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Electronically published on May 22, 2015

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c⃝ by Topology Proceedings. All rights reserved.



Volume 48 (2016)
Pages 135-150

http://topology.auburn.edu/tp/
http://topology.nipissingu.ca/tp/

E-Published on May 22, 2015

THE SHARKOVSKY PROGRAM OF CLASSIFICATION
OF TRIANGULAR MAPS – A SURVEY

MARTA ŠTEFÁNKOVÁ

Abstract. For continuous interval maps there are more than 50
mutually equivalent conditions characterizing maps with zero topo-
logical entropy. At the end of the 1980s, A. N. Sharkovsky proposed
to verify which of the implications among these conditions are valid
in the class of triangular maps of the unit square. Since some con-
ditions are not applicable to maps of the square, whereas some
new conditions have been added thereafter, the contemporary list
usually contains 32 conditions which means nearly 1,000 possible
implications. This huge program has been recently completed and
the aim of this paper is to give a survey of the results.

1. Introduction

Recently a paper concluding the so-called Sharkovsky classification pro-
gram of triangular maps was published (see [10]). The program was an-
nounced in late 1980s and the work on it lasted for 25 years. During
this time 16 authors created 24 papers devoted directly to this problem
(these papers are in the references marked by *) and many other authors
contributed to this subject, for example, by providing alternative and
more straightforward solutions of problems formulated in this program.
(Almost 70 papers related to this program are known to the author.)

Let (X, ρ) be a compact metric space with a metric ρ, let C(X) be
the class of continuous maps from X to itself, and let I = [0, 1] be the
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compact unit interval. A triangular map is a map F ∈ C(I × I) of the
form F (x, y) = (f(x), gx(y)). The map f ∈ C(I) is the base map of F ,
and gx : I → I, x ∈ I, is a family of fiber maps from C(I) depending
continuously on x.

In 1979 Peter E. Kloeden [17] proved that the Sharkovsky theorem on
coexistence of periods of interval maps is valid also for triangular maps.
On the other hand, in 1989 S. F. Kolyada proved that there are trian-
gular maps of type 2∞ with positive topological entropy ([21], see also
[22]), which is impossible for interval maps. Inspired by these results,
A. N. Sharkovsky in his talk (based on his joint work with Kolyada [23],)
at the European Conference on Iteration Theory: ECIT 89, formulated
his program of classification of triangular maps: For continuous interval
maps there are more than 50 conditions characterizing maps with zero
topological entropy. These properties are, for example, zero topological
entropy on sets of recurrence, non-chaoticity of a map restricted to a set
of recurrence (by “chaos” it is meant either the chaos in the sense of Li
and Yorke or the distributional chaos), types of ω-limit sets.

He proposed to check which of the implications among these conditions
are valid also for the triangular maps. Some of Sharkovsky’s conditions
are not applicable for triangular maps (e.g., the non-existence of a horse-
shoe). On the other hand, in the course of time new conditions appeared
which are equivalent to positive topological entropy for the interval maps
and are applicable for triangular maps (e.g., the conditions related to
distributional chaos). The current list consists of 32 conditions; that is,
there are 992 possible implications which must be verified. The most re-
cent paper where all these conditions are listed is [26]; let us also note
that the systematic approach was commenced by Zdeněk Kočan in 1999
(see [18]).

Since 2006, 23 equivalence classes have been known (see [7], [18], and
[20]), which gives “only” 506 implications or non-implications. The last
question which remained open was whether zero topological entropy on
the set of almost periodic points is equivalent to zero entropy on the set of
uniformly recurrent points. Note that this problem was solved negatively
in [10].

The aim of the present paper is to provide a survey of the results with
some comments concerning, for example, methods of proofs, and to give
an extensive list of references. The paper is organized as follows. In the
next section we give the complete list of properties of the classification
program together with all definitions. Then we describe a useful method
of construction of a parametric family of triangular maps. In section 4
we give a diagram and a table summarizing the results. The last two
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sections are devoted to some comments concerning, for example, methods
of proofs or results for the triangular maps monotone on the fibers.

2. Properties and Definitions

The complete list of 32 properties in 23 equivalence classes is given
below. Note that letters are used to denote the equivalent conditions.
The explanation of symbols and notions follow the list.

