplex A∗
b(M,F)

is called the basic cohomology of the foliated manifold (M,F) and denoted
by H∗

b (M,F).
If M is a fiber bundle over a closed manifold N and F is a foliation of

M defined by the set of fibers, then the set of basic k-forms Ak
b (M,F) is

identified with the set of k-forms Ak(N) on N via the fibration π : M →
N . In this paper, if M is a fiber bundle over N and F is a foliation defined
by the set of fibers, we always identify the set of basic k-forms of (M,F)
with the set of k-forms on N .

2.3. Contact manifolds.

Let M be a (2n+ 1)-dimensional closed manifold.
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Definition 2.5. A non-singular one-form α on M is called a contact form
on M if α satisfies

(2.1) α ∧ (dα)n ̸= 0

everywhere on M .

The pair (M,α) is called a contact manifold.

Definition 2.6. Let (M,α) be a contact manifold. The non-singular
vector field X on M defined by the following equations

iXα = 1 and
iXdα = 0.

(2.2)

is called the Reeb vector field or the characteristic vector field of the con-
tact manifold (M,α).

The one-dimensional foliation F defined by the integral curves of X is
called the characteristic foliation of the contact manifold (M,α).

By equations (2.1) and (2.2), the exterior derivative dα of the con-
tact form α is a basic 2-form and a transverse symplectic form of the
characteristic foliation F .

Example 2.7. Let H be a simply connected Lie group with a uniform
lattice ∆. Suppose that H has a left-invariant contact form α̃0. Then α̃0

induces a contact form α0 on the homogeneous space ∆\H.
We call the contact form α0 on the homogeneous space ∆\H a homo-

geneous contact form and call the contact manifold (∆\H,α0) a homoge-
neous contact manifold.

Definition 2.8. A contact form α on a closed manifold M is said to
be homogeneous if there exists a homogeneous contact form α0 on a ho-
mogeneous space ∆\H and a diffeomorphism f : M → ∆\H such that
f∗α0 = α. A contact manifold (M,α) is said to be homogeneous if the
contact form α is homogeneous.

2.4. Contactization.

Let ω be a symplectic form on a 2n-dimensional closed manifold N .
We assume that the cohomology class [ω] of ω is in the second cohomology
of integer coefficients H2(N ;Z).

Let M be a principal S1-bundle over N whose Euler class is −[ω] and
F be the flow on M defined by the fundamental vector field X on M .
Then we can take a connection form α on M such that the curvature
form dα coincides with ω as follows.

First, we take an arbitrary connection form α′ on M . Then the curva-
ture form is given by dα′ ∈ A2

b(M,F) = A2(N) and the Euler class of the



128 N. KATO

S1-bundle is given by −[dα′]. On the other hand, since the Euler class of
M is −[ω], we have −[ω] = −[dα′] ∈ H2

dR(N) = H2
b (M,F). Hence, there

exists a basic one-form β ∈ A1
b(M,F) such that −ω = −dα′ + dβ. Take

α = α′ − β. Then α is a connection form and the curvature form is

dα = d(α′ − β) = ω.

Let α be a connection form on M such that dα = ω. Then α satisfies

(2.3) iX(α ∧ (dα)n) = (dα)n = ωn.

Since ω is a symplectic form, equation (2.3) shows that the connection
form α is a contact form on M .

This contact manifold (M,α) is called the contactization of the sym-
plectic manifold (N,ω).

By the construction, the characteristic foliation of the contact manifold
(M,α) coincides with the foliation F defined by the fibers.

2.5. Llabrés and Reventós’s theorem.

A Lie g-flow F on a closed manifold M is said to be a contact Lie
g-foliation if there exists a contact form α on M such that the one-
dimensional foliation F coincides with the characteristic foliation of the
contact manifold (M,α).

Llabrés and Reventós gave a necessary and sufficient condition for a
Lie g-flow on a closed 3-manifold to be a contact Lie g-foliation.

Theorem 2.9 ([5], Theorem 2). Let F be a unimodular Lie g-flow on a
closed 3-manifold M . Then the following conditions are equivalent.

(1) The Euler class e(F) of F is non-zero.
(2) F is a contact Lie g-foliation.

A codimension q foliation F is said to be unimodular if Hq
b (M,F) ̸=

{0}. If F is a unimodular Lie g-flow, then F is an isometric flow with
respect to some Riemannian metric g. The Euler class e(F) means the
Euler class of the isometric flow (F , g). This class does not depend on
the choice of Riemannian metric g up to a non-zero constant multiple. In
particular, the vanishing of the Euler class of F does not depend on the
choice of the Riemannian metric g.

