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HALF-TURN LINKED PAIRS OF
ISOMETRIES OF HYPERBOLIC 4-SPACE

ANDREW E. SILVERIO

Abstract. In this paper we develop a complete theory of factor-
ization for isometries of hyperbolic 4-space. Of special interest is
the case where a pair of isometries is linked, that is, when a pair
of isometries can be expressed each as compositions of two involu-
tions, one of which is common to both isometries.

Here we develop a new theory of hyperbolic pencils and twist-
ing planes involving a new geometric construction, their half-turn
banks. This enables us to give complete results about each of
the pair-types of isometries and their simultaneous factorization
by half-turns. That is, we provide geometric conditions for each
such pair to be linked by half-turns. The main result gives a nec-
essary and sufficient condition for any given pair of isometries to
be linked. We also provide a procedure for constructing a half-
turn linked pair of isometries of H4 that do not restrict to lower
dimensions, yielding an example that gives a negative answer to a
question raised by Ara Basmajian and Karan Puri.

1. Introduction

A pair of isometries A and B of the hyperbolic space Hn is said to be
linked if there are involutions α, β, and γ such that A = αβ and B = βγ.
If, furthermore, α, β, and γ have a (n − 2)-dimensional fixed-point set,
then the pair is said to be linked by half-turns. In dimensions 2 and
3, every pair of isometries is linked. Factoring by half-turns is used to
determine the discreteness of the group ⟨A,B⟩ using the Gilman-Maskit
algorithm in dimension 2, the non-separating-disjoint-circles condition,
and the compact-core-geodesic-intersection condition in dimension 3 [4],
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174 A. E. SILVERIO

[5], [6]. Unfortunately, in dimension 4, not all pairs are linked. Hence,
we develop a complete theory of half-turn factorization of orientation
preserving isometries of H4.

To each plane P in H4 corresponds a unique orientation preserving
involution HP called the half-turn about P whose fixed-point set is P .
A space of planes can be associated to each isometry that is constructed
from a new concept of hyperbolic pencils. This space is called the half-
turn bank of an isometry, and it locates all the planes in which half-turn
factoring is possible.

Theorem 1.1. A pair of orientation preserving isometries of H4 is linked
by half-turns if and only if they have a common element in their half-turn
banks.

Note that the half-turn bank of an isometry is a set of circles defined by
its fixed points and invariants, not by its factorization. It is the introduc-
tion of the concept of a half-turn bank and the analysis of the half-turn
bank for each type of isometry and the fact that the half-turn banks are
constructible that make the theorem useful.

We also provide geometric criteria for a plane to be an element of the
half-turn bank of an isometry. These criteria allow geometric conditions
for various combinations of pairs of isometries to be linked. They are
listed in section 7.

In section 8.2, Theorem 8.1 is proven to show that a pair of isometries
can be linked even if the group it generates does not restrict to lower
dimensions, giving a negative answer to the question raised by Ara Bas-
majian and Karan Puri [2]. A specific example is constructed.

2. Organization

This paper is organized as follows. In section 3, the classification of
types of isometries in H4 are listed and defined in terms of reflection and
other factoring. The half-turn is also defined. Some types are collected
into so-called atomic types to consolidate a few definitions, while others
are broken further into subtypes. In section 4, the new definitions of per-
muted, invariant and twisting (hyperbolic) pencils are defined for each
type and subtype of isometry. The properties of hyperbolic pencils rele-
vant to the main results are also listed. In section 5, the half-turn bank of
each type of isometry is introduced and defined. Theorem 5.5 is proved,
yielding the fact that the order of the linked pairs is negligible. Geomet-
ric criteria for a plane to be in a half-turn bank are listed and proven
in section 5.1. In section 6, planes are combined to show the result of
composing two half-turns. The main theorem is restated and proven in
Corollary 6.11.
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In section 7, some conditions for a pair to be linked are listed. The
pairs of isometries are arranged according to the type or class.

In section 8, the hyperboloid model of hyperbolic space is used to find
invariant subspaces of an isometry which relate to its hyperbolic pencils.
The invariant spaces help in constructing a linked pair that does not
restrict to lower dimensions, implying Theorem 8.1.

3. Types of Isometries in H4

In general dimensions, the isometries of Hn classify into elliptic, hyper-
bolic, and parabolic. Any isometry can be expressed as a composition of
at most n + 1 reflections. In dimension 4, the classification of nontrivial
isometries can subdivided into six types: type-I elliptic, type-II elliptic,
pure hyperbolic, pure loxodromic, pure parabolic, and screw parabolic
(see [8], [9]).

Pure parabolic and pure hyperbolic isometries are translations gener-
alized from dimension 2. A type-I elliptic isometry has a fixed-point set
that forms a plane. Together, type-I elliptic, pure parabolic, and pure
hyperbolic are called atomic isometries since they can be expressed as
compositions of two reflections. A screw parabolic or pure loxodromic
isometry can be decomposed uniquely into two commuting atomic isome-
tries called its translation part and its rotational part. The fixed-point set
of its rotational part is called its twisting plane. A type-II elliptic isome-
try ρ is conjugate to a matrix with two diagonal blocks of 2× 2 matrices
in SO(2). Hence, there is an unordered pair of angles α and β associated
with ρ. If α = β = π, then ρ is conjugate to the antipodal map and ρ is
an involution. Otherwise, if both α and β are not integer multiples of π,
then there is a unique unordered pair of planes left invariant by ρ.

Using the upper half-space model and restricting the action to the
boundary, a parabolic isometry τ is conjugate to a Möbius transformation
of the form x 7→ Ax + b where b ̸= 0, A ∈ SO(3), and Ab = b (see [9]).
Assume for the moment that τ(x) = Ax+b. Then b is called the direction
of τ . The Euclidean line connecting 0 to b in R̂3 is left invariant by τ and
so is the plane Pτ in H4 bounded by this Euclidean line. Note that if A
is nontrivial, then τ is screw parabolic and Pτ is its twisting plane. The
map x 7→ Ax is the rotational part of τ , while x 7→ x+b is the translation
part.

The following are definitions of the six types of isometries of H4 and
half-turn in terms of the number of reflection factors or atomic isometry
factors (see [8], [10]). The advantage of these definitions is to locate the
half-turn and reflection factors.
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Definition 3.1. A type-I elliptic isometry of H4 is a composition of two
reflections across distinct hyperplanes that intersect in a plane.

Let ρ be a type-I elliptic isometry of H4. The twisting plane of ρ is the
set of fixed points of ρ in H4.

Let P be a plane in H4. The half-turn HP about P is the elliptic
isometry HP that is a composition of reflections across an orthogonal
pair of hyperplanes that intersects in P .

An elliptic isometry ρ of H4 is called of type-II if ρ fixes a unique point
in H4.

A pure hyperbolic isometry δ of H4 is a composition of exactly two
reflections across ultra-parallel hyperplanes.

A pure loxodromic isometry γ is a hyperbolic isometry of H4 that can
be expressed as δρ where δ is a pure hyperbolic isometry leaving the axis
of γ invariant and ρ is a type-I elliptic isometry whose twisting plane
contains the axis of γ.

A pure parabolic isometry τ of H4 is a composition of exactly two re-
flections across hyperplanes that are tangent to a unique point at infinity.

A screw parabolic isometry γ is a parabolic isometry of H4 that can
be expressed as τρ where τ is a pure parabolic isometry fixing the fixed
point of γ and ρ is a type-I elliptic isometry whose twisting plane is left
invariant by τ .

The ρ factor in the definitions of either pure loxodromic or screw par-
abolic isometries is called its rotational part, while the other factor (δ or
τ) is called its translation part. These factors commute and are unique.
The fixed-point set of the rotational part of γ is left invariant by γ and is
called the twisting plane of γ.

An orientation preserving type-II elliptic isometry can be further clas-
sified into either an involution (antipodal map) or having a unique pair of
invariant planes that intersect orthogonally to a single point. The latter
subtype also has a pair of associated angles to the invariant planes; one
such angle is not an integer multiple of π.

4. Hyperbolic Pencils

The concept of pencils can be found in complex analysis, inversive
geometry, and projective geometry. Pencils are sometimes called coaxial
families/systems of circles. In this section, new constructions and types
of pencils are introduced to aid in the process of factoring isometries into
half-turns. The permuted, invariant, dual, and twisting pencils of an
isometry for each type are defined in this section. All types, except type-
II elliptic, have permuted and dual pencils. The atomic isometries have
invariant pencils, while those with rotational parts have twisting pencils.
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Definition 4.1. Let ρ be a type-I elliptic isometry of H4 with a twisting
plane P . The (elliptic) permuted pencil of ρ is the set

Fρ =
{
∂h ⊂ ∂H4 : h is a hyperplane containing P

}
.

The (elliptic) invariant pencil of ρ is the set

Tρ =
{
∂h ⊂ ∂H4 : h is a hyperplane orthogonal to P

}
.

The dual pencil of ρ is the set

Dρ =
{
∂Q ⊂ ∂H4 : Q is a plane orthogonally intersecting
P in a unique point} .

Definition 4.2. Let γ be a hyperbolic isometry of H4 with axis L. The
permuted pencil Fγ of γ is the set

Fγ =
{
∂hx ⊂ ∂H4 : x ∈ L and hx is the orthogonal
complement of L through x} .

