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Electronically published on June 2, 2015

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c⃝ by Topology Proceedings. All rights reserved.



Volume 48 (2016)
Pages 151-162

http://topology.auburn.edu/tp/
http://topology.nipissingu.ca/tp/

E-Published on June 2, 2015

A CLASS OF EVEN ELLIPTIC FUNCTIONS
WITH NO HERMAN RINGS

MÓNICA MORENO ROCHA AND PABLO PÉREZ LUCAS

Abstract. In this note we study the dynamical and topological
properties of Julia and Fatou sets of certain even elliptic func-
tions. By computing their conformal class, we obtain sufficient con-
ditions to show these functions do not exhibit Herman rings, ex-
tending known results for the Weierstrass ℘-function (Jane Hawkins
and Lorelei Koss, Parametrized dynamics of the Weierstrass ellip-
tic function, Conform. Geom. Dyn. 8 (2004)), and for 1/℘ over
triangular lattices (Koss, A fundamental dichotomy for Julia sets
of a family of elliptic functions, Proc. Amer. Math. Soc. 137
(2009), no. 11). As an application, we show Julia sets of 1/℘ over
square lattices are either connected or totally disconnected.

1. Introduction

Consider an analytic map f : U → U defined over an annular domain U
of the complex plane. U is called a Herman ring if the iterates of f |U are
analytically conjugate to an irrational rotation acting on a round, non-
degenerated annulus. In general, it is a difficult problem to determine their
existence since, in contrast to other types of Fatou domains, Herman rings
are not associated to periodic orbits.

In this note we give sufficient conditions on a class of even elliptic
functions that prevents the presence of cycles of Herman rings. Elliptic
functions can be described succinctly as double periodic transcendental
meromorphic functions whose set of poles form an infinite and discrete set
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in C. As meromorphic functions, they belong to the Speiser class S since
any elliptic function has a finite number of critical values, with no other
type of singular values. This implies the existence of only preperiodic
Fatou components that eventually map into a cycle of superattracting,
attracting, parabolic domains or cycles of Siegel disks or Herman rings. In
section 2 we provide a short introduction to elliptic functions and their
dynamics over square lattices. We refer the reader to the classical exposi-
tions of [9] for background on elliptic functions, to the survey in [2], and
to [8] for general information on dynamics of transcendental meromorphic
functions.

Our first result is based on the work of Jane Hawkins and Lorelei Koss
presented in [6] and [7], where they show (among many other results) that
Weierstrass ℘-function has no cycle of Herman rings over any lattice.
Theorem A is then derived after computing the conformal equivalence
class of ℘ (discussed in section 3).

Theorem A. Let Θ be any lattice. Then, for any choice of α ∈ C∗,
β ∈ C and M ∈ Aut(Ĉ), the even elliptic function defined with respect to
αΘ,

gαΘ(z) = M(α2℘αΘ(z − β))

has no cycle of Herman rings.

Observe that z 7→ −1/℘Θ(z) belongs to the conformal class of ℘Θ for
α = 1, β = 0, and M(z) = −1/z above. As a consequence, we can
generalize previously known results by Koss for triangular lattices [10]
and by the second author for real rectangular lattices [11].

Corollary 1.1. Over any given lattice Θ, the even elliptic function z 7→
1/℘Θ(z) does not exhibit cycles of Herman rings.

In section 4 we derive another application of Theorem A, namely the
Fundamental Dichotomy Theorem for fΩ(z) = 1/℘Ω(z), where Ω denotes
any square lattice. This result provides an extension to the original di-
chotomy result of Koss for 1/℘ defined over triangular lattices [10, Theo-
rem 1.1].

Theorem B (Fundamental dichotomy over square lattices). Let Ω be a
square lattice. If all three critical values of fΩ belong to the same Fatou
component, then its Julia set is totally disconnected. Otherwise, the Julia
set is connected.

The proof contained in section 4 proceeds along the same lines of the
proof of Theorem 1.1 in [10], although some major differences are implied
by the symmetries and properties of 1/℘ on square lattices. A version of
Theorem B for real square lattices appeared first in the master’s thesis
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work of the second author (see [11]); here we present a generalization for
any square lattice using a different and more direct approach.