If F is a unimodular Lie g-flow on a closed 3-manifold, then the dimen-
sion of g is two. Since F is unimodular, the Lie algebra g is unimodular
and, hence, is isomorphic to R2. If the one-dimensional Lie R2-foliation
F has no closed orbits, the M is diffeomorphic to the 3-dimensional torus
T 3 and F is diffeomorphic to a linear flow on T 3 (see [1]). Hence, if F
has no closed orbits, then e(F) = 0. Thus, in this case, the condition that
e(F) ̸= 0 is equivalent to the condition that any orbit of F is closed and
the Euler class of the oriented S1-bundle π : M → M/F is non-trivial.
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3. A Generalization of
Llabrés and Reventós’s Theorem

In this section, we prove the following theorem, which is a generaliza-
tion of Theorem 2.9.

Theorem 3.1. Let F be a Lie g-flow on a (2n + 1)-dimensional closed
manifold M . Then F is a contact Lie g-foliation if and only if F satisfies
the following conditions.

(a) Any orbit of F is closed.
(b) There exists a symplectic form ω on the leaf space N = M/F such

that [ω] ∈ H2(N ;Z) and e(F) = −[ω].

Proof. Let F be a Lie g-flow on a (2n + 1)-dimensional closed manifold.
Let {X̄1, . . . , X̄2n} be a transverse Lie g-parallelism of F .

Suppose that there exists a contact form α on M such that F is a
characteristic foliation of the contact manifold (M,α). Let X be the
Reeb vector field of the contact manifold (M,α).

Since Lie foliations are Riemannian foliations, by [10, Proposition 1]
and [11, Corollary 1], there exists a closed orbit of F . Hence, any orbit
of F is closed.

Since any orbit of the Lie g-flow F is closed, the leaf space M/F is a
closed manifold and M is a principal S1-bundle over M/F . The transverse
symplectic form dα defines a symplectic form on M/F . The cohomology
class of this 2-form is opposite of the Euler class e(F), so is an integral
class.

Conversely, we assume that the Lie g-flow F satisfies conditions (a)
and (b). Then the leaf space N = M/F is a closed manifold and M is a
principal S1-bundle over N with the Euler class −[ω].

By using the contactization of the symplectic manifold (N,ω), we ob-
tain a contact manifold (M ′, α′), where the manifold M ′ is a principal
S1-bundle M ′ over N whose Euler class is −[ω]. Since e(F) = −[ω],
the principal S1-bundle M is diffeomorphic to the principal S1-bundle
M ′. Hence, M has a contact form α such that the characteristic foliation
coincides with F . �
Remark 3.2. In the case where n = 1, conditions (a) and (b) are equiv-
alent to the conditions that F is unimodular and e(F) ̸= 0. Hence,
Theorem 3.1 is a generalization of Theorem 2.9.

4. Contact Lie Foliations with
the Algebraic Euler Class

In the case where the Euler class of F is algebraic, then we can con-
struct a homogeneous contact form on M .
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Fix a developing map D : M̃ → G and a holonomy homomorphism
h : π1(M) → G. Let Γ be the holonomy group. Then the set of basic
k-forms Ak

b (M,F) is identified with the set of Γ-invariant k-forms on G

Ak
Γ(G) = {ω ∈ Ak(G) | ∀γ ∈ Γ, γ∗ω = ω}

via the developing map D. On the other hand, by identifying g with the
set of left-invariant vector fields on G, we identify

∧k
g∗ with the set of

left-invariant k-forms on G. Hence, we obtain the natural inclusion map

ι :
∧k

g∗ → Ak
Γ(G).

A basic k-form ω ∈ Ak
b (M,F) is said to be algebraic if ω is in

∧k
g∗ via

the above identification. A cohomology class [ω] is said to be algebraic if
[ω] is represented by an algebraic form.

Theorem 4.1. Let F be a Lie g-flow on a (2n + 1)-dimensional closed
manifold M . Suppose that F satisfies conditions (a) and

(b′) there exists an algebraic symplectic form ω ∈ A2
b(M,F) = A2(N)

such that [ω] ∈ H2(N ;Z) and e(F) = −[ω].
Then

(i) the Lie g-flow F is homogeneous and
(ii) there exists a contact form α on M such that α is homogeneous

and the characteristic foliation of (M,α) coincides with F .

To prove Theorem 4.1, we use the following theorem (see [4, Theorem
5.1] and its proof.

Theorem 4.2 ([4]). Let F be a unimodular Lie g-flow on a closed man-
ifold M . If the Euler class of F is algebraic, then F is homogeneous.