The invariant pencil of γ is the set

Tγ =
{
∂t ⊂ ∂H4 : t is a hyperplane containing L

}
.

The dual pencil of γ or pencil dual to Fγ is the set

Dγ =
{
∂P ⊂ ∂H4 : P is a plane containing L

}
.

It is possible to define the permuted, dual, and invariant pencils of any
parabolic isometry that fixes any point other than ∞ (see [10]). For easy
reading, we define the pencils by conjugating its fixed point to ∞.

Let τ be the map sending x to Ax+ b in R̂3 = ∂H4 where A ∈ SO(3),
Ab = b, and b ̸= 0. The Euclidean line connecting 0 to b is left invariant
by τ . Moreover, if A is trivial, then any other Euclidean line parallel to
span{b} is also left invariant by τ and so are the Euclidean planes parallel
to b.

Definition 4.3. Let τ be the map of R̂3 that sends x to Ax + b in R̂3

where A ∈ SO(3), Ab = b, and b ̸= 0. The permuted pencil of τ is the set

Fτ = {(Euclidean planes orthogonal to b) ∪ {∞}}.
The invariant pencil of τ is the set

Tτ = {(Euclidean planes parallel to b) ∪ {∞}}.
The dual pencil of τ is the set

Dτ = {(Euclidean lines parallel to b) ∪ {∞}}.

Definition 4.4. Let γ be either a pure loxodromic or a screw parabolic
isometry of H4 with rotational part ρ. The twisting pencil of γ is defined
to be the permuted pencil of ρ. The twisting pencil of γ is denoted Rγ .
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4.1. Visualizing pencils.

While all the pencils can be defined without assuming special fixed
points, it may be difficult to imagine. Hence, we give examples of how
they can possibly look. The formulas here are restrictions to the boundary
model R̂3. By Poincaré extension, they extend uniquely to isometries of
H4.

Let δ be the map x 7→ λx where λ > 0. Then δ fixes 0 and ∞. Its
pencils are as follows:

Fδ = {Euclidean spheres centered at the origin}.
Tδ = {(Euclidean planes through the origin) ∪ {∞}}.
Dδ = {(Euclidean lines through the origin) ∪ {∞}}.

Let ρ be the elliptic isometry that fixes the z-axis of R3 ⊂ R̂3 pointwise
and rotating by angle π/4. Its pencils are as follows:

Fρ = {(Euclidean planes containing the z-axis) ∪ {∞}}.
Tρ = {(Euclidean planes orthogonal to the z-axis) ∪ {∞}}∪

{spheres centered at the z-axis}.
Dρ = {circles centered at the z-axis but contained in a plane in Tρ}.

The composition δρ = ρδ has ρ as its rotational part and δ as its transla-
tion part. If b = (0, 0, 1), then x 7→ ρ(x) + b has ρ as its rotational part,
while x 7→ x+ b is its translation part.

4.2. Properties of pencils.

For an atomic type of isometry, the permuted pencil serves as the
source for reflection factoring. The rest of the nontrivial isometries need
four factors of reflections. If h is a sphere at infinity or a hyperplane inside
H4, denote the reflection across h with Rh. The following theorem is well
known in many books about hyperbolic geometry, such as [3], [7], [8], [9].

Theorem 4.5. Let τ be an atomic isometry of H4. Then, for each h ∈
Fτ , there exist h1, h2 ∈ Fτ such that τ = Rh1

Rh = RhRh2
.

The elements of permuted pencils fill up the boundary while the hyper-
planes that they bound fill up the hyperbolic 4-space. If there is a point
x outside the axis, twisting plane, or fixed points of γ, there is a unique
element of Fγ that contains x.

The rest of the properties are listed as follows.
Let ρ be an atomic isometry.
(1) If t ∈ Tρ, then ρ(t) = t and t is orthogonal to each s ∈ Fρ.
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(2) If t, u ∈ Tρ such that u ∩ t has more than one point but u ̸= t,
then u ∩ t ∈ Dρ.

(3) If a sphere s ⊂ R̂3 contains some c ∈ Dρ, then s ∈ Tρ.
(4) For each d ∈ Dρ, there are t, u ∈ Tρ such that d = t ∩ u.
(5) For each pair p, q ∈ Dρ with p ̸= q, there is a unique t ∈ Tρ

containing p ∪ q.
Let γ be either a pure loxodromic or a screw parabolic isometry of H4

with twisting plane P .
(1) If t ∈ Rγ , then γ(t) ∈ Rγ , γ(t) ∩ t = ∂P , and t is orthogonal to

each s ∈ Fγ .
(2) If t, u ∈ Rγ with u ̸= t, then u ∩ t = ∂P .
(3) If a sphere s ⊂ R̂3 contains ∂P , then s ∈ Rγ .
(4) For each d ∈ Dγ \ {∂P}, there is a unique t ∈ Rγ containing

d ∪ (∂P ).
(5) If ρ is the rotational part of γ, then Fρ ⊂ Tγ .

5. Half-Turn Banks

In order to find half-turns or planes in which involution factoring is
possible, a space of planes is collected similarly to the elements of the
pencils. The space Kγ , called the half-turn bank of γ, is a collection of
circles derived from the pencils, but not prevalent enough to be called
another pencil. The goal is to show that all half-turn factorizations of γ
come from Kγ .

Whenever there is no confusion, we refer to the elements of Kγ as either
planes in H4 or circles in ∂H4.

Definition 5.1. Let ρ be an atomic isometry of H4. The half-turn bank
of ρ is the set

Kρ =
{
s ∩ t ⊂ ∂H4 : s ∈ Fρ and t ∈ Tρ

}
.

The half-turn bank of the identity map of H4 is the set Kid consisting of
the circles that bound all planes in H4.

Definition 5.2. Let γ be either a pure loxodromic or a screw parabolic
isometry of H4. The half-turn bank of γ is the set

Kγ =
{
s ∩ t ⊂ R̂3 : s ∈ Fγ and t ∈ Rγ

}
.

As previously mentioned, an orientation preserving elliptic isometry ρ
is conjugate to an element of SO(4) that has two 2× 2 blocks of matrices
in SO(2). The associated angles α and β tell whether ρ is type-I or
type-II. The condition for type-II elliptic is that α and β are nonzero. If
exactly one of them is neither π nor 0, then ρ can be factored uniquely
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into two commuting type-I elliptic isometries ρ1 and ρ2 whose twisting
planes are orthogonally intersecting in a single point. Thus, ρ also leaves
these two twisting planes invariant. If α = β = π, then ρ is conjugate to
the antipodal map of the 3-sphere and is also an involution.

Definition 5.3. Let ρ = ρ1ρ2 be an orientation preserving type-II elliptic
isometry of H4 with an associated angle not an integer multiple of π so
that ρ1 and ρ2 are the unique type-I elliptic elements whose twisting
planes intersect orthogonally in the fixed point. The half-turn bank of ρ
is the set

Kρ =
{
s ∩ t ⊂ ∂H4 : s ∈ Fρ1 and t ∈ Fρ2

}
.

Definition 5.4. Let ρ be an isometry of H4 that is conjugate to the
antipodal map with fixed point x. The half-turn bank of ρ is the set

Kρ =
{
∂P ⊂ ∂H4 : P is a plane containing x

}
.

If k is the boundary at infinity of a plane P , let Hk be the half-turn
about P as well. The following shows that the half-turn bank is a source
for the half-turn factoring of an orientation preserving isometry.

Theorem 5.5. Let γ be an orientation preserving isometry of H4. Then,
for each k ∈ Kγ , there exist k1, k2 ∈ Kγ such that γ = Hk1Hk = HkHk2 .

Proof. If γ has a rotational part, let τ be the translation part of γ and ρ be
the rotational part of γ. If k ∈ Kγ , there are s ∈ Fγ and t ∈ Rγ such that
k = s∩ t. Then there are s1, s2 ∈ Fτ = Fγ such that τ = Rs1Rs = RsRs2

and there are t1, t2 ∈ Fρ = Rγ such that ρ = Rt1Rt = RtRt2 . Each sphere
in {s, s1, s2} is orthogonal to each sphere in {t, t1, t2}. The following
relations hold.

RsRt1 = Rt1Rs Hk = RsRt

Rt2Rs = RsRt2 Hk = RtRs.

Let k1 = s1 ∩ t1 and k2 = s2 ∩ t2. Then Hk1 = Rs1Rt1 = Rt1Rs1 and
Hk2 = Rs2Rt2 = Rt2Rs2 . Since γ = τρ = ρτ ,

γ = τρ γ = ργ

= Rs1RsRt1Rt = RtRt2RsRs2

= Rs1Rt1RsRt = RtRsRt2Rs2

= Hk1Hk = HkHk2 .

If γ is atomic and k ∈ Kγ , there are s ∈ Fγ and t ∈ Tγ such that
k = s ∩ t. Then there are s1, s2 ∈ Fγ such that γ = Rs1Rs = RsRs2 .
Let k1 = s1 ∩ t and k2 = s2 ∩ t. Since s, s1, and s2 are orthogonal to t,
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Hk1 = Rs1Rt = RtRs1 and Hk2 = Rs2Rt = RtRs2 . Then

δ = Rs1Rs δ = RsRs2

= Rs1RtRtRs = RsRtRtRs2

= Hk1Hk = HkHk2 .