(1) (a) h(f) = 0
(b) h(f |CR(f)) = 0
(c) h(f |Ω(f)) = 0
(d) h(f |ω(f)) = 0
(e) h(f |C(f)) = 0
(f) h(f |Rec(f)) = 0

(2) (a) h(f |UR(f)) = 0
(b) there is no minimal set with positive topological entropy

(3) h(f |AP(f)) = 0
(4) (a) h(f |Per(f)) = 0

(b) the period of every cycle of f is a power of 2
(c) every cycle is simple

(5) f has no homoclinic trajectory
(6) f |CR(f) is not LYC
(7) f |Ω(f) is not LYC
(8) f |ω(f) is not LYC
(9) f |C(f) is not LYC
(10) f |Rec(f) is not LYC
(11) f |UR(f) is not LYC
(12) UR(f) = Rec(f)
(13) (a) no infinite ω-limit set contains a cycle

(b) every ω-limit set either is a cycle or contains no cycle
(14) every ω-limit set contains a unique minimal set
(15) f is not DC1
(16) f is not DC2
(17) f is not DC3
(18) the trajectory of every point is strongly approximable
(19) the trajectory of every point is weakly approximable
(20) if ωf (x) = ωf2(x), then ωf (x) is a fixed point
(21) there is no infinite countable ω-limit set
(22) the trajectories of every two points are correlated
(23) for every closed invariant set A and every m ∈ N, the map fm|A

cannot be topologically almost conjugate to the shift
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Now, let us give the definitions of the notions used in the above men-
tioned properties. For f ∈ C(X) and n ∈ N (where N is the set of positive
integers), we denote by fn the nth iterate of f . The trajectory of a point
x under a map f is the sequence {fn(x)}∞n=0.

The set ωf (x) of accumulation points of the trajectory of x under f
is the ω-limit set of x. A subset M of X is a minimal set if it is closed,
nonempty, and invariant (i.e., f(M) ⊂ M) and if it contains no proper
subset with these three properties. A nonempty closed set M ⊂ X is
minimal if and only if the orbit of every point of M is dense in M or,
equivalently, ωf (x) = M for every x ∈M .

Let us now recall notions of recurrence. A point x ∈ X is called
• fixed, if f(x) = x;
• periodic, if fn(x) = x for some n ∈ N;
• chain recurrent, if, for any ε > 0, there is a sequence of points {xi}ni=0

with x0 = x = xn and ρ(xi+1, f(xi)) < ε, for i ∈ {0, . . . , n− 1};
• non-wandering, if, for any neighborhood U of x, there exists an n ∈ N

such that fn(U) ∩ U 6= ∅;
• recurrent, if x ∈ ωf (x);
• uniformly recurrent, if, for any neighborhood U of x, there exists an

n ∈ N such that if fm(x) ∈ U where m ≥ 0, then fm+i(x) ∈ U for some
i with 0 < i ≤ n;
• almost periodic, if, for any neighborhood U of x, there is an n ∈ N

such that f in(x) ∈ U , for any i ∈ N.
• The centre of f is the closure of the set of recurrent points.
By CR(f), Ω(f), ω(f), Rec(f), UR(f), AP(f), Per(f) and Fix(f) we

denote the set of chain recurrent, non-wandering, ω-limit, recurrent, uni-
formly recurrent, almost periodic, periodic, and fixed points of f , respec-
tively. Recall that

Fix(f) ⊂ Per(f) ⊂ AP(f) ⊂ UR(f) ⊂ Rec(f)
⊂ C(f)

⊂ ω(f)
⊂ Ω(f) ⊂ CR(f).

Now proceed with the definition of topological entropy. A set A ⊂ X
is (n, ε)-separated if, for any x, y ∈ A, x 6= y, there is an i ∈ N with
0 ≤ i < n and ρ(f i(x), f i(y)) > ε. For Y ⊂ X, denote by sn(ε, Y, f)
the maximal possible number of points in an (n, ε)-separated subset of Y .
The topological entropy of f with respect to Y is

h(f |Y ) = lim
ε→0

lim sup
n→∞

1

n
log sn(ε, Y, f),

and the topological entropy of f is

h(f) = h(f |X).
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We continue with definitions of Li-Yorke and distributional chaos.
A map f is chaotic in the sense of Li and Yorke (briefly, LYC) if there

is an LY-scrambled pair, i.e., if there exist x, y ∈ X and ε > 0 such that

lim inf
n→∞

ρ(fn(x), fn(y)) = 0 and lim sup
n→∞

ρ(fn(x), fn(y)) > ε.

