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TRAJECTORIES OF CHAOTIC INTERVAL MAPS

SHARAN GOPAL

Abstract. This paper proves the existence of an abundant num-
ber of sequences in [0, 1] that can occur as trajectories for chaotic
interval maps. It is proved that given an allowed sequence in [0, 1]
of certain kind, there always exists a chaotic interval map with this
sequence as a trajectory.

1. Introduction

By a dynamical system (X, f), we mean a topological space X and
a continuous self map f on it. The trajectory of a point x ∈ X is the
sequence (x, f(x), f2(x), . . . ), where fn = f ◦ f ◦ f... ◦ f(n times) and
the set {fn(x) : n ∈ N0} is called the orbit of x (N0 is the set of non-
negative integers and f0(x) = x). If fn(x) = x for some n ∈ N, then x is
called a periodic point. An interval map is a dynamical system, where the
underlying topological space is [0, 1], i.e., a system of the form ([0, 1], f).

Definition 1.1 (See [3]). Let (X, f) be a dynamical system, where X is
a metric space with metric d. (X, f) is said to be Devaney chaotic if

(1) f has sensitive dependence on initial conditions (i.e., there is
an r > 0 such that for each point x ∈ X and for each ϵ > 0
there is a point y ∈ X with d(x, y) < ϵ and a k ≥ 0 such that
d(fk(x), fk(y)) ≥ r),
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(2) (X, f) is topologically transitive (i.e., (X, f) contains a dense or-
bit), and

(3) the set of periodic points is dense in X.

This definition is due to Robert L. Devaney. There are, however, other
definitions of chaos which are not necessarily equivalent to this one. One
of them, namely, topological chaos, implies the abundance of trajectories.
By definition, a system is topologically chaotic if it has positive topologi-
cal entropy and topological entropy is the exponential growth rate of the
number of essentially different orbits of length n (see [2]). In this paper,
the existence of an abundant number of sequences in [0, 1] that can occur
as trajectories for Devaney chaotic interval maps is shown, thus demon-
strating the significant variety that chaotic interval maps exhibit in terms
of trajectories. Hereafter, a Devaney chaotic system will be referred to
simply as a chaotic system, as we will not be considering any other type
of chaotic systems.

Chaotic interval maps have been well studied in the literature. There
are several results providing some conditions on an interval map that en-
sure its chaoticity. It is proved in [1] that the sensitive dependence on
initial conditions in the above definition is redundant if X (not necessar-
ily an interval) is infinite. Further, for interval maps, transitivity alone is
sufficient to establish the chaoticity (see [7]). There are some conditions
that imply transitivity for interval maps (see [4], [5], [6]). A concept called
indecomposability is discussed in [8], where it is proved that indecompos-
ability, together with dense periodicity, is equivalent to chaoticity.

Here, we prove that, given any (allowed) sequence (xn) in [0, 1] whose
range X = {xn : n ∈ N} has finite derived length, if each level of limit
points of X is invariant under the extension of the map xn 7→ xn+1

to X, then (xn) occurs as a trajectory of some chaotic map on [0, 1].
The sufficient steepness of the graph of a function is used to establish its
transitivity, an idea that is used in [4] also. Some other kinds of sequences
which occur or do not occur as trajectories of chaotic systems are also
discussed. It is interesting to note that there are “many” sequences as
well which can occur as trajectories of interval maps in general but not
of chaotic interval maps.

2. Main Theorem

Given a sequence (pk) in [0, 1] with some conditions, the current prob-
lem is to construct a chaotic map with (pk) as a trajectory. In other
words, a sequence (pk) is given along with the map f(pk) = pk+1 on the
set {pk : k ∈ N} and f has to be extended to a chaotic map on [0, 1].
It is well known that f should be necessarily uniformly continuous on
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{pk : k ∈ N} for f to be at least continuous on [0, 1]. So, we include
this condition in the hypothesis of the theorem and such sequences (pk),
where the map pk 7→ pk+1 is uniformly continuous on {pk : k ∈ N} are
called allowed sequences.

The following notation and terms will be used in the sequel. If (nk)
is increasing and converging to n, then we write (nk) ↑ n and if (nk) is
decreasing and converging to n, then it is written as (nk) ↓ n. The phrase
strictly increasing (strictly decreasing, respectively) is used to imply that
nk � nk+1 (nk  nk+1, respectively) for every k ∈ N. For a subset
X ⊂ [0, 1], denote by D(X), the set of limit points of X in [0, 1] and for
every k ∈ N, define inductively Dk+1(X) = D(Dk(X)). If X ̸= ∅ and
there is a non-negative integer n such that Dn+1(X) = ∅ and Dn(X) ̸= ∅,
then X is said to have finite derived length and n is called the derived
length of X. In such a case, owing to the compactness of [0, 1], Dn(X) is
a finite set. Then, for k ∈ N, denote by Xk, the set Dk(X) \ Dk+1(X)
and let X0 denote the set of isolated points of X. Xk is called the set of
kth level limit points of X for every k ∈ N0. The notation (a, b) is used
to denote sometimes an ordered pair and sometimes an open interval.
However, there is no ambiguity, as the context makes the matter clear.