If γ is a type-II elliptic involution, let P be the plane bounded by k.
Then there is a unique plane Q orthogonal to P at the fixed point of γ.
Let k1 = ∂Q. Then γ = HkHk1 = Hk1Hk as shown in Corollary 6.8. Let
k2 = k1 so that γ = HkHk2 .

If γ is type-II elliptic but not an involution, let γ = ρ1ρ2 be its factor-
ization in Definition 5.3. Then there are s ∈ Fρ1 and t ∈ Fρ2 such that
k = s ∩ t. There are also s1, s2 ∈ Fρ1 such that ρ1 = Rs1Rs = RsRs2

and t1, t2 ∈ Fρ2 such that ρ2 = Rt1Rt = RtRt2 . Since s, s1, s2 ∈ Tρ2 and
t, t1, t2 ∈ Tρ1 , each sphere in {s, s1, s2} is orthogonal to each sphere in
{t, t1, t2}. Let k1 = s1 ∩ t1 and k2 = s2 ∩ t2. Similar to the case where γ
has a rotational part, we have γ = Hk1Hk = HkHk2 . �
5.1. Alternative geometric definitions.

The elements of half-turn banks are defined as intersections of spheres.
In lower dimensions, involution-factoring is constructed from the lines
perpendicular to the axis of an isometry [6], [7]. The following statements
are the analogous geometric definitions.

Theorem 5.6. Let ρ be a type-I elliptic isometry of H4 with twisting
plane P . Then Q is a plane orthogonal to P through a line if and only if
∂Q ∈ Kρ.

Proof. If Q intersects P in a line ℓ, P ∪Q forms a unique hyperplane h.
There is a hyperplane t orthogonal to h through Q. Then P is orthogonal
to t through ℓ since P ⊂ h. It follows that ∂t ∈ Tρ and ∂h ∈ Fρ. Since
Q = t ∩ h, ∂Q ∈ Kρ.

Conversely, if ∂Q ∈ Kρ, let h ∈ Fρ and t ∈ Tρ such that ∂Q = h ∩ t.
Let ĥ and t̂ be the hyperplanes bounded by h and t, respectively. The
hyperplane t̂ and the plane P are orthogonal through a line. Then (∂P )∩t
is a set of two points contained in ∂Q since ∂P ⊂ h. Both P and Q are
planes in the hyperplane bounded by h; they intersect in the line P ∩ t̂.
Since t̂ is orthogonal to P and Q ⊂ ĥ, P and Q are orthogonal through
the line P ∩ t̂. �
Theorem 5.7. Let δ be a pure hyperbolic isometry of H4 with axis L.
Then P is a plane orthogonal to L if and only if ∂P ∈ Kδ.

Proof. Suppose P is a plane orthogonal to L. Let b be the intersection
point of P and L. There are orthogonal lines vP , wP ⊂ P through b. Let
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y be the unique line orthogonal to vP , wP , and L through b. There is a
unique hyperplane hb orthogonal to L through b. Then y ⊂ hb. Let t̂ be
the unique hyperplane spanned by L, wP , and vP . Then hb ∩ t̂ = P since
wP , vP ⊂ hb ∩ t̂. Let t = ∂t̂ and s = ∂hb. Then t ∩ s = ∂P . Since hb is
orthogonal to L, s is in Fδ. Similarly, the fact that t̂ contains L implies
that t ∈ Tδ.

Conversely, if ∂P ∈ Kδ, there are h ∈ Fδ and t ∈ Tδ such that ∂P =

h ∩ t. Let ĥ and t̂ be the hyperplanes bounded by h and t, respectively.
Then ĥ is orthogonal to L through a point x. Since t̂ contains L and P ,
x ∈ L ∩ P . As a subset of ĥ containing x, P is orthogonal to L. �

Theorem 5.8. Let τ be a pure parabolic isometry of H4 with fixed point
v ∈ R̂3. Then c is a circle in R̂3 such that v ∈ c ⊂ h for some h ∈ Fτ if
and only if c ∈ Kτ .

Proof. Let c be a circle in R̂3 such that v ∈ c ⊂ h for some h ∈ Fτ .
It suffices to show that c ∈ Kτ in the case where v = ∞. Then h is a
Euclidean plane and c is a Euclidean line. Let t be the set

{
x + λτ(0) :

x ∈ c\{∞}, λ ∈ R
}
∪{∞}. Then t is orthogonal to h through c so t ∈ Tτ

and c = h ∩ t. Hence, c ∈ Kτ .
Conversely, if c ∈ Kτ , there are h ∈ Fτ and t ∈ Tτ such that c = h ∩ t.

Then c ⊂ h. Both h and t contain v, so v ∈ c. �

Theorem 5.9. Let γ be a pure loxodromic isometry of H4 with axis L
and twisting plane P . Then Q ⊂ H4 is a plane orthogonal to both P and
L through a line in P if and only if ∂Q ∈ Kγ .

Proof. Suppose Q is a plane orthogonal to both P and L such that Q∩P
is a line. Let ℓ = Q ∩ P . If Q is orthogonal to L, then ℓ and L are
perpendicular lines in P . Let x be the intersection point Q and L. Let
ℓ′ be the unique line in Q perpendicular to ℓ through x. Likewise ℓ′ is
perpendicular to L. There is a unique line ℓ4 perpendicular to all L, ℓ,
and ℓ′. In particular, ℓ4 is the unique line orthogonal to the hyperplane
spanned by P and Q passing through x. Let h be the hyperplane spanned
by ℓ, ℓ′, and ℓ4. Since L is perpendicular to all ℓ, ℓ′, and ℓ4, h is the
orthogonal complement of L through x. Then ∂h ∈ Fγ . Let t be the
hyperplane spanned by L, ℓ, and ℓ′. Therefore, P ⊂ t and t ∩ h = Q.
Hence, ∂t ∈ Rγ and ∂Q ∈ Kγ .

Conversely, if ∂Q ∈ Kγ , there are h ∈ Fγ and t ∈ Rγ such that ∂Q =

h ∩ t. Let ĥ and t̂ be the hyperplanes bounded by h and t, respectively.
Then ĥ is orthogonal to P through a line since ∂P is orthogonal to every
element of Fγ . Whereas t̂ contains P , so Q = ĥ ∩ t̂ must also intersect
P in the line P ∩ ĥ since Q ∩ P =

(
ĥ ∩ t̂

)
∩ P = ĥ ∩

(
t̂ ∩ P

)
= ĥ ∩ P .
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Then P is orthogonal to ĥ through P ∩Q, so Q ⊂ ĥ implies that P is also
orthogonal to Q through the line P ∩Q.

Since L is a subset of t̂ and L is orthogonal to ĥ through x, Q intersects
L at x. But Q ⊂ ĥ, so Q is orthogonal to L. �

Theorem 5.10. Let γ be a screw parabolic isometry of H4 with fixed point
v and twisting plane P . Then Q ⊂ H4 is a plane orthogonal to P through
a line bounded by v if and only if ∂Q ∈ Kγ .

Proof. Suppose Q is a plane orthogonal to P through a line bounded by
v. There is a hyperplane t containing Q∪P since they intersect in a line.
Let ℓ = Q ∩ P . There is a point x ∈ ∂ℓ \ {v}. Then there is a unique
hx ∈ Fγ that contains x. Since Q is orthogonal to P , Q is contained in the
hyperplane bounded by hx. But Q,P ⊂ t, so ∂t ∈ Rγ and ∂Q = (∂t)∩hx.
Hence, ∂Q ∈ Kγ .

Conversely, if ∂Q ∈ Kγ , there are h ∈ Fγ and t ∈ Rγ such that ∂Q =

h ∩ t. Let ĥ and t̂ be the hyperplane bounded by h and t, respectively.
Then ĥ is orthogonal to P through a line bounded by v. Also t̂ contains
P , so Q = ĥ∩ t̂ implies Q∩P =

(
ĥ∩ t

)
∩P = ĥ∩

(
t̂∩P

)
= ĥ∩P . Then

P is orthogonal to ĥ through P ∩ Q and hence to Q. Since v ∈ h ∩ t,
v ∈ ∂Q; v ∈ ∂P implies that v bounds the line P ∩Q. �

6. Properties of Half-Turn Banks

The half-turn bank of an isometry of hyperbolic space serves as a col-
lection of circles in which the isometry can be factored into a product of
two half-turns. In this section, we show that any half-turn factorization
of an orientation preserving isometry comes from the defined set called
the half-turn bank.

In section 6.1, the common perpendicular line across a pair of ultra-
parallel (n−2)-dimensional planes is constructed. In section 6.2 all possi-
ble combinations of pairs of planes in H4 are enumerated to show the result
of composing half-turns about those planes. Together with classification of
isometries, the combinations tell how the involved planes intersect when-
ever an isometry is factored into a product of two half-turns. Section
6.3 has the details of proving that all half-turn factorizations come from
half-turn banks. The theorem implies that a pair of isometries is linked
by a half-turn if and only if they have a common circle in their half-turn
banks.
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6.1. Codimension-2 version of common perpendicular.