For any pair (x, y) of points in X and any n ∈ N, define a distribution
function Φ

(n)
xy : (0,∞)→ I by

Φ(n)
xy (t) =

1

n
#{0 ≤ i < n; ρ(f i(x), f i(y)) < t}.

The lower and upper distribution function generated by f and the pair
(x, y) is

Φxy(t) = lim inf
n→∞

Φ(n)
xy (t), and Φ∗xy(t) = lim sup

n→∞
Φ(n)

xy (t),

respectively. Obviously Φxy(t) ≤ Φ∗xy(t), for any t ∈ (0,∞).
If there is a pair (x, y) of points in X such that

(DC1) Φ∗xy ≡ 1 and Φxy(t) = 0, for some t > 0, or

(DC2) Φ∗xy ≡ 1 and Φxy < Φ∗xy, or

(DC3) Φxy < Φ∗xy,

where Φ∗xy ≡ 1 means that Φ∗xy(t) = 1 for any t ∈ (0,∞), and Φxy < Φ∗xy
means that Φxy(t) < Φ∗xy(t) for all t in some nondegenerate interval, then
this pair is called the distributionally scrambled pair and we say that f
exhibits distributional chaos of type 1-3, (briefly DC1, DC2, and DC3,
respectively). Directly from the definitions it follows that DC1 is the
strongest and DC3 the weakest version of distributional chaos. Note that
for f ∈ C(I) these three notions are equivalent (see [31]).

We remark that originally in definitions of both Li-Yorke and distribu-
tional chaos the existence of an uncountable scrambled set S ⊂ X (i.e.,
such that any pair of distinct points from S form a scrambled pair) was re-
quired. However, in the case of interval maps, the existence of two-points
and an uncountable perfect scrambled set are equivalent (for Li-Yorke
chaos it was proved in [27] and for distributional chaos in [31]).

Let ε > 0. The trajectory of a point x ∈ X is strongly ε-approximable
by the trajectory of a set A if there exists i ∈ N such that diam(f i(A)) < ε
and

lim
n→∞

ρ(fn(x), fn(A)) = 0,

and it is weakly ε-approximable by the trajectory of a set A if there exist
i, n0 ∈ N such that diam(f i(A)) < ε and, for any n ≥ n0,

ρ(fn(x), fn(A)) < ε.
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The trajectory of a point x ∈ X is strongly (weakly, respectively) ap-
proximable if it is strongly (weakly, respectively) ε-approximable for any
ε > 0.

Let x ∈ Fix(f) and let xn, n = 1, 2, . . ., be distinct points in X such
that f(xn+1) = xn, for any n, f(x1) = x, and limn→∞ xn = x. Then
{xn}∞n=1 is a homoclinic trajectory related to the point x. A homoclinic
trajectory related to a periodic orbit is defined similarly, see, e.g., [7].

Trajectories of points x, y ∈ X are correlated if either ωf (x) or ωf (y)
is a fixed point or

ωf×f (x, y) 6= ωf (x)× ωf (y),

where the map f × f : X ×X → X ×X is given by (x, y) 7→ (f(x), f(y)).
The shift (Σ, σ) is the space Σ = {0, 1}N of sequences x1x2 . . . of two

symbols (namely, 0’s and 1’s) with the map σ : x1x2 . . . 7→ x2x3 . . . . A
map f ∈ C(X) is topologically almost conjugate to the shift if there exists
a continuous surjective map ψ : X → Σ, such that ψ ◦ f = σ ◦ ψ and any
point from Σ has at most two preimages in X.

3. A Parametric Family of Maps

During the work on the classification program some useful tools for
working with triangular maps have been developed. In my opinion, the
most important tool is a method of defining triangular maps using a
special parametric family of fiber maps. The idea of this construction ap-
peared for the first time in [14]. As a parametric family it was introduced
in [3] and then improved in [9] and [35].

Let us outline first the main ideas and then some properties of this
construction.