Examples of connected (Figure 1) and totally disconnected (Figure 2)
Julia sets for 1/℘ over real square lattices are provided below.

Figure 1. Example of a connected Julia set for 1/℘ on
a real square lattice. Both images are centered at the
origin, which is a superattracting fixed point. The basin
of the origin appears in the lighter shades (orange in elec-
tronic version). There is also an attracting cycle in black
containing the orbits of the non-zero critical values.

Figure 2. Example of a totally disconnected Julia set
for 1/℘ on a real square lattice. Both images are centered
around the origin. In this case, all critical values lie in
the immediate basin of the origin (displayed in shades of
orange in electronic version).
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2. Background

Let f denote a non-constant, meromorphic function defined over the
complex plane, C, and taking values on the Riemann sphere, Ĉ. The
function f is called double periodic if its set of periods, Θ, is given by
the additive subgroup {nθ1 + mθ2 | n,m ∈ Z}, where θ1, θ2 ∈ C are R-
independent. We write Θ = 〈θ1, θ2〉 to denote the base {θ1, θ2} generating
Θ. In this sense, we say f : C → Ĉ is an elliptic function with respect to
Θ if any element ζ ∈ Θ satisfies f(z + ζ) = f(z) for all z ∈ C (that is, ζ
is a period of f).

Two lattices Θ and Ω are said to be similar if Θ = kΩ, for some
k ∈ C∗. Similarity is an equivalence relation between lattices and an
equivalence class is usually known as a shape [6]. One particular shape
we are interested in consists of square lattices, that is, Ω = 〈ω, iω〉 for
some ω ∈ C∗. Clearly, any square lattice is similar to a real square lattice,
that is, when the generator is real and positive. From now on Λ = 〈λ, iλ〉
represents a real square lattice, Ω a square lattice, and Θ any given lattice,
possibly of a different shape from Ω.

A closed, connected subset Q of C is said to be a fundamental region
for Θ if, for any point z ∈ C, there exists (at least) one point in Q that
is congruent mod Θ to z while no two points in the interior of Q are
congruent. We denote by Q0 the fundamental region for Θ with vertices
in 0, θ1, θ1 +θ2, and θ2. Clearly, for any square lattice we can always find
a square fundamental region Q.

For any given lattice Θ, the Weierstrass ℘-function can be defined by
the series

℘Θ(z) =
1

z2
+

∑
θ∈Θ\{0}

(
1

(z − θ)2
− 1

θ2

)
.

This is an even elliptic function with respect to Θ; it has degree 2 when
restricted over a fundamental region or any translation Q + t, for t ∈ C.
The set of poles, Π(℘), coincides with Θ and each of them has order 2.
Its derivative, ℘′, is an odd elliptic function of order 3 with periods at Θ.
Both functions satisfy a homogeneity property that will be important in
the next section.

Proposition 2.1 (Homogeneity). For any given k ∈ C∗ and any lattice
Θ, the functions ℘ and ℘′ satisfy,

℘kΘ(ku) =
1

k2
℘Θ(u),

℘′kΘ(ku) =
1

k3
℘′Θ(u).
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We denote by E = E(Θ) the set of all elliptic functions defined over a
fixed lattice Θ. It is not difficult to show that E is, in fact, a field. Re-
markably, E is equal to the rational field C(℘, ℘′), so any elliptic function
f ∈ E can be written as

f(z) = R ◦ ℘(z) + ℘′(z) · (S ◦ ℘(z)),

where R and S are rational maps with complex coefficients. Even elliptic
functions coincide with the rational field C(℘); see [9, Theorem 3.11.1].

The dynamical properties of ℘ over square lattices have been exten-
sively studied by Hawkins and Koss in [6] and [7] and by Joshua J.
Clemons in [4], among others. We collect a series of results that we will
use extensively in the following sections and refer the reader to the above
articles and to chapter 3 in [9] for their proofs.

Theorem 2.2. For a fixed ω ∈ C∗, let Ω = 〈ω, iω〉 denote a square
lattice. The following properties hold for ℘Ω.

