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CIRCLE GROUP ACTION ON THE PRODUCT OF
TWO PROJECTIVE SPACES

JASPREET KAUR, HEMANT KUMAR SINGH, AND TEJ BAHADUR SINGH

Abstract. Let G = S1 act freely on a finitistic space X with
mod 2 cohomology ring isomorphic to the product of two projec-
tive spaces. In this paper, we determine the possible cohomology
algebra of the orbit space X/G when G acts freely on the prod-
uct of two real projective spaces. We also show that the group G

cannot act freely on the product of two complex projective spaces.

1. Introduction

Let G be a topological group acting continuously on a topological space
X. An intricate problem associated with the transformation group (G,X)
is to determine the topological or the homotopy type of the orbit space
X/G. The first such question was raised by H. Hopf in 1925-26, for the
orbit spaces of free actions of finite cyclic groups on spheres. Because of
the complexity in resolving such problems P. A. Smith [7] introduced the
study of homological relationships among the space X, the fixed point set
XG, and the orbit space X/G of a periodic homeomorphism on X. Since
then, several authors have contributed to such problems. For instance,
Ronald M. Dotzel et al. [3] determined the cohomology algebra of the
orbit spaces of free circle group action on finitistic spaces having mod Q
cohomology algebra of the product of two spheres. More recently, in [5]
the possible mod p cohomology algebra of the orbit space of any free circle
group action on a finitistic space having mod p cohomology algebra of a
lens space or S1 ×CPm has been investigated. Continuing this thread of
research, in this paper we study free G = S1 action on a finitistic space
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with mod 2 cohomology algebra of the product of two real (complex)
projective spaces. Using the Leray–Serre spectral sequence, we show that
the group G cannot act freely on the product of two complex projective
spaces. If G acts freely on a finitistic space X with mod 2 cohomology
algebra of RPm × RPn, the product of two real projective spaces, then
we observe that at least one of m or n should be odd. In this case, we
also determine the possible cohomology algebra of the orbit space.

2. Preliminaries

In this section, we review some basic definitions and results that are
essential for the work done in this paper. We first recall the definition of
a class of topological spaces which has been found most suitable for the
study of the relationship between the cohomology structure of the total
space and that of the orbit space of a transformation group [1].

Definition 2.1. A finitistic space is a paracompact Hausdorff space
whose every open covering has a finite dimensional open refinement, where
the dimension of a covering is one less than the maximum number of mem-
bers of the covering which intersect non-trivially.

Two main classes of finitistic spaces are the compact spaces and the
finite-dimensional spaces (spaces with finite covering dimension). It is
known that if a compact Lie group G acts freely on a finitistic space X,
then the orbit space X/G is also finitistic [2].

We next recall some results about the Leray–Serre spectral sequence
associated with the Borel fibrations. Let G be a compact Lie group acting
(not necessarily) freely on a finitistic space X and let G ↪→ EG −→ BG
be the universal principal G-bundle. Then, with the diagonal action of G
on X ×EG, the projection map X ×EG → EG is equivariant and hence,
it induces a fibration X

i
↪→ XG

π−→ BG called the Borel fibration [9], [10],
where XG is the orbit space (X × EG)/G. With a field as the coefficient
group for cohomology, we have the following.

Proposition 2.2. Let X
i
↪→ XG

π−→ BG be the Borel fibration, where X
is connected. Suppose that the system of local coefficients (cohomology of
the fibers) on BG is simple. Then the edge homomorphisms

Hk(BG) = Ek,02 −→ Ek,03 −→ · · · −→ Ek,0k −→ Ek,0k+1 = Ek,0∞ ⊂ Hk(XG)

and H l(XG) −→ E0,l
∞ = E0,l

l+1 ⊂ E0,l
l ⊂ · · · ⊂ E0,l

2 = H l(X)

are the homomorphisms π∗ : Hk(BG) → Hk(XG) and i∗ : H l(XG) →
H l(X), respectively.
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For details about spectral sequences, see [4]. The following proposition
is well known.

Proposition 2.3. Let G be a compact Lie group acting freely on a fini-
tistic space X. Then the Borel space XG is homotopy equivalent to the
orbit space X/G.