Let Q = {0, 1}N be the middle-thirds Cantor set represented as the set
of sequences of two symbols, and let τ be the (binary) adding machine or
odometer on Q defined by τ(x1x2x3 . . . ) = x1x2x3 · · · + 1000 . . . , where
the adding is mod 2 with carry; thus, e.g., τ(11010 . . . ) = 00110 . . . .

Let the base map f ∈ C be an extension of τ such that f is affine on
every interval complementary to Q. Then f is of type 2∞. For every
m = 2n ∈ N, there is a system J0, J1, · · · , Jm−1 of m mutually disjoint
compact f -periodic intervals with endpoints in Q, forming a periodic orbit
of f of period m such that every non-periodic x ∈ I is by f eventually
mapped into J0. Moreover, for every i ∈ N ∪ {0}, f(Ji) = Ji+1 if i is
taken mod(m) and every x ∈ Ji ∩Q begins with the same block βi of the
first n digits. In particular, β0 = 0n is the block of n zeros, βm−1 = 1n,
and, for i < m− 1, βi consists of the first n digits of τ i(0∞).
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Let {nk}∞k=1 be a sequence of positive integers of the form nk = 2ck ,
k, ck ∈ N, with ck ≥ 2. Write any x = x1x2x3 · · · ∈ Q in blocks as

(3.1) x = x1x2x3 . . . , where xj is the block of cj digits of x.

Finally, for any finite block α = xsxs+1 · · ·xs+k of zeros and ones, e(α) =
xs + 2xs+1 + 22xs+2 + · · ·+ 2kxs+k is the evaluation of α. For any family

(3.2) Ψ := {ψ(j)
k ; 0 ≤ j ≤ nk − 2}k∈N

of maps from C(I), define a triangular map FΨ : Q × I → Q × I by
FΨ(x, y) := (τ(x), y) if x = 1∞ (i.e., if x contains no zero digit). Other-
wise, let xk be the first block in (3.1) containing a zero digit, and let

FΨ(x, y) := (τ(x), ψ
(p)
k (y)), where p = e(xk).

Now, we have to define the fiber maps gx for x ∈ I \Q. If x belongs to an
interval (a, b) complementary to Q, then there is a unique tx ∈ (0, 1) such
that x = txa + (1 − tx)b. Put gx = txga + (1 − tx)gb and let F (x, y) =
(f(x), gx(y)), x, y ∈ I. Obviously, F : I × I → I × I defined in this way
is continuous.

If the family Ψ in (3.2) is taken such that

lim
k→∞

max
j
||ψ(j)

k − Id|| = 0,

where Id denotes the identity map on I and || · || the uniform norm, then
FΨ (and hence, F ) is continuous, and if

(3.3) ψ
(nk−2)
k ◦ ψ(nk−3)

k ◦ · · · ◦ ψ(1)
k ◦ ψ

(0)
k = ψ

(0)
k = Id, k ∈ N,

then some recurrence formulae are valid.

Lemma 3.1. (See [9].) For x ∈ Q, y ∈ I, and i ∈ N, let the symbol yx(i)
denotes the second coordinate of F i

Ψ(x, y). Then, for any j, k ∈ N such
that 1 ≤ j < nk+1, (3.3) implies

y0(j ·mk) = ψ
(j−1)
k+1 ◦ ψ

(j−2)
k+1 ◦ · · · ◦ ψ

(1)
k+1 ◦ ψ

(0)
k+1(y),

where mk := n1n2n3 · · ·nk. In particular, y0(mk) = y0(0) (= y).

So we are able to calculate in an easy way second coordinates of some
points in the trajectories of points from the fiber I0. Note that in [35] an
even stronger tool can be found; it is related to the calculation of second
coordinates of points in the trajectories starting from fibers Ix, where
x ∈ Q begins with a block of zero digits.
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4. Diagram and Table

In this section we survey the results first in a diagram displaying vividly
the relations between the properties. In this diagram the arrows mean
implications, the dashed arrows are the implications which follow directly
by the definitions. The implications stated in this diagram (together
with implications generated by transitivity) are all existing implications
between these properties.

Then a table containing all implications and non-implications is given.
The symbol of implication (non-implication, respectively) on the ith row
and jth column means that property i implies (does not imply, respec-
tively) property j. The implications following directly by definitions are
marked by “def” above the symbol of implication. The remaining im-
plications and non-implications have been either proved or disproved by
giving a counterexample (we call them essential and they are given with
the proper reference), or they follow from transitivity of implications.