(1) ℘Ω has simple critical points over the half periods ω/2, iω/2, and
ω/2 + iω/2. Thus, the set of critical points of ℘Ω are given by

Crit(℘Ω) =

{
ω

2
,
iω

2
,
ω + iω

2

}
+ Ω.

(2) Since ℘Ω is double periodic, it has only three critical values,

e1 = ℘Ω

(ω
2

)
, e2 = ℘Ω

(
iω

2

)
, e3 = ℘Ω

(
ω + iω

2

)
.

The Julia set of an elliptic function h ∈ E is defined as

J(h) =
⋃
n≥0

h−n(∞).

The Fatou set, F (h), is the complement of the Julia set in the plane and
coincides with the largest open set where the iterates of h are both defined
and form a normal family. We are interested in the following properties
of the Julia and Fatou sets. Refer to [6], [7], and [4] for their proofs.

Theorem 2.3. Let Θ be any lattice. Then, for any h ∈ E(Θ),

(1) J(h) + Θ = J(h) and F (h) + Θ = F (h);
(2) if h is even, then (−1)J(h) = J(h) and (−1)F (h) = F (h).

Moreover, if Ω is any square lattice, then

J(℘Ω) = iJ(℘Ω) and F (℘Ω) = iF (℘Ω).
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3. Conformal Class of an Elliptic Function

Fix a lattice Θ = 〈θ1, θ2〉 and consider an elliptic function h ∈ E(Θ);
we would like to determine its conformal equivalence class. If there exist
maps L ∈ Aut(C) and M ∈ Aut(Ĉ) so that, for some lattice Σ and a
function gΣ ∈ E(Σ),

gΣ ◦ L(z) = M ◦ hΘ(z),

for all z ∈ C, we say that gΣ is conformally equivalent to hΘ. In order to
compute the conformal class of hΘ, consider an affine map L(z) = αz+β,
with α ∈ C∗ and β ∈ C, and M , a Möbius transformation. Then the
conjugacy equation becomes

(3.1) gΣ(z) = M ◦ hΘ

(
1

α
(z − β)

)
.

Since E(Θ) is a rational field, M ◦ hΘ ∈ E(Θ). We need to ensure that
hΘ ◦L−1 is a non-constant, double periodic meromorphic function defined
over some lattice Σ that needs to be determined.

Consider first the simplest case when hΘ = ℘Θ. By the homogeneity
property of the Weierstrass ℘ function,

hΘ ◦ L−1(z) = ℘Θ

( 1

α
(z − β)

)
= α2℘αΘ(z − β).

That is, Σ = αΘ for some α ∈ C∗. Thus, not surprisingly, conformally
equivalent maps to the Weierstrass ℘-function are defined over similar
lattices and its conformal class reduces to elliptic functions of the form

gαΘ(z) = M
(
α2℘αΘ(z − β)

)
,

for any choice of α ∈ C∗, β ∈ C, and M ∈ Aut(Ĉ). Since the action of
gαΘ(z) on Q0 − β is the same as the action of gαΛ(z + β) on Q0, we may
select β = 0 for simplicity.

In a more general situation, consider hΘ = R(℘Θ) + ℘′ΘS(℘Θ) with R
and S rational maps with complex coefficients. A straightforward com-
putation shows the following.

Proposition 3.1. Given an elliptic function hΘ, its conformal conjugacy
class within E(Θ) is determined by all those functions of the form

gαΘ(z) = M ◦R
(
α2℘αΘ(z)

)
+ α3℘′αΘ(z)S

(
α2℘αΘ(z)

)
,

for any α ∈ C∗ and any M ∈ Aut(Ĉ).

Clearly, Theorem A is a consequence of the above proposition and [6,
Theorem 5.4], which states that for any lattice, ℘ has no Herman rings.
For completeness we provide the details of our assertion next.



EVEN ELLIPTIC FUNCTIONS WITH NO HERMAN RINGS 157

Proposition 3.2. Every element in the conformal class of ℘Θ has no
Herman rings.