If G is connected, then BG is simply connected, and so the system
of local coefficients on BG is simple. Hence, the E2-term of the Leray–
Serre spectral sequence of π has the form Ep,q2 = Hp(BG) ⊗Hq(X) and
it converges to H∗(XG), the cohomology ring of XG.

Theorem 2.4 (Künneth formula [8]). Let F be a field. Then the cross
product (H∗(X;F ) ⊗R H∗(Y ;F ))k → Hk(X × Y ;F ) is an isomorphism
if Hk(Y ;F ) is finite-dimensional over F .

By the above theorem we have,
(1) H∗(RPm × RPn,Z2) ∼= Z2[a, b]/ < am+1, bn+1 >, deg a = 1 and

deg b = 1,
(2) H∗(CPm × CPn,Z2) ∼= Z2[a, b]/ < am+1, bn+1 >, deg a = 2 and

deg b = 2.
Further, we recall that for G = S1, the classifying space BG is the

infinite dimensional complex projective space, CP∞, and H∗(BG;Z2) ∼=
Z2[x], deg x = 2.

In this paper, we shall use Čech cohomology with Z2 coefficients.
By X ∼2 Y , we will mean that the cohomology rings H∗(X;Z2) and
H∗(Y ;Z2) are isomorphic. The following result, which is an analogue of
[1, chapter III, Proposition 10.7], has been proved in [5].

Proposition 2.5. Let G = S1 act freely on a finitistic space X with
Hi(X;Z2) = 0, for all i > n. Then Hi(X/G;Z2) = 0, for all i > n.

3. Main Results

Proposition 3.1. Let G = S1 act freely on a finitistic space X ∼2 RPm×
RPn. Then both m and n cannot be even.

Proof. The Euler–Poincaré characteristic χ(RP k) is 0 or 1 according to
whether k is odd or even. Also, for finite CW complexes X and Y , it is
well known that χ(X×Y ) = χ(X)×χ(Y ). Now, suppose to the contrary,
both m and n are even. Then the Euler–Poincaré characteristic of the
space X is 1. If ϕ : S1 × X → X is a free action, then the restricted
action ϕ′ : Z2 ×X → X must also be free. So by Floyd’s formula (see [1,
chapter III, Theorem 7.10]), we have 1 = χ(X) ≡ 2χ(X/Z2). Since this
is not possible, therefore, at least one of m or n must be odd. �
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We now give an example of a free action of S1 on RPm×RPn when n
is odd.

Example 3.2. Put n = 2k− 1 and consider Sn ⊂ Ck. There is a natural
free action of S1 on Sn given by

(ξ, (z1, z2, · · · , zk))
θ→ (ξz1, ξz2, · · · , ξzk), ξ ∈ S1.

The action θ induces a free action θ of the group S1/N ∼= S1 on the orbit
space RPn = Sn/N , where N = {+1,−1} ∼= Z2. Taking any action of S1
on RPm and the free action θ, the diagonal action gives a free action of
S1 on RPm × RPn.

We now exploit the Leray–Serre spectral sequence associated with the
Borel fibration X ↪→ XS1 −→ BS1 to classify completely mod 2 cohomol-
ogy algebra of the orbit space of a free circle group action on a finitistic
X ∼2 RPm × RPn. We remark that the cohomology algebra of any free
involution on finitistic spaces X having the mod 2 cohomology algebra of
the product of two projective spaces has been completely determined in
[6].

Theorem 3.3. Let G = S1 act freely on a finitistic space X ∼2 RPm ×
RPn, 1 ≤ m ≤ n. Then H∗(X/G;Z2) is isomorphic to one of the follow-
ing graded algebras:

(1) Z2[x, y]/⟨x
m+1

2 , yn+1⟩, where deg x = 2, deg y = 1, and m is odd.
(2) Z2[x, y]/⟨xm+1, y

n+1
2 ⟩, where deg x = 1, deg y = 2, and n is odd.

(3) Z2[x, y, z]/⟨x
m+1

2 , y
n+1
2 , z2−αx−βy⟩, where deg x = 2, deg y = 2,

deg z = 1 and α, β ∈ Z2 and m and n are odd.