Theorem 2.1. If (pk) is a sequence in [0, 1] such that
(i) the set X = {pk : k ∈ N} is of finite derived length, say n,
(ii) the map f : pk 7→ pk+1 is uniformly continuous on X, and
(iii) after extending f continuously to X (which will be denoted by f

again), for each 0 ≤ j ≤ n, the set Xj is f -invariant, then there
exists a chaotic map f on [0, 1] with (pk) as a trajectory.

Lemma 2.2. Let S ⊂ [0, 1] be a closed set and f : S → [0, 1] be uniformly
continuous. f can be extended continuously to [0, 1] such that
(a) if x, y ∈ S such that (x, y) ∩ S = ∅, then f is a linear map on [x, y];
(b) f is piecewise linear on [0, inf S] and [sup S, 1] such that the modulus
of the slope of each piece is greater than 4.

Proof. f can be defined on [inf S, sup S] satisfying (a) in a unique way.
On [0, inf S] and [sup S, 1], f can be defined with its graph having a
finite number of line segments each with slope greater than 4 in absolute
value. It can be easily proved that any such map f is continuous on
[0, 1]. �

Lemma 2.3. If X is a countable set with finite derived length, say n,
then there is a countable set Y ⊃ X with the same derived length n such
that

(1) for each 0 ≤ k ≤ n, Xk ⊂ Yk and



206 S. GOPAL

(2) for any k > 0 and for each y ∈ Yk \ {0, 1}, there is a strictly
increasing sequence and a strictly decreasing sequence in Yk−1

both converging to y.
Moreover, if f is a function on X satisfying Theorem 2.1(iii), then f can
be extended to Y satisfying the same condition on Y .

Proof. Let p ∈ Xk \ {0} for some 0 < k ≤ n and suppose that there
is no strictly increasing sequence in Xk−1 converging to p. Choose an
interval (a, b) containing p and no other element of Xk (if p = 1, choose an
interval of the type (a, 1] for a suitable a). Let (ul) be an arbitrary strictly
increasing sequence in (a, b)\X such that (ul) ↑ p. Let Fk := {ul : l ∈ N}.
Now the aim is to make every element of Fk a limit point of (k−1)th-level
in the new set Y . If k ̸= 1, define another sequence (a0, a1, a2, ....) such
that al < ul+1 < al+1 for every l ≥ 0. In each interval (al, al+1), choose a
strictly increasing sequence (v(l)m ) and a strictly decreasing sequence (w(l)

m ),
both converging to ul+1. Denote by Fk−1 the union of ranges of all the
sequences (v

(l)
n ) and (w

(l)
n ), l running over all non-negative integers. The

elements of Fk−1 will be made the limit points of (k − 2)th-level in Y . If
k− 1 ̸= 1, repeat this procedure taking each sequence in Fk−1 in place of
(ul) and Fk−2 be the union of ranges of sequences obtained at the end of
this step. Proceeding this way, we finally get F1.

This can be performed for any such point p to which no strictly increas-
ing sequence in Xk−1 converges. A similar procedure can be followed for
any point to which no strictly decreasing sequence in Xk−1 converges. Let
F be the union of F1’s obtained for all such points. Then Y = F ∪X is
the required set.

Let f be a continuous function on X satisfying Theorem 2.1(iii). Let k
be the largest integer such that Yk \Xk ̸= ∅ (note that k � n). Then there
exists a point p ∈ Xk+1 such that there is an increasing or a decreasing
sequence in Yk \Xk converging to p. Map this sequence under f to that
sequence in Yk which converges to f(p); this is possible because Xk+1 is f -
invariant. Thus, f is defined from Yk−1 to itself. Now Yk−1\Xk−1 consists
of sequences converging to points in Yk; so, as done in the above case (of
p ∈ Xk+1), f can be defined from Yk−1 \Xk−1 to Yk−1, corresponding to
their limits. Proceeding this way, f is extended to Y as required. �

2.1. Proof of Theorem 2.1 in a special case.

Here, we prove Theorem 2.1 in the case, when X has a unique limit
point, say p and X is of the form {xk : k ∈ N} ∪ {yk : k ∈ N}, where
xk ↑ p and yk ↓ p. Further, assume that (xk) is strictly increasing unless
p = 0 (in which case, xk = 0 for every k) and (yk) is strictly decreasing
unless p = 1 (in which case, yk = 1 for every k).