Proof. We proceed by contradiction. For simplicity, we write ℘ = ℘Θ and
g = gαΘ, where g represents an element on the conformal class of ℘Θ. Let
U ⊂ C be a Herman ring for g and assume for now U is fixed by the action
of g. Let ϕ : U → A be a conformal equivalence so that ϕ ◦ g = eiζϕ in
U , with ζ ∈ R \Q.

Since g is conformally equivalent to ℘, we have M ◦ ℘(z) = g ◦ L(z)
for all z ∈ C. Let V = L−1(U) which is again an annular domain of the
plane. Then, for all z ∈ V ,

℘(z) = M−1 ◦ (ϕ−1(eiζϕ)) ◦ L(z);

that is, ℘ acts conformally on V because it is a composition of conformal
maps. Since connectivity number and moduli are conformal invariants,
for every k ≥ 1, ℘k(V ) is an annular domain of the Riemann sphere with
modulus equal to mod(V ).

Assume J(℘) ∩ V 6= ∅. Because any elliptic function is a ramified
N -cover of the plane, it has no exceptional points, so by Montel’s the-
orem, C ⊂ ℘m(V ) for some m > 0 sufficiently large. But this implies
mod(℘m(V )) =∞, a contradiction. Hence, V is a Fatou component of ℘.
Since elliptic functions belong to the class S, it cannot have wandering
domains (see [2, §4]), so for some k ≥ 0, Vk := ℘k(V ) is periodic under
℘m for some m ≥ 1. By a result of A. Bolsch (see remark following [1,
Corollary 2]), Vk is either a Herman ring (which is impossible for ℘ by [6,
Theorem 5.4]) or a tongue over itself. This last condition implies that ℘m
assumes in Vk every value on itself infinitely many times, contradicting
the injectivity of the function.

The case when U belongs to a n-cycle of Herman rings follows similarly.
Indeed, since V = L−1(U) does not have to be fixed by ℘n, we can find
Mj ∈ Aut(Ĉ) so thatMj ◦℘j(V ) = gj(U) and, in particular, for all z ∈ V ,

℘n(z) = M−1
n ◦ (ϕ−1(eiζϕ)) ◦ L(z),

which is again conformal. �

4. Fundamental Dichotomy

As an application of Theorem A we show next that the Julia set of
fΩ(z) = 1/℘Ω(z), with Ω = 〈ω, iω〉 any square lattice, can be either
connected or totally disconnected. First, we recall several properties of
fΩ and its Julia and Fatou sets. Proofs for the real square case can be
found in [11] or derived from the properties of ℘Ω described in Theorem 2.2
and Theorem 2.3.
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Proposition 4.1. Let Ω be a square lattice. The following properties hold
for fΩ = 1/℘Ω.

(1) The critical points and poles of fΩ are given by

Crit(fΩ) =

{
0,
ω

2
,
iω

2

}
+ Ω, Π(fΩ) =

{
ω + iω

2

}
+ Ω.

(2) The critical values of fΩ are three distinct complex values given
by 0, vΩ := 1/e1, and −vΩ.

(3) The origin is a superattracting fixed point of fΩ.
(4) J(fΩ) = iJ(fΩ) and F (fΩ) = iF (fΩ).
(5) fΩ(±iz) = −fΩ(z) for all z ∈ C.

Any non-real square lattice Ω = 〈ω, iω〉 can be expressed as

Ω = eiθΛ = eiθ〈λ, iλ〉,

where λ = |ω| > 0 and θ = arg(ω) ∈ [0, 2π]. So, by Proposition 2.1, we
derive a natural relation between fΩ and fΛ: If z ∈ C/Ω and u ∈ C/Λ so
that z = eiθu, then

(4.1) fΩ(z) =
1

℘eiθΛ(eiθu)
=

ei2θ

℘Λ(u)
= ei2θfΛ(u).

In particular, the critical values of fΩ and fΛ are related by

vΩ = fΩ

(ω
2

)
= fΩ

(
eiθ

λ

2

)
= ei2θfΛ

(
λ

2

)
= ei2θvΛ,

and −vΩ = −ei2θvΛ.

Lemma 4.2. Let R be the ray {tω | t ∈ R} and define L = iR. Then fΩ

sends R into the line segment [0, vΩ], while L is sent into the line segment
[−vΩ, 0].