Proof. Let G = S1 act freely on a finitistic space X ∼2 RPm × RPn,
1 ≤ m ≤ n. Let a, b ∈ H1(X) be generators of the cohomology algebra
H∗(X). We note that

Hi(X) =


⊕Z2 (i+ 1 copies) i ≤ m

⊕Z2 (m+ 1 copies) m+ 1 ≤ i ≤ n

⊕Z2 (n+m+ 1− i copies) n+ 1 ≤ i ≤ m+ n

0 otherwise.

Since the fundamental group of the space BG is trivial, the system of
local coefficients associated with the spectral sequence of the fibration
X ↪→ XG

π→ BG is simple. So the spectral sequence has the form
Ep,q2

∼= Hp(BG)⊗Hq(X). Clearly, for p odd, Ep,q2 = 0. Thus,

• A basis of E2s,q
2 , s ≥ 0, consists of {ts⊗aq, ts⊗aq−1b, ..., ts⊗abq−1, ts⊗

bq}, for q ≤ m.
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• A basis of E2s,q
2 consists of {ts ⊗ ambq−m, ts ⊗ am−1bq−m+1, ...,

ts ⊗ abq−1, ts ⊗ bq}, for m+ 1 ≤ q ≤ n.
• A basis of E2s,q

2 consists of {ts ⊗ ambq−m, ts ⊗ am−1bq−m+1, ...,
ts ⊗ aq−n+1bn−1, ts ⊗ aq−nbn}, for n+ 1 ≤ q ≤ n+m.

We further note that there are four possibilities for the homomorphism
d2 : E0,1

2 → E2,0
2 :

(i) d2(1⊗ a) = 0 and d2(1⊗ b) = 0.
(ii) d2(1⊗ a) = t⊗ 1 and d2(1⊗ b) = 0.
(iii) d2(1⊗ a) = 0 and d2(1⊗ b) = t⊗ 1.
(iv) d2(1⊗ a) = t⊗ 1 and d2(1⊗ b) = t⊗ 1.

We consider each case separately.

Case (i). d2(1⊗ a) = 0 and d2(1⊗ b) = 0.
By the derivation property of differentials, we see that d2(ts ⊗ akbl) = 0,
for every s ≥ 0, k ≥ 1 and l ≥ 1. Thus, the spectral sequence degenerates
at E2-term. This implies thatHi(X/G) ̸= 0 for infinitely many i, contrary
to the Proposition 2.5.

Case (ii). d2(1⊗ a) = t⊗ 1 and d2(1⊗ b) = 0. We have

d2(t
s ⊗ akbl) =

{
ts+1 ⊗ ak−1bl if k is odd
0 if k is even.

Ifm is even, then (1⊗am)(1⊗a) = 0 gives 0 = d2((1⊗am)(1⊗a)) = t⊗am,
a contradiction. Hence, m must be odd. Now,

A basis of the kernel of d2 : E2s,q
2 → E2s+2,q−1

2 , s ≥ 0, consists of q+1
2

elements {ts ⊗ aq−1b, ts ⊗ aq−3b3, ..., ts ⊗ bq} for q odd and q ≤ m and a
basis of the image of d2 consists of q+1

2 elements {ts+1 ⊗ aq−1, ts+1 ⊗
aq−3b2, ..., ts+1 ⊗ bq−1}. And a basis of the kernel of d2 : E2s,q

2 →
E2s+2,q−1

2 consists of q
2 + 1 elements {ts ⊗ aq, ts ⊗ aq−2b2, ..., ts ⊗ bq}

for q even and q ≤ m and a basis of the image consists of q
2 elements

{ts+1 ⊗ aq−2b, ts+1 ⊗ aq−4b3, ..., ts+1 ⊗ bq−1}.

A basis of the kernel of d2 : E2s,q
2 → E2s+2,q−1

2 consists of m+1
2 elements

{ts ⊗ am−1bq−m+1, ts ⊗ am−3bq−m+3, ..., ts ⊗ bq} for m+ 1 ≤ q ≤ n, and
a basis of the image consists of m+1

2 elements {ts+1 ⊗ am−1bq−m, ts+1 ⊗
am−3bq−m+2, ..., ts+1 ⊗ bq−1}.