If P and Q are ultra-parallel hyperplanes in H4, there is a unique line
perpendicular to them (see [3], [6], [7]). If P and Q are ultra-parallel lines
in H4, there is also a unique line perpendicular to them. The same result
is shown for a pair of ultra-parallel (n− 2)-dimensional subplanes of Hn.

Theorem 6.1. For each pair of ultra-parallel planes α, β ∈ H4, there is
a unique line orthogonal to both α and β.

The definitions of half-turn banks can be extended to orientation pre-
serving isometries of Hn, but to justify its name, a more general statement
is stated as follows.

Theorem 6.2. Let n ≥ 2 be an integer. For each pair of ultra-parallel
(n − 2)-dimensional planes α, β ∈ Hn, there is a unique line orthogonal
to both α and β.

Proof. Theorem 6.2 implies Theorem 6.1, so constructing the common
orthogonal line in a general setting is enough for a case in the proof of
Theorem 6.10. Let P and Q be ultra-parallel (n− 2)-dimensional planes
of Hn. If n = 2, then P and Q are distinct points, and the unique line
connecting them are vacuously orthogonal to P and Q. If n = 3, then P
and Q are ultra-parallel lines, so there is a unique line perpendicular to
both of them (see [3], [6], [7]). If n ≥ 4, we use the hyperboloid model
of Hn embedded in the Lorentzian space Rn,1. Then P and Q extend to
(n − 1)-dimensional vector subspaces P ′ and Q′, respectively. Since P
and Q are ultra-parallel, the span of P ′ ∪Q′ is at least of dimension n.

Therefore, the dimension of the space-like subspace P ′ ∩ Q′ is either
n−2 or n−3. If it is n−2, then span(P ′∪Q′) is n-dimensional and has P ′

and Q′ as its hyperplanes with a unique common perpendicular line (see
[9]). If dim(P ′∩Q′) is n−3, then N =

(
P ′∩Q′)L, the Lorentz orthogonal

complement of P ′ ∩Q′, is a 4-dimensional time-like vector subspace non-
trivially intersecting both P ′ and Q′ due to their large dimensions. Since
N contains P ′L and Q′L, which, respectively, intersect P ′ and Q′ trivially,
N ∩ P ′ and N ∩ Q′ are 2-dimensional subspaces. If they are time-like,
then there is a unique line in Hn perpendicular to both Hn ∩N ∩ P ′ and
Hn ∩N ∩Q′. We must show that N ∩P ′ and N ∩Q′ are time-like vector
subspaces.

Pick a time-like vector x ∈ N . Then x /∈ P ′L ∪ Q′L since P ′L and
Q′L are space-like. Let w ∈ P ′L and v ∈ Q′L be nontrivial elements so
they are linearly independent with x. Since P ′L and Q′L are subsets of
N , the spans of {x,w} and {x, v} are subspaces of N . Then the vector
− ⟨x,w⟩L

⟨w,w⟩Lw+x is an element of both N and P ′ since it is Lorentz orthogonal
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to w ∈ P ′L, and is a linear combination of w and x. Then its Lorentz
norm can be computed as follows.

∥∥∥∥− ⟨x,w⟩L
⟨w,w⟩L

w + x

∥∥∥∥2
L

=
⟨x,w⟩2L
∥w∥2L

− 2
⟨x,w⟩2L
∥w∥2L

+ ∥x∥2L

= −⟨x,w⟩2L
∥w∥2L

+ ∥x∥2L .

Since x is time-like and w is space-like, the quantity above is negative,
making the vector time-like. Hence, N ∩ P ′ is a 2-dimensional time-like
subspace of P ′. By replacing the vector w with v, the same arguments
show that N ∩Q′ is also a 2-dimensional time-like subspace of Q′. �
6.2. Combinations of a pair of planes.

There are a few ways for two planes in H4 to intersect. They can
intersect in a line, in a point, or in a point at infinity. The last case is not
technically an intersection, but points in the two planes can be arbitrarily
near.

Let P and Q be distinct planes in H4. There are four ways they can
intersect or not intersect: ultra-parallel, both tangent at a unique point at
infinity, in a line, or in a single point. Each of these combinations forms
a unique type of isometry of HPHQ. The following are the results.

Lemma 6.3. Let P and Q be ultra-parallel planes in H4. Then HPHQ

is a hyperbolic isometry.

Proof. If P and Q are ultra-parallel, then there is a unique line N in H4

that is orthogonal to both P and Q. Both HP and HQ leave N invariant,
so HPHQ must also leave N invariant. That leaves two options for HPHQ:
either hyperbolic or elliptic. Suppose HPHQ has a fixed point y inside
H4. Then HP (y) = HQ(y), so the midpoint between y and HP (y) is an
element of both P and Q. This contradicts the hypothesis that P and Q
are ultra-parallel. �
Lemma 6.4. Let P and Q be tangent planes in H4. Then HPHQ is a
parabolic isometry.

Proof. Let P and Q be distinct planes in H4 so that their boundaries
meet at one point x at infinity. By conjugation, we may assume x = ∞ of
R̂3. Then P ′ and Q′ are Euclidean lines. If P ′ and Q′ form a Euclidean
plane, there are several Euclidean lines perpendicular to both P ′ and Q′,
but all of them identify a unique direction or vector v ∈ R3. If they do
not form a plane, there is a unique Euclidean line N orthogonal to P ′

and Q′, which identifies a direction v ∈ R3. In either case, all Euclidean
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lines with same direction as v are left invariant by HPHQ. Furthermore,
HPHQ is a parabolic translation (x 7→ x+2v, x ∈ R3) if P ′ and Q′ are
coplanar or a screw parabolic isometry with twisting plane bounded by
N if not. So if P and Q are tangent, HPHQ is definitely parabolic. �

Lemma 6.5. Let P and Q be distinct planes in H4 intersecting in a
line. Then HPHQ is a type-I elliptic isometry whose twisting plane is
orthogonal to the hyperplane containing P ∪Q through P ∩Q.

Proof. Let P and Q be planes of H4 intersecting in a line L. Then they
form a unique hyperplane h whose boundary is an element of both per-
muted pencils of HP and HQ. It follows that h is left invariant and L is
fixed pointwise by HPHQ. The plane τ orthogonal to h through L is also
left by HPHQ, but since L is fixed pointwise, HPHQ also fixes τ pointwise.
To illustrate it with the model R̂3 as the boundary at infinity, assume P ′

is a Euclidean line and Q′ is a circle intersecting P ′ in two points y1 and
y2 . Then Q′ ∪ P ′ forms a unique Euclidean plane ĥ. There is a unique
circle τ̂ passing through y1 and y2 centered at their midpoint and inside
the Euclidean plane orthogonal to ĥ through P ′. Then τ̂ is orthogonal
to both P ′ and Q′ through P ′ ∩ Q′. Both half-turns HP and HQ flip τ̂
across P ′ ∩Q′ so the composition HPHQ fixes τ̂ pointwise. Since τ̂ is the
unique plane orthogonal to h through P ∩Q, τ̂ is the only fixed-point set
of HPHQ. It follows that HPHQ is a type-I elliptic isometry. Moreover,
its twisting plane is orthogonal to ĥ. �

Lemma 6.6. Let P and Q be distinct planes in H4 intersecting in a single
point. Then HPHQ is a type-II orientation preserving elliptic isometry.

Proof. Suppose P and Q are planes H4 intersecting in a unique point
p. Then for each x ∈ H4 \ {p}, we show that HPHQ(x) ̸= x. Suppose
first that x ∈ Q. Then HPHQ(x) = HP (x), which is not equal to x
since x /∈ P . For the rest of this combination of P and Q, assume that
x ∈ H4 \Q. If it happens that HQ(x) ∈ P , then HPHQ(x) = HQ(x) ̸= x.
If HQ(x) /∈ P but x ∈ P , then HPHQ(x) /∈ P so HPHQ(x) ̸= x.

The last possibility is when both HQ(x) and x are outside Q ∪ P . We
prove that HP cannot map HQ(x) back to x. Suppose HPHQ(x) = x.
Let m be the midpoint between HQ(x) and x, and let L be the line
connecting x to HQ(x). Then m is in Q since it is the midpoint between
x and HQ(x). Likewise, m must also be in P as HP (x) = HQ(x). There
is only one point in P ∩ Q so this midpoint must be p. Furthermore, L
is orthogonal to both P and Q through p. It follows that the hyperplane
orthogonal to L through p contains both P and Q. Since intersecting
planes within a hyperplane must meet in at least a line, P ∩Q must have
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at least a line which has more points other than p. This contradicts that
P and Q intersect only in a point. �

Since HPHQ is type-II elliptic, one might wonder where the invariant
planes or lines are located. If P and Q are orthogonal complements of
each other, then HQ and HP , respectively, rotate them half-way around.
Otherwise, HPHQ has a canonical pair of invariant planes. To locate these
invariant planes, we can use the ball model of H4 embedded in R4 which is
conformal to both the Euclidean geometry and the spherical geometry of
S3. The problem simplifies further if P and Q are conjugated to intersect
at the origin. The following lemma locates the canonical invariant planes
relative to P and Q.

Lemma 6.7. Let P and Q be 2-dimensional vector subspaces of R4 inter-
secting trivially. Then there are 2-dimensional vector subspaces τ1 and τ2
orthogonal complements of each other such that τ1 and τ2 are orthogonal
to P and Q through two separate lines.