6 
 
 
 

7 
 
 
  8  9  17  18 
 
 

10   16  19 
 
  
 
  11  1 
 
12 
 
    2   15  14 
 
 

3 
 
 
        13  20 
    4 
 
 
   5  21      22 
 
 
   23 

 

[6]!

[25]!
[18]!

[24]!
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1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23

1
•

de
f.
⇒

de
f.
⇒

de
f.
⇒
⇒

[1
9] 6⇒

[1
9] 6⇒

[1
9] 6⇒
6⇒

[1
9] 6⇒

[1
5]

,[1
9]

6⇒
[1

4] 6⇒
[1

8] 6⇒
[1

8]
,[2

2]
6⇒

[1
5] 6⇒

6⇒
6⇒

6⇒
6⇒

[2
4] 6⇒

⇒
[2

4] 6⇒
⇒

2
[2

2] 6⇒
•

de
f.
⇒

de
f.
⇒
⇒
6⇒
6⇒
6⇒
6⇒

6⇒
6⇒

[2
2] 6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

⇒
6⇒

⇒

3
[2

2] 6⇒
[1

0] 6⇒
•

de
f.
⇒
⇒
6⇒
6⇒
6⇒
6⇒

6⇒
6⇒

[2
2] 6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

⇒
6⇒

⇒

4
[2

2]
,[4

]
6⇒

6⇒
[3

4] 6⇒
•

[1
8] ⇒
6⇒
6⇒
6⇒
6⇒

[1
6] 6⇒

6⇒
6⇒

6⇒
[1

5] 6⇒
6⇒

[3
3] 6⇒

6⇒
6⇒

6⇒
6⇒

[2
4] ⇒

6⇒
⇒

5
[1

8] 6⇒
6⇒
6⇒

[1
8] 6⇒
•
6⇒
6⇒
6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
[2

4] 6⇒
6⇒

[2
4] ⇒

6
⇒

⇒
⇒
⇒
⇒
•

de
f.
⇒

de
f.
⇒

de
f.
⇒

de
f.
⇒

de
f.
⇒

⇒
[1

9] 6⇒
[1

9] 6⇒
[2

0] 6⇒
6⇒

[3
]
6⇒

6⇒
6⇒

6⇒
⇒

[2
6] 6⇒

⇒

7
⇒

⇒
⇒
⇒
⇒

[1
9] 6⇒
•

de
f.
⇒

de
f.
⇒

de
f.
⇒

de
f.
⇒

⇒
6⇒

6⇒
6⇒

6⇒
[3

]
6⇒

6⇒
6⇒

6⇒
⇒

6⇒
⇒

8
⇒

⇒
⇒
⇒
⇒
6⇒

[1
9] 6⇒
•

[1
9] 6⇒

de
f.
⇒

de
f.
⇒

⇒
6⇒

6⇒
6⇒

6⇒
[3

]
6⇒

6⇒
6⇒

6⇒
⇒

6⇒
⇒

9
⇒

⇒
⇒
⇒
⇒
6⇒
6⇒

[1
9] 6⇒
•

de
f.
⇒

de
f.
⇒

⇒
6⇒

6⇒
6⇒

6⇒
[3

]
6⇒

6⇒
6⇒

6⇒
⇒

6⇒
⇒

10
[6

]
⇒

⇒
⇒
⇒
⇒
6⇒
6⇒
6⇒
6⇒

•
de

f.
⇒

[2
0] ⇒

6⇒
6⇒

6⇒
6⇒

[3
]
6⇒

6⇒
6⇒

6⇒
⇒

6⇒
⇒

11
[2

2] 6⇒
[6

]
⇒
⇒
⇒
⇒
6⇒
6⇒
6⇒
6⇒

[1
5]

,[1
9]

6⇒
•

[2
2] 6⇒

6⇒
[1

5]
,[1

9]
6⇒

6⇒
6⇒

[3
]
6⇒

6⇒
6⇒

6⇒
⇒

6⇒
⇒

12
[3

4] 6⇒
6⇒

[3
4] 6⇒

[1
9] ⇒
⇒
6⇒
6⇒
6⇒

[1
9] 6⇒

[1
6] 6⇒

6⇒
•

[1
9] 6⇒

[1
9] 6⇒

[2
0] 6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
⇒

6⇒
⇒

13
[3

4] 6⇒
6⇒

[3
4] 6⇒

[1
6] 6⇒

[1
]
6⇒
6⇒
6⇒
6⇒
6⇒

6⇒
6⇒

[1
5]