A basis of the kernel of d2 : E2s,q
2 → E2s+2,q−1

2 consists of n+m−q
2

elements {ts ⊗ am−1bq−m+1, ts ⊗ am−3bq−m+3, ..., ts ⊗ aq−n+1bn−1} when
n+1 ≤ q ≤ n+m and (n is odd and q is even) or (n is even and q is odd).
In this case, a basis of the image of d2 consists of n+m−q

2 + 1 elements
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{ts+1 ⊗ am−1bq−m, ts+1 ⊗ am−3bq−m+2, ..., ts+1 ⊗ aq−n−1bn}. Now, a ba-
sis of the kernel of d2 : E2s,q

2 → E2s+2,q−1
2 consists of n+m−q+1

2 elements
{ts⊗am−1bq−m+1, ts⊗am−3bq−m+3, ..., ts⊗aq−nbn} if n+1 ≤ q ≤ n+m
and (both n and q are even) or (both n and q are odd). A basis of the
image in this case consists of n+m−q+1

2 elements {ts+1⊗am−1bq−m, ts+1⊗
am−3bq−m+2, ..., ts+1 ⊗ aq−nbn−1}.

It follows that, for every r ≥ 3, Ek,lr = kerdr/imdr = 0 for all k ≥ 1

and for all l. Also, E0,q
3 is the kernel of d2 : E0,q

2 → E2,q−1
2 for all q.

Consequently, dr = 0 for all r ≥ 3. Hence, E∗,∗
3

∼= E∗,∗
∞ . We thus obtain

Hj(XG) ∼=



⊕Z2 ( j+1
2 copies) j ≤ m j odd

⊕Z2 ( j2 + 1 copies) j ≤ m j even
⊕Z2 (m+1

2 copies) m+ 1 ≤ j ≤ n

⊕Z2 (n+m−j
2 copies) n+ 1 ≤ j ≤ n+m

n even j odd or n odd j even
⊕Z2

n+m+1−j
2 copies n+ 1 ≤ j ≤ n+m

n even j even or n odd j odd
0 otherwise.

Note that 1⊗a2 ∈ E0,2
2 is a permanent cocycle and therefore it determines

an element u ∈ E0,2
∞ . Choose x ∈ H2(XG) such that i∗(x) = a2. Then x

determines u and satisfies x
m+1

2 = 0. Also, 1 ⊗ b ∈ E0,1
2 is a permanent

cocycle and determines an element v ∈ E0,1
∞ . We choose y ∈ H1(XG)

such that i∗(y) = b. Then y determines v and yn+1 = 0. Therefore,

H∗(XG) ∼= Z2[x, y]/⟨x
m+1

2 , yn+1⟩,

where deg x = 2, deg y = 1, and m is odd. Since group G acts freely on
X, H∗(X/G) ∼= H∗(XG), by Proposition 2.3. Thus, we have possibility
(1) of the theorem.

Case (iii). d2(1⊗ a) = 0 and d2(1⊗ b) = t⊗ 1.
As in Case (ii), we see that n must be odd and

H∗(X/G) ∼= Z2[x, y]/⟨xm+1, y
n+1
2 ⟩,

where deg x = 1 and deg y = 2.

Case (iv). d2(1⊗ a) = t⊗ 1 and d2(1⊗ b) = t⊗ 1.
By the multiplicative structure of the spectral sequence, it is easy to see
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that

d2(1⊗ akbl) =


(t⊗ ak−1bl) + (t⊗ akbl−1) if k and l are odd
t⊗ ak−1bl if k is odd and l is even
t⊗ akbl−1 if k is even and l is odd
0 if k and l are even.

As in the previous two cases, we see that both m and n are odd. We also
observe that,

A basis of the kernel of d2 : E2s,q
2 → E2s+2,q−1

2 consists of q+1
2 ele-

ments, {ts⊗ (aq + aq−1b), ts⊗ (aq−2b2 + aq−3b3), ..., ts⊗ (abq−1 + bq)} for
q odd and q ≤ m and a basis of the image of d2 consists of q+1

2 elements
{ts+1⊗aq−1, ts+1⊗aq−3b2, ..., ts+1⊗bq−1}. For q even and q ≤ m, a basis
of the kernel of d2 : E2s,q

2 → E2s+2,q−1
2 consists of q

2 + 1 elements {ts ⊗
aq, ts⊗ aq−2b2, ..., ts⊗ bq} and a basis of the image consists of q2 elements
{ts+1⊗ (aq−2b+aq−1), ts+1⊗ (aq−4b3+aq−3b2), ..., ts+1⊗ (bq−1+abq−2)}.