Proof. Observe first that fΛ sends the imaginary axis to the real axis. In
particular, R is sent into the interval [0, vΛ] ⊂ R while iR is sent to the
interval [−vΛ, 0] ⊂ R. From equation (4.1) we observe that, for any t ∈ R,

fΩ(tω) = fΩ(eiθtλ) = ei2θfΛ(tλ).

From this and the relation between critical values, we see that fΩ sends
R into ei2θ[0, vΛ] = [0, vΩ]. The action over L is similarly obtained. �

Denote by B(0) the immediate basin of the origin for the function fΩ.
From now on, the notation [a, b] denotes a simple curve with endpoints a
and b which is not necessarily a line segment.
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Lemma 4.3 (4-fold symmetry). Let U be a Fatou component of fΩ and
denote by µ a primitive 4th root of unity. If there exist z0 ∈ U and an
integer n so that µnz0 ∈ U − {z0}, then ikz ∈ U for all k ∈ Z.

Proof. Let γ be a simple curve [z0, µ
nz0] completely contained in U and

some n ∈ Z. Assume first µn = i (the case µn = −i is similar). Since iγ
has iz0 as a common endpoint with γ, it must, therefore, lie completely
inside U . Denote by Γ the union of γ and its rotation by i; this is a curve
with endpoints at ±z0 and passing by iz0. Since fΩ is even, it follows
that −U is also a Fatou component. Moreover, the curve −Γ lies in −U
and has the same endpoints as Γ. It follows that U = −U and hence,
ikz0 ∈ U for all k ∈ Z.

If µn = −1, then Γ is a closed curve passing by ±z0. In this case, the
curve iΓ ⊂ iU passes by ±iz0. Since both curves differ by an isometry, it
follows that Γ ∩ iΓ 6= ∅, so U = iU and ikz0 ∈ U for all k ∈ Z. For any
other point z ∈ U , let α denote the simple curve joining z0 with z and
apply the above arguments to γ ∪ α. �

There are two immediate consequences of the 4-fold symmetry.

Corollary 4.4. The immediate basin of attraction of the origin has 4-fold
symmetry.

Proof. For any z ∈ B(0), let γ = [0, z] ⊂ B(0) be a simple curve. By the
symmetries in Proposition 4.1, −γ ⊂ B(0), so z and −z both lie in the
immediate basin and, by the above lemma, the result follows. �

Corollary 4.5. If the immediate basin of attraction of the origin contains
another critical value, then it must contain all critical values.

Proof. This follows from the previous corollary and Proposition 4.1(2).
�

Proposition 4.6. If all critical values of fΩ lie in the immediate basin
of the origin, then J(fΩ) is a Cantor set.

The proof is a consequence of the following result due to Hawkins and
Koss [7, Theorem 3.15].

Theorem 4.7. If h is a hyperbolic elliptic function and W is a Fatou
component of h which is a double toral band and contains all critical
values, then F (h) = W , and J(h) is a Cantor set.

A double toral band is a Fatou component that contains the boundary
of a fundamental region; see [7, p. 113] for further details.

Proof of Proposition 4.6. By hypothesis, fΩ is a hyperbolic map since all
critical orbits are attracted to the origin. Let us show B(0) is a double
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toral band. Consider a simple curve [0, vΩ] inside B(0). Since the origin is
a fixed point and B(0) is forward invariant, there exists a preimage curve
[0, ω/2] that maps injectively onto [0, vΩ]. Clearly, this preimage must
lie in B(0). By the 4-fold symmetry, the curve γ = [−ω/2, 0] ∪ [0, ω/2]
also lies in the immediate basin. The invariance of the Fatou set under
translation by Ω implies that γ + ω remains in B(0) since it joins ω/2,
ω, and 3ω/2, so, in particular, ω ∈ B(0). Finally, from any given curve
[0, ω] inside B(0), we can generate a closed curve

[0, ω] ∪ [0, iω] ∪ [ω, ω + iω] ∪ [iω, ω + iω]

that is completely contained in the immediate basin and defines the
boundary of a fundamental region. Thus, B(0) is a double toral band,
and, by Theorem 4.7, the Julia set is a Cantor set. �

The next result will be important in our construction. Its proof differs
from the version given by Koss in [10] for triangular lattices. Compare
also with the proof found in [11] where we use complex moduli tools for
the case of real square lattices; here we provide a fairly straightforward
argument for any square lattice.