,[1
9]

6⇒
•

[2
2]

,[1
8]

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
[2

4] ⇒
[2

4] 6⇒
⇒

14
[1

8] 6⇒
6⇒

[3
4] 6⇒

[1
8] ⇒
⇒
6⇒
6⇒
6⇒
6⇒

[1
9] 6⇒

[1
5]

,[1
9]

6⇒
[1

9] 6⇒
[1

8] ⇒
•

[2
]
6⇒

6⇒
6⇒

6⇒
[2

5] 6⇒
[2

4] ⇒
⇒

⇒
⇒

15
[3

3] 6⇒
[2

8] 6⇒
6⇒

[3
0] ⇒

[3
0] ⇒
6⇒
6⇒
6⇒
6⇒

6⇒
[2

8] 6⇒
[3

3]
,[2

2]
6⇒

6⇒
6⇒

•
[3

3] 6⇒
6⇒

6⇒
6⇒

6⇒
⇒

6⇒
⇒

16
[1

1] ⇒
⇒
⇒
⇒
⇒
6⇒
6⇒
6⇒
6⇒

[2
8] 6⇒

[3
5] 6⇒

6⇒
6⇒

6⇒
de

f.
⇒

•
[2

8] 6⇒
6⇒

6⇒
6⇒

⇒
6⇒

⇒

17
⇒

⇒
⇒
⇒
⇒
6⇒
6⇒
6⇒
6⇒

6⇒
[1

3] 6⇒
[5

]
6⇒

[2
8] 6⇒

[2
8] 6⇒

de
f.
⇒

de
f.
⇒

•
6⇒

6⇒
6⇒

⇒
[2

6] 6⇒
⇒

18
[2

5] 6⇒
6⇒
6⇒
⇒
⇒
6⇒
6⇒
6⇒
6⇒

6⇒
[2

6] 6⇒
[2

2]
,[2

5]
6⇒

⇒
⇒

⇒
[3

3]
,[2

5]
⇒

6⇒
•

de
f.
⇒

⇒
⇒

⇒
⇒

19
6⇒

6⇒
6⇒
⇒
⇒
6⇒
6⇒
6⇒
6⇒

6⇒
6⇒

6⇒
⇒

[2
5] ⇒

[5
]
⇒

6⇒
6⇒

[2
5] 6⇒

•
⇒

⇒
⇒

⇒

20
6⇒

6⇒
6⇒
6⇒
6⇒
6⇒
6⇒
6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

•
6⇒

[2
4] ⇒

[2
4] 6⇒

21
6⇒

6⇒
6⇒
6⇒
6⇒
6⇒
6⇒
6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
•

6⇒
[2

4] ⇒

22
6⇒

6⇒
6⇒
6⇒
6⇒
6⇒
6⇒
6⇒
6⇒

6⇒
6⇒

6⇒
[2

4] 6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
[2

4] 6⇒
6⇒

•
6⇒

23
6⇒

6⇒
6⇒
6⇒
6⇒
6⇒
6⇒
6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
6⇒

6⇒
•

Table 1
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The results can be summarized in the following ways. Among the
possible 506 implications, there are

• 136 implications (24 of them follow directly by the definitions),
and

• 370 non-implications.
From another point of view there are

• 24 implications following directly from definitions, and
• 19 implications and 83 counterexamples essential, and
• 380 implications or non-implications generated by the transitivity.

There are two weakest (i.e., such that they do not imply any other
property) mutually incomparable properties, namely “the trajectories of
every two points are correlated” and “any iteration of the map restricted
to any closed invariant set cannot be topologically almost conjugate to the
shift”; on the other hand, there are three strongest properties (they are
implied by no property), “a map restricted to the set of chain recurrent
points is not chaotic in the sense of Li and Yorke,” “a map is not distribu-
tionally chaotic in the weakest sense,” and “the trajectory of every point
is strongly approximable.”