Proof. Let UP = S3 ∩ P and UQ = S3 ∩ Q be unit (Euclidean) circles.
The Euclidean inner product restricted to UP ×UQ has a maximum value
realized by a pair (vP , vQ) since UP×UQ is compact and the inner product
is continuous. The vectors vP and vQ can be augmented by wP ∈ P and
wQ ∈ Q so that the sets {vP , wP } and {vQ, wQ} are orthonormal bases.
Let τ1 = span{vP , vQ} and τ2 = span{wP , wQ}. The dimension of τi
is 2 since vP ̸= vQ. It follows that τ1 ∩ τ2 = {0} and they intersect P
and Q through two separate lines. What is left to show is that τ1 and
τ2 are orthogonal to P , Q, and each other. It is sufficient to show that
⟨vP , wQ⟩ = ⟨vQ, wP ⟩ = 0.

The function θ 7→ ⟨(cos θ)vP +(sin θ)wP , vQ⟩ is continuous and smooth
with a maximum at θ = 0. Its derivative θ 7→ ⟨−(sin θ)vP +(cos θ)wP , vQ⟩
therefore has a zero value at θ = 0. Hence, ⟨vQ, wP ⟩ = 0. Similarly, the
function θ 7→ ⟨(cos θ)vQ+(sin θ)wQ, vP ⟩ has derivative θ 7→ ⟨−(sin θ)vQ+
(cos θ)wQ, vP ⟩ with a zero value at θ = 0, implying that ⟨wQ, vP ⟩ = 0. �
Corollary 6.8. Let P and Q be orthogonal planes in H4 intersecting in
a unique point. Then HPHQ is a type-II elliptic involution that leaves
every line through P ∩Q invariant.

Proof. Since P and Q are orthogonal, they are left invariant by both HP

and HQ. The half-turns are involutions themselves so applying HPHQ

twice to P ∪Q is the identity map on P ∪Q. The conformal ball model can
be used to conjugate HPHQ into an element of SO(4), with p correspond-
ing to the origin. Then P and Q form vector spaces that are orthogonal
complements of each other. Any Euclidean orthonormal bases of them
can be combined into an orthonormal basis B of R4. If x ∈ H4 = B4
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is outside P ∪ Q, it can be expressed as a linear combination of vectors
in B ⊂ ∂(P ∪ Q). The composition (HPHQ)

2 as an element of SO(4)
therefore maps x back to itself. Hence, HPHQ is an involution.

A matrix of SO(n) has its inverse and transpose equal, but if it is
also an involution, then HPHQ as a matrix is also symmetric and thus
diagonalizable (Spectral Theorem). There are four linearly independent
eigenvectors that correspond to lines in H4 that are pairwise perpendicular
through p. The diagonal entries are all −1 since a 1 value would make
HPHQ have more than one fixed point and other values would make the
matrix not in SO(4). Each vector is hence mapped into its opposite. In
the conformal ball model of hyperbolic space, the action of HPHQ on
lines passing through p is a reflection across p. �

Corollary 6.9. Let P and Q be non-orthogonal planes in H4 intersecting
in a unique point. Then HPHQ is a type-II elliptic isometry with a unique
unordered pair of invariant planes orthogonal to each other through the
fixed point of HPHQ.

Proof. If P and Q intersect only in one point, then HPHQ is a type-II
elliptic isometry. There are planes τ1 and τ2 that are orthogonal to each
other through the fixed point of HPHQ and also orthogonal to both P
and Q through separate lines. Both HP and HQ leave τ1 and τ2 invariant
since they are orthogonal to the half-turns’ fixed point sets. Then τ1 and
τ2 are also left invariant by HPHQ.

It must be shown that τ1 and τ2 are the unique invariant planes. In
order to show their uniqueness, HPHQ can be conjugated to a 4×4 matrix
in SO(4) so that the upper-left and lower-right 2× 2 blocks are elements
of SO(2). Since HPHQ has only one fixed point, either both these blocks
are diagonal matrices with −1 in their entries or one of these blocks is
non-diagonalizable.

Recall that the construction of τ1 allows it to have vP ∈ P and vQ ∈ Q
so that the angle between vP and vQ is at minimum. If P and Q are
not orthogonal, this angle is less than π/2. The action of HPHQ on τ1
is a composition of reflections across span{vP } and span{vQ}. Thus, one
of the non-diagonalizable blocks corresponds to the rotation of τ1 in an
angle other than 0 and π. Then τ1 is the unique invariant plane of HPHQ

with minimum angle or rotation. The orthogonal complement of τ1 is τ2,
which is also unique. �

6.3. The half-turn bank is exhaustive.

In this section, we show that every half-turn factorization of an orien-
tation preserving isometry comes from its half-turn bank. The proof still
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uses cases, but the lemmas from section 6.2 restrict the possibilities for
how a pair of planes intersect.

Theorem 6.10. Let γ be an orientation preserving isometry of H4. Then
for every half-turn factorization HPHQ of γ, the circles ∂P and ∂Q are
elements of Kγ .

Proof. The proofs depend on the class of isometry of γ.
• γ is hyperbolic.

If γ is hyperbolic, let L be its axis. The only combination for P
and Q is that they are ultra-parallel. The common perpendicular
line of P and Q is left invariant by HPHQ so it must be L. Then
both P and Q are orthogonal to the axis of γ. Let hP be the
hyperplane spanned by L and P . Similarly, let hQ be the hyper-
plane spanned by L and Q. Then ∂hP ∈ FHP

and ∂hQ ∈ FHQ

with P ⊂ hP ; Q ⊂ hQ.
If hP = hQ, there are fP ∈ FHP

and fQ ∈ FHQ
such that

HP = RfPRhP and HQ = RhQRfQ are reflection factorizations.
If hP = hQ, then γ = HPHQ = RfPRfQ is a pure hyperbolic
isometry with ∂fP , ∂fQ ∈ Fγ and ∂hP = ∂hQ ∈ Tγ . So ∂P =
∂(hP ∩ fP ) ∈ Kγ and ∂Q = ∂(hQ ∩ hQ) ∈ Kγ .

If hP∩hQ is a plane τ , then τ intersects P and Q in two different
lines. The half-turns HP and HQ reflect τ across these lines and
thus leave τ invariant. If γ is pure loxodromic, then hP ̸= hQ,
so the twisting plane of γ matches τ . Still, the hyperplanes h⊥

Q

orthogonal to hQ through Q and h⊥
P orthogonal to hP through

P are also orthogonal to L so ∂h⊥
P , ∂h⊥

Q ∈ Fγ . Both hP and
hQ contain τ , so ∂hP , ∂hQ ∈ Rγ . Since P = hP ∩ h⊥

P and
Q = hQ ∩ h⊥

Q, we have ∂P, ∂Q ∈ Kγ .
• γ is parabolic.

If γ is parabolic, then P and Q are tangent at infinity. For a
simpler illustration, assume that the fixed point of γ is ∞. Then
the boundaries (∂P, ∂Q) of P and Q are straight non-crossing Eu-
clidean lines in R3. Any Euclidean line commonly perpendicular
to the boundaries of P and Q forms the same direction exactly
equal to that of γ. Recall that the direction of the map x 7→ Ax+b
is the Euclidean line spanned by b in R3. Let B be the direction
of γ. Then B is either Euclidean-parallel or equal to any common
perpendicular between ∂P and ∂Q. Let hP and hQ be the Eu-
clidean planes orthogonal to B through ∂P and ∂Q, respectively.
Let fP be the Euclidean plane orthogonal to hP through ∂P and
let fQ be Euclidean plane orthogonal to hQ through ∂Q. Then
hP , fP ∈ FHP and hQ, fQ ∈ FHQ . Since (hP , fP ) and (hQ, fQ)
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are pairwise orthogonal, HP = RhP
RfP and HQ = RfQRhQ

are
reflection factorizations.

If fP = fQ, then γ = HPHQ = RhP
RhQ

is pure parabolic, so
fP = fQ ∈ Tγ and hP , hQ ∈ Fγ . If fP ∩ fQ is a Euclidean line τ ,
it is left invariant by HP and HQ and hence, by γ. This implies
that τ bounds the twisting plane of γ and therefore, fP , fQ ∈ Rγ .
Still, ∂P, ∂Q ∈ Kγ .

• γ is type-I elliptic.
If γ is type-I elliptic, then P and Q intersect in a line. Let τ

be the twisting plane of γ. There is also a unique hyperplane h
spanned by P and Q. Then τ is orthogonal to h through P ∩Q.
The planes P , Q, and τ pairwise intersect at P ∩ Q, while τ
is orthogonal to both P and Q through P ∩ Q. Let hP be the
hyperplane spanned by τ and P ; let hQ be the hyperplane spanned
by Q and τ . It follows that ∂h ∈ Tγ and ∂hP , ∂hQ ∈ Fγ . Since
P = hP ∩ h and Q = hQ ∩ h, we have ∂P, ∂Q ∈ Kγ .