A basis of the kernel of d2 : E2s,q
2 → E2s+2,q−1

2 consists of m+1
2 elements

{ts⊗ (ambq−m+am−1bq−m+1), ts⊗ (am−2bq−m+2+am−3bq−m+3), ..., ts⊗
(abq−1+ bq)}, for q odd and m+1 ≤ q ≤ n and a basis of the image of d2
consists of m+1

2 elements {ts+1⊗am−1bq−m, ts+1⊗am−3bq−m+2, ..., ts+1⊗
bq−1}. For q even and m+1 ≤ q ≤ n, a basis of the kernel of d2 : E2s,q

2 →
E2s+2,q−1

2 , s ≥ 0, consists of m+1
2 elements {ts ⊗ am−1bq−m+1, ts ⊗

am−3bq−m+3, ..., ts⊗bq} and a basis of the image consists of m+1
2 elements

{ts+1⊗(am−1bq−m+ambq−m), ts+1⊗(am−3bq−m+2+am−2bq−m+1), ..., ts+1

⊗ (bq−1 + abq−2)}.

A basis of the kernel of d2 : E2s,q
2 → E2s+2,q−1

2 consists of m+n−q+1
2 ele-

ments {ts⊗(ambq−m+am−1bq−m+1), ts⊗(am−2bq−m+2+am−3bq−m+3), ...,
ts ⊗ (aq−n+1bn−1 + aq−nbn)} for q odd, n + 1 ≤ q ≤ n + m and a ba-
sis of the image consists of m+n−q+1

2 elements {ts+1 ⊗ am−1bq−m, ts+1 ⊗
am−3bq−m+2, ..., ts+1 ⊗ aq−nbn−1}. For q even and n+ 1 ≤ q ≤ n+m, a
basis of the kernel of d2 : E2s,q

2 → E2s+2,q−1
2 consists of n+m−q

2 elements
{ts ⊗ am−1bq−m+1, ts ⊗ am−3bq−m+3, ..., ts ⊗ aq−n+1bn−1} and a basis of
the image of d2 consists of n+m−q

2 + 1 elements {ts+1 ⊗ (am−1bq−m +

ambq−m−1), ts+1 ⊗ (am−3bq−m+2 + am−2bq−m+1), ..., ts+1 ⊗ (aq−n−1bn +
aq−nbn−1)}.

Now, it is clear that Ek,lr = 0 for all l, r ≥ 3, and k ≥ 1. Hence,
E∗,∗

∞ = E∗,∗
3 . We see that the cohomology groups Hj(XG) are the same

as in Case (ii).
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In this case also we note that 1 ⊗ a2 ∈ E0,2
2 is a permanent cocycle

and therefore yields an element u ∈ E0,2
∞ . Choose x ∈ H2(XG) such

that i∗(x) = a2. Then x determines u and satisfies x
m+1

2 = 0. For the
same reason, 1 ⊗ b2 ∈ E0,2

2 is a permanent cocycle and determines an
element v ∈ E0,2

∞ . We choose y ∈ H2(XG) such that i∗(y) = b2. Then y

determines v and y
n+1
2 = 0. Also 1⊗(a+b) ∈ E0,1

2 is a permanent cocycle
and yields an element s ∈ E0,1

∞ . Let z ∈ H1(XG) such that i∗(z) = a+ b.
Then z determines s. Observe that

z2 = αx+ βy

for some α, β ∈ Z2. Hence,

H∗(X/G) ∼= H∗(XG) ∼= Z2[x, y, z]/⟨x
m+1

2 , y
n+1
2 , z2 − αx− βy⟩

where deg x = 2, deg y = 2, and deg z = 1. �
Remark 3.4. With the action of S1 on RPm, m odd, as described in
Example 3.2, and the trivial action of S1 on RPn, we find that the or-
bit space (RPm × RPn)/S1 is CP

m−1
2 × RPn, which realizes case (1) of

Theorem 3.3. Similarly, case (2) can be realized.