5. Comments on the Positive Implications

There are 136 positive results in Table 1: 24 of them follow by the
definitions, 19 are essential, and the remaining are generated by the tran-
sitivity.

Some of the positive results are valid not only for triangular maps
but for maps on general compact metric spaces as well, namely, the im-
plications 10 ⇒ 1, 11 ⇒ 2, 16 ⇒ 1, and 19 ⇒ 15. The remaining 15
implications have been proved for triangular maps only. Let us recall the
general results.

Theorem 5.1 (see [6]). Let f ∈ C(X). If f has positive topological
entropy, then it is Li-Yorke chaotic. (From this it immediately follows
that 10 ⇒ 1 and 11 ⇒ 2.)

Theorem 5.2 (see [11]). Let f ∈ C(X). If f has positive topological
entropy, then it is distributionally chaotic DC2, i.e., 16 ⇒ 1.

Theorem 5.3 (see [5]). Let f ∈ C(X) and let u, v ∈ X form a DC1 pair.
Then the trajectory of u or the trajectory of v is not weakly approximable
by compact periodic sets, i.e., 19 ⇒ 15.

Let us note that in the first two results chaoticity means the existence
of an uncountable (not only two-points) Li-Yorke (distributionally, respec-
tively) scrambled set. These results were proved in a very sophisticated
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way using a measure theoretical approach, in particular ergodic theory,
while the proof of Theorem 5.3 is easy. Of course, Theorem 5.1 is a direct
consequence of Theorem 5.2, but the first one was proved already in 2002,
while the notion of DC2 was not introduced until 2004 in [33].

Note that positive topological entropy and chaos DC1 are for general
triangular maps independent, while a triangular map with the base map f
with h(f) = 0 cannot be DC1 (see [30]) but it can be DC2 (see [33]). On
the other hand, in [33] a triangular map with positive topological entropy
exhibiting DC2 but not DC1 was constructed. So a natural question arose
as to whether positive topological entropy implies chaos DC2. As an open
question it was published in 2006 in [32] with a conjecture that the answer
is affirmative. The existence of the proof of Theorem 5.2 was announced
by Tomasz Downarowicz around 2011 and published in 2014 [11]. Let us
outline the proof as it was presented in the paper [12] by Downarowicz
and Yves Lacroix where, in fact, a stronger version of Theorem 5.2 is
proved in a more transparent way.

Let (X,B, µ) be a measure space, B a complete σ−algebra on X, µ a
probability measure on B, and T : X → X a measure-preserving trans-
formation. First, we have to define a new notion of chaos.

A sequence {Pk}k∈N of finite measurable partitions is refining if Pk+1

is a refinement of Pk for every k and if Pk jointly generate B (i.e., B is
the smallest complete σ-algebra containing all the partitions Pk).

For a given refining sequence of finite measurable partitions {Pk}k∈N,
a pair (x, y) is {Pk}-scrambled if

(i) there exists a sequence ni of upper density 1 such that, for every
k and large enough i, Tni(x) belongs to the same atom of Pk as Tni(y);
and

(ii) there exists a sequence mi of positive upper density and k0 such
that, for every i, Tmi(x) and Tmi(y) belong to different atoms of Pk0 .

A transformation T is calledmeasure-theoretically chaotic (briefly,MTC)
if, for every refining sequence of finite partitions {Pk}k∈N, there exists an
uncountable {Pk}-scrambled set.

Measure-theoretical chaos has, for example, the following properties:
• it is an isomorphism invariant;
• for a given refining sequence {Pk}, the ergodic system (X,B, µ, T )

is MTC if and only if for any null set A, there exists an uncountable
{Pk}-scrambled set disjoint from A;
• {Pk}-scrambled sets exist inside any set of positive measure, more

precisely, let (X,B, µ, T ) be an ergodic MTC system, let {Pk} be a refining
sequence of finite partitions, and let B ∈ B with µ(B) > 0. Then there
exists an uncountable {Pk}-scrambled set contained in B;
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• MTC ⇒ DC2; more precisely, let (X,T ) be a topological dynamical
system and µ an ergodic T -invariant measure. If (X,B, µ, T ) is MTC,
then (X,T ) is DC2;
• every ergodic system (X,B, µ, T ) with positive Kolmogorov-Sinai en-

tropy is MTC.
The fact that positive topological entropy implies DC2 is now a corol-

lary of the last property.