• γ is type-II elliptic.
If γ is type-II elliptic, then P and Q intersect in a unique point

p. Using the conformal ball model of H4 inside R4, we may assume
that p is the origin. Then P and Q extend to Euclidean planes
that intersect only at the origin. There are planes τ1 and τ2 that
are orthogonal complements of each other and also orthogonal to
both P and Q through separate lines (Lemma 6.7). Let hP , hQ,
h1, and h2 be hyperplanes defined as follows.

hP = span(τ1 ∪ P ) hQ = span(τ2 ∪Q)

h1 = span(Q ∪ τ1) h2 = span(P ∪ τ2).

The configuration of planes and hyperplanes yields to τ1 ⊂ hP ∩
h1, τ2 ⊂ hQ ∩ h2, P = hP ∩ h2, and Q = hQ ∩ h1.

There are two options for γ and the planes τ1 and τ2. Either
γ has an associated angle that is not an integer multiple of π
(Corollary 6.9) or γ is an involution (Corollary 6.8). In the former
case, γ has a unique pair of invariant planes that must match
τ1 and τ2. Then γ = ρ1ρ2 where ρ1 and ρ2 are type-I elliptic
isometries whose respective twisting planes are τ1 and τ2. Since
∂h2, ∂hP ∈ Fρ2 and ∂h1, ∂hQ ∈ Fρ1 , we have ∂P, ∂Q ∈ Kγ . In
the latter case, ∂P and ∂Q are already in Kγ . �

Corollary 6.11. Let A and B be orientation preserving isometries of H4.
Then the pair A and B is linked by half-turns if and only if KA ∩ KB is
nonempty.
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Proof. If A and B are linked by half-turns, then there are planes bounded
by α, β, and δ such that A = HαHβ and B = HβHδ. But β is an element
of both KA and KB .

If KA ∩ KB is nonempty, let β be one of its elements. Then there are
α ∈ KA and β ∈ KB such that A = HαHβ and B = HβHδ. �

7. Conditions for Linking in Dimension 4

In this section, some conditions for a pair of isometries in H4 to be
linked are stated and proved. The main idea is to find geometric or
computational requirements for a given pair to be linked. The conditions
are divided into cases depending on which type of isometry is given. Note
that in the definition of linked pairs, the order of the isometries matters,
whereas in this paper, the order of the isometries does not matter once
they are linked (see Theorem 5.5).

The conditions for linking pairs with twisting planes are quite demand-
ing, justifying the theorem of Ara Basmajian and Bernard Maskit [1] that
linked pairs are of measure zero. Still, pencils can be a useful tool for
finding a common perpendicular plane to factorize orientation preserving
isometries.

Theorem 7.1. If A and B are pure hyperbolic isometries of H4 with
ultra-parallel axes, then there is a plane P orthogonal to both axes of A
and B. Hence, A and B are linked.

Proof. Suppose both A and B are pure hyperbolic with ultra-parallel
axes. Let L be the common perpendicular line between the axes of A
and B. If the axes of A and B lie in a plane C, then L ⊂ C and there
are plenty of planes that are orthogonal to C containing L. Pick P to
be any of those planes. Then ∂P ∈ KA ∩ KB . If the axes of A and B
do not lie in the same plane, the axis of A and L still lies in a plane
P1. As L and the axis of B intersect in a single point, so do P1 and the
axis of B and they are contained in a unique hyperplane C. There is a
unique plane P orthogonal to C through L. Since both axes of A and B
lie in the hyperplane C, P must be orthogonal to both of them. Then
∂P ∈ KA ∩ KB . It follows that there are P1, P2 ∈ KA and P3, P4 ∈ KB

such that A = HP1HP = HPHP2 and B = HP3HP = HPHP4 . �

Theorem 7.2. Let A and B be pure parabolic isometries of H4. Then A
and B are linked.

Proof. Suppose their fixed points xA and xB are not equal. Then there
is a unique line L connecting xA to xB . Let hA ∈ FA be the element
containing xB and hB ∈ FB be the element containing xA. Then hB ∩hA

contains the line L. Either hA ∩ hB is a circle or hA = hB . Let P be
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a circle in hA ∩ hB through xA and xB . Thus, P is a circle in different
or same spheres in FA and FB . Then P ∈ KA ∩ KB . Hence, there are
P1, P2 ∈ KA and P3, P4 ∈ KB such that A = HP1HP = HPHP2 and
B = HP3HP = HPHP4 .

If xA = xB , there are still hA ∈ FA and hB ∈ FB that have three
possibilities: hA = hB ; P = hA ∩ hB is a circle; or hA ∩ hB = {xA}. In
the first case, let t ∈ TA. Then hB ∩ t ∈ KA ∩ KB and so A and B are
linked. In the second case, P ∈ KA ∩ KB and links A and B. In the last
case, let FA = FB which implies that KB = KA whose elements make A
and B linked. �

Theorem 7.3. Let A and B be isometries of H4. Suppose A is pure
hyperbolic and B is pure parabolic and fix(A) ∩ fix(B) = ∅. Then A and
B are linked.

Proof. Let v be the fixed point of B and let L be the axis of A. Then there
is an hx ∈ FA containing v. If ĥ is the hyperplane bounded by hx, there is
a unique point a ∈ ĥ ∩ L. Then there is a unique ha ∈ FB which bounds
a hyperplane that contains a. Since the hyperplanes bounded by hx and
ha intersect in a, their intersection is at least a plane orthogonal to L and
bounded by v. Otherwise, hx = ha and one can pick a plane P ⊆ ĥx ∩ ĥa

bounded by v and that passes through a. Then ∂P ∈ KA ∩KB , so A and
B are linked. �

Let A be a pure parabolic isometry of H4 and let B be a pure loxo-
dromic isometry of H4. Suppose the fixed points of A and B in R̂3 are
disjoint. The following are conditions for A and B to be linked.

Theorem 7.4 (Condition 1). Suppose there is an h ∈ FA ∩FB. Then A
and B are linked.

Proof. Let L be the boundary of the twisting plane of B and let x be the
fixed point A. Since L ∈ DB , h intersects L in two points y and z. If x
is equal to either y or z, then L is the unique element of DB containing
x. It allows any plane or sphere t in R̂3 containing L to be an element
of both TA and RB . Hence, h ∩ t is an element of both KA and KB that
links A and B. If x, y, and z are three distinct points, they form a unique
circle L2 that must be a subset of h. Then L2 is perpendicular to L, so
it is in KB . It also passes through x, so L2 ∈ KA. Thus, L2 ∈ KA ∩ KB ,
so A and B are linked. �

Theorem 7.5 (Condition 2). If the fixed point of A is in the boundary
of the twisting plane of B, then A and B are linked.
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Proof. Let x be the fixed point of A. Since x is not the fixed point of
B, there is a unique hx ∈ FB containing x. Let L be the boundary of
the twisting plane of B. Then L ∈ DB intersects h in two points, one
of which is x. Let m be the other intersection point. There is also a
unique hm ∈ FA containing m. Either hm = hx, which is done in the first
condition, or hm ∩hx is a circle c since both hm and hx contain x and m.
We must show c ∈ KA∩KB . The intersection points of c and L are x and
m, but c ⊂ hx ∈ FB , so c ∈ KB . As A is pure parabolic, any circle inside
any element of FA and passing through x is an element of KA. Hence,
c ∈ KA as x ∈ c ⊂ hm ∈ FA and x ∈ c. Then other planes can be found
so that A and B are linked. �

Theorem 7.6 (Condition 3). Let L ⊂ R̂3 be the boundary of the twisting
plane of B. If three points in L form a subset of h for some h ∈ FA, then
A and B are linked.

Proof. The three points determine L and are sufficient for L to fit inside
h. Let x ∈ R̂3 be the fixed point of A. The case where x ∈ L is handled
in the previous condition. We may assume x /∈ L. Then there is a
unique cx ∈ KB containing x. We must show cx ∈ KA. As cx ∈ KB , it
must intersect L in two points which are in h. But h contains x since A is
parabolic, so it has three points in common with cx. They are sufficient for
cx to be a subset of h. A circle or line in h containing x is an intersection
of h with some element of TA. Hence, cx, having this property, must be
in KA. This implies that A and B are linked. �

Let A be a screw parabolic and B be a pure hyperbolic isometry of
H4. Assume both have disjoint fixed points in the boundary. Throughout
this case, let x be the fixed point of A and let L be the boundary of its
twisting plane. Likewise, let dx be the unique element of DB containing
x.

Theorem 7.7 (Condition 1). If there is an h ∈ FA ∩FB, then A and B
are linked.

Proof. Let a and b be points in R̂3 so that dx ∩ h = {x, b} and L ∩ h =
{x, a}. If a = b, then dx = L, so any sphere c containing L is an element
of both TB and RA. It follows that c ∩ h is an element of both KA and
KB . If a ̸= b, the points a, b, and x form a unique circle L2 in R̂3. Since
a, b, x ∈ h, L2 ⊂ h. We claim that L2 ∈ KA ∩ KB . First, L2 intersects L
in two points, a and x, while sitting in h ∈ FA. Hence, L2 ∈ KA. Next,
L2 intersects dx in two points, b and x, while sitting in h ∈ FB . Thus,
L2 ∈ KB . The half-turn around L2 is the desired common factor of A
and B linking them. �
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Theorem 7.8 (Condition 2). If L ⊂ h for some h ∈ FB, then A and B
are linked.