Sketch of Proof: Let F be a unimodular Lie g-flow on a closed manifold
M . Suppose that there exists a 2-form β ∈

∧2
g∗ such that the Euler

class e(F) of F is represented by an algebraic 2-form −ι(β) ∈ A2
b(M,F).

Then there exists a transverse Lie g-parallelism {X̄1, . . . , X̄2n} of F and a
non-singular vector field X ∈ X(F) which satisfy the following equations

[Xi, Xj ] =

2n∑
i=1

akijXk + bijX and

[X,Xj ] = 0,

(4.1)

where akij are the structure constants of g with respect to the basis
{X̄1, . . . , X̄2n} and bij = −2β(X̄i, X̄j) are constants.

Hence, ⟨X,X1, . . . , X2n⟩R is a Lie algebra, which is a central extension

0 → R → h
p−→ g → 0
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of g by R with the Euler class [−2β] ∈ H2(g). Then the simply connected
Lie group H of h acts transitively on M .

This action induces a diffeomorphism f : (∆\H,F0) → (M,F), where
∆ is an isotropy subgroup of H, which is a uniform lattice of H, and F0

is the homogeneous flow on ∆\H defined by p : h → g. �

Now, we prove Theorem 4.1.

Proof of Theorem 4.1: Let ω = ι(β) ∈ A2
b(M,F) be an algebraic sym-

plectic form such that e(F) = −[ω].
By assumption (a), F is unimodular. Hence, by Theorem 4.2, the Lie

g-flow F is homogeneous.
Let (∆\H,F0) be the homogeneous Lie g-flow and f : ∆\H → M

be the diffeomorphism constructed in the proof of Theorem 4.2. Let
{η, η1, . . . , η2n} be the dual basis of h∗ for the basis {X,X1, . . . , X2n} of
h. By equations (4.1), we have

dη = −1

2

∑
i<j

bijη
i ∧ ηj .

On the other hand, we have

f∗ω(Xi, Xj) = ω(Xi, Xj) = β(X̄i, X̄j) = −1

2
bij and

f∗ω(X,Xi) = 0

for each i and j. Hence, we have

f∗ω = −1

2

∑
i<j

bijη
i ∧ ηj .

Therefore, the one-form η satisfies

dη = f∗ω.

By assumption (b′), the 2-form ω ∈
∧2

g∗ is a symplectic form. Hence,
the one-form η ∈ h∗ is a left-invariant contact form on H. Therefore,
(M,f∗η) is a contact manifold with the characteristic foliation F which
is diffeomorphic to the homogeneous contact manifold (∆\H, η). �

Let g be a Lie algebra, let G be the simply connected Lie group with
the Lie algebra g, and let Γ be a uniform lattice of G. If the cohomology
group H∗(g) of the Lie algebra g is isomorphic to the de Rham cohomology
group H∗

dR(Γ\G) of the homogeneous space Γ\G via the map

ι : H∗(g) → H∗
dR(Γ\G)

which is induced by the natural inclusion map ι :
∧∗

g∗ → A∗
Γ(G), then

condition (b) is equivalent to condition (b′).
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The condition that H∗(g) is isomorphic to H∗
dR(Γ\G) always holds if

g is nilpotent (see [8]). More generally, if g is of type (R), then H∗(g) is
isomorphic to H∗

dR(Γ\G) (see [3]), where a Lie algebra g is of type (R) if
all the eigenvalues of the adjoint representation ad(X) ∈ gl(g) are real for
any X ∈ g. Thus, we have the following corollary.

Corollary 4.3. Let F be a Lie g-flow on a (2n + 1)-dimensional closed
manifold M . Suppose that g is of type (R). Then any contact form on M
with the characteristic foliation F is homotopic to a homogeneous contact
form as a non-singular one-form.

Proof. Let α0 be a contact form on M with the characteristic foliation
F . Let X be the Reeb vector field of (M,α0). By Theorem 3.1, Theorem
4.1, and the above remark, (M,F) is diffeomorphic to a homogeneous Lie
g-flow and there exists an homogeneous contact form α1 on M such that
the characteristic foliation of (M,α1) is F . Then two contact forms α0

and α1 have the same characteristic foliation. Since F is the characteristic
foliation of (M,α1), we may assume that α1(X) > 0.

Then αt = tα0 + (1 − t)α1 is a homotopy between non-singular one-
forms α0 and α1. Since α0(X) = 1 and α1(X) > 0, αt is non-singular for
any t ∈ [0, 1]. �
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