6. Comments on Counterexamples

Recall that in Table 1, there are 370 non-implications and 82 of them
are essential. The counterexample that initiated the Sharkovsky program
is generally considered as the most important one. Note that a map is of
type 2∞ if the periods of its periodic orbits are 2n for any n ∈ N.

Theorem 6.1 (see [22]). There exists a triangular map of type 2∞ with
positive topological entropy.

Let us outline a construction of a map with these properties. The pre-
sented construction originates from [33]. The construction described in
[33] was inspired by the construction presented in [22], but it contains
more properties (namely it has positive entropy, it is of type 2∞, and it is
DC2 but not DC1) and uses simpler and more straightforward argumen-
tation.

The base map f of the constructed triangular map F is f(x) = λx(1−
x), where λ = 3.569 . . . is such that f is of type 2∞. It is well known
that this map has exactly one infinite ω-limit set Q (which is perfect),
two fixed points, and, for any n ∈ N, a unique periodic orbit of period 2n.
For this set Q there is a sequence {In}n∈N of minimal compact periodic
intervals with the following properties: (i) for any n ∈ N, In has period
2n; (ii)

⋂
n∈NOrb(In) = Q; (iii)

⋂
n∈N In = {c} for some c ∈ Q. Let

pn ∈ In be the unique periodic point of period 2n.
For the definition of the fiber maps, let {nk}k∈N be an increasing se-

quence of positive integers and let τ(x) = 1 − |1 − x|, x ∈ I, be the
standard tent map. The fiber maps are either zero maps or “diminished”
tent maps,

gx =

{
0 for x = 0, x = c, or x = pn, n ∈ N,
2−kτ for x ∈ Q ∩ (Ink

\ Ink+1
).

Moreover, let gx(0) = 0 for any x ∈ I. Finally, the triangular map F is a
continuous extension of this map to the whole I × I.

By an easy argument, F is of type 2∞. Using a much more complex
argument, it can be shown that an appropriate choice of the sequence
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{nk} leads to positivity of topological entropy of F (and also to the above
mentioned properties concerning distributional chaos).

Some of the counterexamples were constructed for a special class of
triangular maps, namely the ones monotone on the fibers (i.e., such that
the fiber maps gx are monotone for any x ∈ I). Such maps have easier
behavior than general triangular maps. For instance, some properties
from the classification program (e.g., zero topological entropy and being
of type 2∞) are, for such maps, equivalent, but this is no longer true for
general triangular maps (see Theorem 6.1). Another important property
is that for triangular maps monotone on the fibers positive topological
entropy implies DC1, the strongest type of distributional chaos (see [29]),
but for general triangular maps positive entropy implies only DC2. Let us
note that for maps of this kind there are some other important properties,
for example, the topological entropy of such a map equals the topological
entropy of its base map by Bowen’s formula

h(f) + sup
x∈I

h(F, Ix) ≥ h(F ) ≥ max{h(f), sup
x∈I

h(F, Ix)},

where h(F, Ix) is the topological entropy calculated from trajectories start-
ing from the fiber Ix (see [8]).

Let us note that in order to construct required counterexamples, com-
pletely new methods were used which had not been known in the early
stages of this program. In [35] a triangular map F was constructed
which was nondecreasing on the fibers and without DC2 pairs such that
F |UR(F ) was Li-Yorke chaotic (i.e., 16 6⇒11). An analogous problem
with DC3 instead of DC2 was still open at that time. I tried to change
the construction in such a way that there are no DC3 pairs in order to
show that 17 6⇒11, but I did not succeed. A few months later, a general
technique of embedding any zero-dimensional almost one-to-one exten-
sion of the dyadic odometer (in particular any dyadic Toeplitz system)
in a triangular system of type 2∞ as a unique non periodic minimal set
was developed (see [13]) and using it, the property 17 6⇒ 11 was proved.
Finally, in [10], a method of embedding a special class of zero-dimensional
almost two-to-one extension of the odometer was presented and used for
proving the last problem, namely 3 6⇒ 2. Let us point out that using these
methods we obtain maps that are not monotone on the fibers.

Taking into account all the above mentioned arguments, it may be of
some interest to give the classification just for triangular maps monotone
on the fibers. Let us note that the full classification for properties 1 to 14
has been already given in [19].
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