Proof. The hypothesis implies that h is the unique element of FB con-
taining x. Let b be the intersection of dx and h in R̂3 other than x. There
is a unique hb ∈ FA containing b. Let a be the intersection of hb and
L other than x. Connect a, b, and x with the unique circle L2. Then
L2 = hb ∩ h while h ∈ RA and hb ∈ TB . It also connects L and dx in two
distinct points. Hence, L2 ∈ KA ∩ KB , so A and B are linked. �
Theorem 7.9 (Condition 3). If either m ∈ L or dx is orthogonal to km,
then A and B are linked.

The definitions of m and km are as follows. There is a unique element
hx ∈ FB containing x, and it is orthogonal to dx through two intersection
points, one of which is x. Let m be the other intersection point. If m /∈ L,
there are unique elements hm ∈ FA and km ∈ KA containing m.

Proof. Suppose m ∈ L. It is possible that dx = L which implies that
hm = hx, reducing the case to the previous condition. If dx ̸= L, hm ∩hx

is a circle c containing m and x. It follows that c ⊂ KA ∩ KB since it
intersects dx and L orthogonally through two points. Hence, A and B are
linked.

If m /∈ L, the hypothesis requires that dx is orthogonal to km. It follows
that km ⊂ hx since all circles orthogonal to dx at x and m are contained
in hx. Therefore, km ∈ KB , so A and B are linked. �
Theorem 7.10 (Computational Condition). Let A be a screw parabolic
isometry of H4 leaving the z-axis of R̂3 invariant and fixing ∞. Let B be
a pure hyperbolic isometry of H4 fixing v and w in R3. If v and w are
equidistant to the z-axis, then A and B are linked.

If v = (v1, v2, v3) ∈ R3 and w = (w1, w2, w3) ∈ R3, we say that v and
w are equidistant to the z-axis if v21 + v22 = w2

1 + w2
2.

Proof. The unique element d∞ ∈ DB containing ∞ is the Euclidean line
connecting v and w. Let m be the midpoint of v and w. Thus,

m =

(
v1 + w1

2
,
v2 + w2

2
,
v3 + w3

2

)
.

Let (m1,m2,m3) = m. Then the horizontal Euclidian line km connect-
ing m and the z-axis through (0, 0, m3) is an element of KA. The
angle between km and d∞ can be computed from the inner product
(−m1,−m2, 0) · (v −m), which simplifies to −1

4

(
v21 − w2

1

)
− 1

4

(
v22 − w2

2

)
.

The hypothesis implies that this is zero so km and d∞ are perpendicular
and hence, km ∈ KB . Then A and B are linked. �
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Let A be a screw parabolic and B be a pure parabolic isometry of H4

with different fixed points. Throughout this case, let x be the fixed point
of A and let y be the fixed point of B. Suppose L is the boundary of
the twisting plane of A. There are unique elements dx ∈ DB containing
x and dy ∈ DA containing y. If y /∈ L, denote the unique element of KA

containing y by ky.

Theorem 7.11 (Condition 1). If there is an h ∈ FA ∩ FB, then A and
B are linked.

Proof. As A and B are both parabolic, h contains both x and y. Since
L ∈ DA, it intersects h orthogonally in a point a other than x. If a = y,
then L = dx, so any circle in h connecting x and a is an element of
KA ∩ KB , making A and B linked. If a ̸= y, then the points a, x, and y
form a circle c in h. The circle c intersects L in two points and also dx in
x and y. Hence, c is in both KA and KB , so A and B are linked. �

Theorem 7.12 (Condition 2). If y ∈ L, then A and B are linked.

Proof. There are spheres hx ∈ FB and hy ∈ FA containing both x and
y. If hx = hy, then A and B are linked as per the previous condition.
Otherwise, hx∩hy is a circle k passing through x and y. If y ∈ L, k ∈ KA,
but k is also in KB , so A and B are linked. �

Theorem 7.13 (Condition 3). If L ⊂ h for some h ∈ FB, then A and
B are linked.

Proof. We may assume y /∈ L. Otherwise, the linking of A and B is
implied by the previous condition. Then there is a unique ky ∈ KA

containing y. It intersects L in a point p other than x. The circle ky is
uniquely determined by the points x, p, y ∈ h. Hence, ky ⊂ h, so ky ∈ KB

since B is pure parabolic. The half-turn about ky links A and B. �

Theorem 7.14 (Condition 4). If ky ⊥ dx, then A and B are linked.

If y /∈ L, there is a unique ky ∈ KA containing y. If y ∈ L, there are
many choices for ky ∈ KA, but choosing ky ⊥ dx is not necessary.

Proof. There is a unique hx ∈ FB containing x. It intersects dx in x and
y which are also in ky. Every circle orthogonal to dx through x and y
must be a subset of hx, so ky ⊂ hx. The span of ky ∪ dx is an element of
TB , so ky ∈ KB . Recall that ky ∈ KA. Therefore, A and B are linked. �

Linking pairs of hyperbolic isometries are better expressed inside H4.
The hyperplanes and planes in H4 bounded by the pencils can intersect
the invariant planes or lines of an isometry.
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Let A be a pure loxodromic isometry of H4 with axis AxA and twisting
plane τA. Let B be a pure hyperbolic isometry of H4 with axis AxB .
Assume AxA and AxB are disjoint. Then there is a unique line N per-
pendicular to both AxA and AxB . It intersects A in a point a and B in
a point b. There is a unique hyperplane ha orthogonal to AxA through
a. Likewise, there is a unique hyperplane hb orthogonal to AxB through
b. Since AxA ⊂ τA, there is a unique line La ⊂ τA perpendicular to AxA
through a. Throughout this case, A, B, AxA, AxB , τA, N , a, b, and La

are used.

Theorem 7.15 (Condition 1). If La = N , then A and B are linked.

Proof. The hypothesis implies that τA intersects AxB at least at b. If
AxB ⊂ τA, there are plenty of planes orthogonal to τA through N . Any
of them is orthogonal to AxB . If AxB and τA intersect only at b, they
span a hyperplane h. There is a plane k orthogonal to h through N .
Since h contains τA and AxB , k is also orthogonal to τa and AxB . (By
dimension count, k ⊂ hb.) Hence, k is an element of both KA and KB , so
A and B are linked. �

Theorem 7.16 (Condition 2). If La ⊂ hb, then A and B are linked.

Proof. If La ⊂ hb, it is possible that La = N , which is the previous case.
We may assume that La ̸= N . Then La and N span a plane k which sits
in ha. It follows that k ⊂ hb since both La and N lie in hb. Thus, k is
orthogonal to AxB and τA, so k ∈ KB linking A and B. �

Let A and B be screw parabolic isometries of H4 with disjoint fixed
points x and y, respectively. Let τA and τB be their respective twisting
planes. Define LA = ∂τA and LB = ∂τB . As x ̸= y, there are unique
elements hx ∈ FB and hy ∈ FA such that x ∈ hx and y ∈ hy. The
conditions in which a common orthogonal plane exists are quite restrictive,
so A and B are highly unlikely to be linked.

Theorem 7.17 (Condition 1). If there is h ∈ FA ∩FB and the points x,
y, xh, and yh form a circle, then A and B are linked.

Any h ∈ FA intersects LA in two points. Let xh be the intersection
point other than x. If h ∈ FB , let yh be the element of h∩LB other than
y.

Proof. Let c be the circle formed by x, y, xh, and yh as allowed by the
hypothesis. We must show c ∈ KA ∩ KB . Since {x, y, xh, yh} ⊂ h, c ⊂ h.
Also c is orthogonal to LA through {x, xh}, so c ∈ KA. Similarly, c
is orthogonal to LB through {y, yh}, so c ∈ KB . Hence, A and B are
linked. �
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Theorem 7.18 (Condition 2). If y ∈ LA and x ∈ LB, then A and B are
linked.

Proof. We may assume hx ̸= hy; otherwise LA = LB , making any circle
in hx that connects x to y an element of KA ∩ KB . Let c be hx ∩ hy

which is a circle containing {x, y}. The hypothesis implies that hy∩LA =
{x, y} = hx ∩ LB , so c is orthogonal to both LA and LB . Therefore,
c ∈ KA ∩ KB . The existence of c makes A and B linked. �
Theorem 7.19 (Condition 3). If hy ∩ LA ⊂ hx, hx ∩ LB ⊂ hy, and
hx ̸= hy, then A and B are linked.

Proof. Let c be hx∩hy. Then c is a circle containing (hy ∩ LA)∪(hx ∩ LB).
It is orthogonal to LB and LA through two distinct points each. Hence,
c ∈ KA ∩ KB . It follows that A and B are linked. �
Theorem 7.20 (Condition 4). If LB ⊂ hy and LA ⊂ hx, then A and B
are linked.

Proof. Since LB ⊂ hy, hy ∈ RB . Let c = hy ∩ hx. Then c ∈ KB .
Similarly, LA ⊂ hx implies that hx ∈ RA, so c ∈ KA. Thus, A and B are
linked. �

Let A and B be pure loxodromic isometries of H4 with axes AxA and
AxB and twisting planes τA and τB , respectively. Assume τA and τB
are disjoint. There is a unique line N perpendicular to both AxA and
AxB . There are hyperplanes ha orthogonal to AxA through a, and hb

orthogonal to AxB through b. There are also lines La ⊂ τA perpendicular
to AxA through a, and Lb ⊂ τB perpendicular to AxB through b. Like
the previous case, A and B are rarely linked.