Corollary 3.5. Let G = S1 act freely on a finitistic space X ∼2 RPm ×
RPn. Then the characteristic class of the bundle S1 ↪→ X

ν→ X/G is
zero.

Proof. The first few terms of the Gysin sequence of the bundle S1 ↪→
X

ν→ X/G are

0 → H1(X/G)
ν∗

→ H1(X) → H0(X/G)
ψ∗

→ H2(X/G)
ν∗

→ · · · .
The characteristic class of the bundle is ψ∗(1) ∈ H2(X/G), where 1 is the
unity of H0(X/G). Now, from Theorem 3.3, it is clear that Hi(X/G) =
Z2, for i = 0, 1, and H2(X/G) = Z2⊕Z2. Then the Gysin sequence takes
the following form

0 → Z2
ν∗

→ Z2 ⊕ Z2 → Z2
ψ∗

→ Z2 ⊕ Z2
ν∗

→ · · · .
We note that the map Z2 ⊕ Z2 → Z2, in the above sequence, is an epi-
morphism. So the map

ψ∗ : H0(X/G) → H2(X/G)

is the trivial homomorphism and thus, ψ∗(1) = 0. �
Remark 3.6. If m = 0, then X ∼2 RPn. In this case, G = S1 acts freely
on X when n is odd and H∗(X/G) ∼= Z2[x]/ < xn >, deg x = 2. This
result has already been derived in [5].

Taking m = 1 in Theorem 3.3, we obtain the following corollary.
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Corollary 3.7. Let G = S1 act freely on a finitistic space X ∼2 S1×RPn,
n ≥ 1. Then H∗(X/G;Z2) is isomorphic to one of the following graded
algebras:

(1) Z2[y]/ < yn+1 > where deg y = 1.
(2) Z2[x, y]/ < x2, y

n+1
2 > where deg x = 1, deg y = 2, and n is odd.

(3) Z2[y, z]/ < y
n+1
2 , z2 − βy > where deg y = 2, deg z = 1, β ∈ Z2,

and n is odd.

Further, taking n = 1 in the above corollary, we obtain the following.

Corollary 3.8. Let G = S1 act freely on a finitistic space X ∼2 S1 × S1.
Then H∗(X/G) is isomorphic to Z2[x]/ < x2 >, where deg x = 1.

Remark 3.9. The significance of the above corollary is that the orbit
space of any free circle group action on a space having mod 2 cohomology
algebra as that of the product of two circles is a mod 2 cohomology circle.
In particular, if ϕ is a free circle group action on S1 and θ the trivial
action on another copy of S1, then the orbit space of the action ϕ × θ is
mod 2 cohomology S1. This realizes Corollary 3.8.

Finally, we observe that G = S1 cannot act freely on the product of
two complex projective spaces.

Theorem 3.10. Let X ∼2 CPm × CPn be a finitistic space. Then the
group G = S1 cannot act freely on X.

Proof. Assume on the contrary that G acts freely on X. As π1(BG) acts
trivially on H∗(X), so the spectral sequence has the following form

Ek,l2
∼= Hk(BG)⊗H l(X) ∼= Hk(CP∞)⊗H l(CPm × CPn).

It is clear that Ek,l2 = 0 when either k or l is odd. So, for all r ≥ 1, the
differentials

d2r : E
k,l
2r → Ek+2r,l−2r+1

2r

are the trivial homomorphism because Ek,l2r = 0 when l is odd and
Ek+2r,l−2r+1

2r = 0 when l is even. Also, for all r ≥ 1, the differentials

d2r+1 : Ek,l2r+1 → Ek+2r+1,l−2r
2r+1

are the trivial homomorphism because Ek,l2r+1 = 0 when k is odd and
Ek+2r+1,l−2r+1

2r+1 = 0 when k is even. Thus, E∗,∗
∞ = E∗,∗

2 and the spectral
sequence degenerates at E2-term. Hence, there are fixed points of G on
X, contrary to our hypothesis. �
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