Proposition 4.8. If Ω denotes a square lattice, then there exists no Fatou
component of fΩ containing exactly two critical values.

Proof. We have already seen that if B(0) contains another critical value,
it must contain all of them (Corollary 4.5). Assume the existence of a
Fatou component U containing both v = vΩ and −v, but not the origin.
From this assumption we readily derive the following properties.

(1) All positive iterates of U have 4-fold symmetry. Indeed, it follows
from Lemma 4.3 that ±iv also belong to U . Then, by Proposi-
tion 4.1(5), we see that fΩ(U) contains fΩ(v) and −fΩ(v), imply-
ing its 4-fold symmetry. The same argument can be applied to
subsequent iterates of U .

(2) B(0) is bounded. Since U has 4-fold symmetry, there exists a
simple closed curve Γ in U that connects the points ±z and ±iz
in U . Clearly, B(0) lies in the bounded component of Ĉ \ Γ.

(3) Either U eventually maps into B(0) or it belongs to an N -cycle
of attracting, superattracting, or parabolic components. This is
a consequence of the Classification Theorem for periodic Fatou
components for functions in the class S (see [8, Theorem 4.5])
and the fact that the boundary of any rotation domain belongs
to the accumulation set of postcritical orbits (see [5, Theorem
3.7.15]).

Let N ≥ 1 be the smallest integer so that fNΩ (U) ⊂ B(0). It is not
difficult to see that f−1

Ω (B(0)) = B(0) + Ω, so there exists ζ ∈ Ω for
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which B(0)+ ζ ⊆ fN−1
Ω (U). By the 4-fold symmetry, it must also contain

B(0)−ζ, B(0)+ iζ, and B(0)− iζ. But for fN−1
Ω (U) to be connected, it is

necessary that these copies are not pairwise disjoint; thus, in particular,
B(0) + ζ = B(0) − ζ, so B(0) = B(0) + 2ζ. Since B(0) is bounded, ζ
has to be equal to 0. But then B(0) ⊆ fN−1

Ω (U) and this contradicts the
definition of N .

Finally, consider the case when U belongs to a periodic cycle of attract-
ing, superattracting, or parabolic components disjoint from B(0), namely
U = {U0, . . . , UN−1} for some N ≥ 1. Assume U0 = U and denote by γ a
simple closed curve in U0 containing ±v and ±iv. By Proposition 4.1(5),
fΩ(γ) is a connected set inside U1 that contains the non-zero points fΩ(v)
and −fΩ(v). The rays R and L defined in Lemma 4.2 define a partition
of the plane into four symmetric quadrants q1, q2, q3, and q4. If fΩ(v)
lies in qj , then clearly −fΩ(v) lies in −qj , so fΩ(γ) must intersect both R
and L. This implies that f2

Ω(γ) intersects [0, v] and [−v, 0], so, in partic-
ular, the second iterate of γ cuts both R and L. As the same conclusion
can be reached for fnΩ(γ) and all n ≥ 0, the spherical diameter of these
sets cannot converge to zero, contradicting the fact that f jNΩ converges
uniformly to a constant on compact sets of Uj . �

Proof of Theorem B. As we have observed, the Fatou set of fΩ is never
empty. By the previous proposition, every Fatou component contains one,
three, or no critical values. If B(0) contains all critical values, Proposi-
tion 4.6 implies the Julia set is a Cantor set. Thus, it remains to show
that, whenever a Fatou component contains at most one critical value,
the Julia set is connected. To this end, we cite the following result.

Theorem 4.9 ([7, Theorem 3.1]). Let Θ be any given lattice. If each
Fatou component of ℘Θ contains either 0 or 1 critical value, then J(℘Θ)
is connected.

The proof of the above result is essentially the same for fΩ, as both
functions have exactly three critical values and act as double-branched
coverings over fundamental regions. This concludes the proof. �
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