Theorem 7.21. If La and Lb are coplanar, then A and B are linked.

Proof. Since τA and τB are disjoint, the lines N , La, and Lb are distinct.
The plane P containing La and Lb is unique. Since N connects a and b,
N lies in P . The axis of A is perpendicular to both N and La so τA is
orthogonal to P through N . Likewise, τB is orthogonal to P through N .
Then ∂P ∈ KA ∩ KB . �

Let A be a screw parabolic isometry of H4 fixing x and with twisting
plane τA. Let B be a pure loxodromic isometry of H4 with axis AxB and
twisting plane τB . Suppose x does not bound AxB . There is a unique
hx ∈ FB that contains x. There is also dx ∈ DB containing x. Let x2

be the intersection of dx with hx other than x. Since x ̸= x2, there are
unique elements d2 ∈ DA and h2 ∈ FA containing x2.

Let LA be the boundary of τA and LB be that of τB . Since LA ∈ DA,
LA ∩ h2 has exactly two points. Let a be the element of LA ∩ h2 other
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than x. Similarly, let b1 and b2 be the elements of LB ∩ hx. Throughout
this case, A, B, τA, τB , AxB , x, hx, x2, dx, d2, h2, LA, LB , b1, and b2
are used consistently.

Theorem 7.22 (Condition 1). If there is an h ∈ FA∩FB and the points
of h ∩ (LA ∪ LB) form a circle, then A and B are linked.

Proof. Since x ∈ h, h is the unique element of FB containing x. That
is h = hx. It follows that x2 ∈ h and h is the unique element of FA

containing x2. So h = hx = h2. Hence,

h ∩ (LA ∪ LB) = (h ∩ LA) ∪ (h ∩ LB)

= (h2 ∩ LA) ∪ (hx ∩ LB)

= {x, a, b1, b2} .
Let c be the circle containing {x, a, b1, b2} according to the hypothesis.
Then c ⊂ h since {x, a, b1, b2} ⊂ h. It is orthogonal to LA through {x, a}
and to LB through {b1, b2}. Therefore, c ∈ KA ∩ KB . It implies that A
and B are linked. �
Theorem 7.23 (Condition 2). If a ∈ hx; b1, b2 ∈ h2; and hx ̸= h2, then
A and B are linked.

Proof. Let c = hx ∩ h2. Then c is a circle since hx ̸= h2. It is orthogonal
to LA through {a, x} and to LB through {b1, b2}. Thus, c ∈ KA ∩KB , so
A and B are linked. �
Theorem 7.24 (Condition 3). If there are pA ∈ FA and pB ∈ FB such
that LB ⊂ pA and LA ⊂ pB, then A and B are linked.

Proof. Since LA ⊂ pB , we have pB ∈ RA, so pB ̸= pA. Let c = pB ∩ pA.
Then c ∈ KA as it is an intersection of a pair in FA × RA. Likewise,
LB ⊂ pA implies that pA ∈ RB , so c is also in KB . Hence, A and B are
linked. �

8. Pairs without Invariant Subplane

It is possible for a pair to be linked by half-turns without having in-
variant lower dimensional planes. This section shows how to construct a
linked pair that does not have an invariant lower dimensional space. It
can be started by investigating individual isometries then proving that
the only invariant planes of an isometry are those that are bounded by
the elements of its invariant pencil (if such exist), twisting pencil (if the
rotational part is an involution), axis, twisting plane, or twisting hyper-
plane.

One way to find all invariant subplanes is to express an isometry of Hn

as a matrix in PSO(n, 1). The eigenvectors correspond to fixed points if
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they are not space-like in the Lorentzian space Rn,1. The following are
examples of hyperbolic isometries.

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0
√
2 1

0 0 0 1
√
2

 and


cos θ − sin θ 0 0 0
sin θ cos θ 0 0 0
0 0 1 0 0

0 0 0
√
2 1

0 0 0 1
√
2

 .

The upper left 3 × 3 entries can be replaced by any nontrivial element
of SO(3) and the resulting matrix is pure loxodromic. The construction
shows that the invariant lower dimensional subspaces are exactly the axis,
twisting plane, twisting hyperplane (the hyperplane orthogonal to the
twisting plane through the axis), and the elements of the invariant and
dual pencils. Moreover, the permuted and dual pencils can also be located.

For elliptic isometries, the upper left 4×4 entries of the identity matrix
Id5 can be replaced by an element of O(4) and the resulting matrix is an
elliptic element. Analyzing the invariant subspaces is a matter of studying
O(4) and SO(4).

8.1. Parabolic isometries of PSO(n, 1).

A parabolic element of PSO(2, 1) that fixes the light-like vector (0, 1, 1)
has the form

P2 =

1 −t t

t 1− t2

2 t2/2

t −t2/2 1 + t2

2

 where t ̸= 0.

It can be decomposed into Jordan canonical form P2 = S2J2S
−1
2 where

S2 =

 0 t −t/2
t2 0 −1
t2 0 0

 and J2 =

1 1 0
0 1 1
0 0 1

 .

The form of P2 can be extended to PSO(3, 1) using x, y ∈ R with x2+y2 >
0. Specifically, let

P3 =


1 0 −x x
0 1 −y y

x y 1− x2+y2

2
x2+y2

2

x y −x2+y2

2 1 + x2+y2

2

 .
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Then P3 fixes (0, 0, 1, 1) and has Jordan decomposition P3 = S3J3S
−1
3

where

S3 =


− xy

x2+y2 0 x 0

− x2

x2+y2 0 y 0

−y/2 x2 + y2 x2+y2

2 0

−y/2 x2 + y2 x2+y2

2 1

 and J3 =


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 .

Notice that P3 has a space-like eigenvector, whereas P2 has only light-like
eigenvector. If v1 and v2 are the second and third column vectors of S3,
then P3 maps any vector v ∈ R3,1 into a linear combination of v, v1, and
v2. In particular, if v is time-like, then P3 leaves span{v, v1, v2} invariant.
Hence, the 3-dimensional time-like vector subspaces that contain v1 and
v2 project to the hyperbolic planes that form the invariant pencil of P3.

The extension of P3 to PSO(4, 1) is P4 given by

P4 =


1 0 0 −x x
0 1 0 −y y
0 0 1 −z z

x y z 1− x2+y2+z2

2
x2+y2+z2

2

x y z −x2+y2+z2

2 1 + x2+y2+z2

2

 .

The Jordan decomposition of P4 is S4J4S
−1
4 where

S4 =


0 − xy

x2+y2+z2 0 x 0

−z/y x2+z2

x2+y2+z2 0 y 0

1 − yz
x2+y2+z2 0 z 0

0 −y/2 x2 + y2 + z2 x2+y2+z2

2 0

0 −y/2 x2 + y2 + z2 x2+y2+z2

2 1

 and

J4 =


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 .

Then P4 has two space-like eigenvectors which correspond to the first
two columns of S4. Let v1 and v2 be the third and fourth columns of S4.
Like P3, any vector v ∈ R4,1 is mapped by P4 into a linear combination
of v, v1, and v2. Thus, the invariant pencil of P4 is precisely the set
of intersections of the hyperboloid H4 with the 4-dimensional time-like
vector subspaces containing {v1, v2}. The dual pencil of P4 can be located
by the 3-dimensional vector time-like subspaces containing {v1, v2}.
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Let v3 be any time-like vector in R4,1 and let ρ be an element of SO(5)
that fixes span{v1, v2, v3} pointwise. The Lorentz orthogonal complement
of span{v1, v2, v3} is two dimensional space-like that is rotated by ρ. Then
ρ ∈ PSO(4, 1) and ρP4 is a screw parabolic isometry of PSO(4, 1). If the
rotation angle of ρ is not an integer multiple of π, then only the scalar
multiples of (0, 0, 0, 1, 1) are the eigenvectors of ρP4. Hence, the only
time-like subspace left invariant by ρP4 is the span of {v1, v2, v3}. The
other invariant subspaces of ρP4 are either light-like or space-like.

8.2. Mismatched invariant planes.

If two isometries have no common invariant line, plane, or hyperplane,
they can still be linked. The elements of the half-turn bank of an isometry
are not invariant circles/planes, so a pair of isometries can still have a
common element in their half-turn banks.

Theorem 8.1. There exists a half-turn linked pair of isometries of H4

that leaves neither a point, a line, a plane, nor a hyperplane invariant.

Proof. Start with R̂3 which is a model for the boundary of upper half-
space H4. Let A be a loxodromic isometry that fixes (0, 0, 1) and (0, 0,−1)
but rotates the vertical line connecting them by π/6 angle. Let B be the
Poincaré extension of the function sending x to x+ (1, 0, 1). Note that B
does not have to be pure parabolic; it can be a hyperbolic isometry fixing
(1, 0, 1) and (−1, 0,−1).

Then the horizontal line connecting (0, 0, 0) to (0, 1, 0) is an element
of KA ∩KB . The invariant planes of B do not include the twisting plane
of A. Also the unit sphere, which bounds the twisting hyperplane of A,
is not left invariant by B since it does not contain the fixed point of B.
There is no invariant hyperbolic line either, as the fixed points of A and
B do not match. �
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