TRAJECTORIES OF CHAOTIC INTERVAL MAPS 207

Choose a sequence (ak) in [0, 1] such that if (xk) is strictly increasing,
then xk < ak < xk+1; otherwise, take ak = xk for every k. Similarly, de-
fine (bk) such that yk+1 < bk < yk if it is strictly decreasing, or otherwise,
bk = yk.

Now, we extend the map f to X ∪ Z, where Z = {ak : k ∈ N} ∪ {bk :
k ∈ N}. Note that f is defined at p and f(p) = p. In case p = 0, f(ak) is
already defined for every k. Otherwise, define f(a1) = 1, f(a2) = 0, and
for k > 2,

f(ak) =

{
a k

2
if k is even

bk if k is odd
.

Similarly, if p = 1, then f(bk) is already defined for every k. Otherwise,
define f(b1) = 0, f(b2) = 1, and for k > 2,

f(bk) =

{
b k

2
if k is even

ak if k is odd
.

Suppose x and y are consecutive numbers in Z∪X and the modulus of
the slope of the line segment joining (x, f(x)) and (y, f(y)) is at most 4.
Consider a particular case where x = al for some l. Then (ak) is strictly
increasing, because otherwise ak = xk = 0 for every k; in particular, 0 is
the limit of all the sequences that constitute Z∪X, contradicting the fact
that x(= 0) and y are consecutive (distinct) numbers of Z ∪X. Choose
a′l and a′l+1 such that al < a′l < a′l+1 < y and define f(a′l) = f(al+1) and
f(a′l+1) = f(al). Since f(al) ̸= f(al+1), the slope of each line segment
joining the successive points among these four points is more than the
slope of the earlier segment joining (x, f(x)) and (y, f(y)). Repeat this,
if necessary, by replacing x and y with the new successive points, until
the slope of the line segment joining any two consecutive points is greater
than 4. A similar technique can be applied in other cases also. Doing this
for all the pairs where the required slope is at most 4, we finally get a set
F such that if x and y are consecutive terms of Z∪X∪F , the slope of the
line segment joining (x, f(x)) and (y, f(y)) is greater than 4 in absolute
value. Extend this map to [0, 1] using Lemma 2.2.

Let (a, b) ⊂ [0, 1] be an open interval. We prove that f j(a, b) = [0, 1]
for some j, establishing the transitivity of the system and thus chaoticity.

Suppose p ∈ (a, b). Choose the least positive integer m such that
[a2m , b2m ] ⊂ (a, b). It follows by the definition of f that [a2m−1 , b2m−1 ] ⊂
f(a, b). Iterating further, we get [a1, b1] ⊂ fm(a, b). Since p ∈ (a, b),
p /∈ {0, 1}, and thus both (ak) and (bk) are strictly monotonic. Hence,
f(a1) = 1 and f(b1) = 0. Therefore, fm+1(a, b) = [0, 1]. On the other
hand, if p = 0 and [0, u) is a neighborhood of p, choose the least positive
integer m such that [0, b2m ] ⊂ [0, u). Then [0, b1] ⊂ fm([0, u)), and thus
it contains b2 also. Since f(b1) = 0 and f(b2) = 1, we have fm+1([0, u)) =
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[0, 1]. Similarly, if p = 1 and (v, 1] is a neighborhood of p, then the same
conclusion follows.

Suppose p /∈ (a, b) but there are two distinct points x, y ∈ (Z ∪ F ) ∩
(a, b). Then by the definition of f on Z∪F , p lies between f(x) and f(y).
Thus, p ∈ f(a, b) and this falls under the previous case. So it is enough
to prove that there are at least two distinct points of Z ∪F in f j(a, b) for
some j ∈ N.

If (a, b) contains at most one point of Z ∪F , then (a, b) can be divided
into at most four subintervals, on each of which f is linear. Choose a
maximal such subinterval, say (c, d). We have d − c ≥ 1

4 (b − a). Since
the modulus of the slope of the graph of f on (c, d) is greater than 4, we
have |f(d) − f(c)| > 4(d − c) ≥ (b − a). Thus, the length of the interval
f(a, b) is greater than the length of (a, b). By iterating, the length keeps on
increasing until it contains at least two points of Z∪F ; i.e., the cardinality
of the set (Z ∪ F ) ∩ f j(a, b) is at least 2 for some j ∈ N. �

2.2. A method of extending f.

Let [a, b] ⊂ [0, 1]. Let X ⊂ [a, b] with a unique limit point, say p and
X = {xk : k ∈ N} ∪ {yk : k ∈ N}, where xk ↑ p and yk ↓ p. Further,
assume that (xk) is strictly increasing unless p = a and (yk) is strictly
decreasing unless p = b. Now, given a uniformly continuous function
f : X → [0, 1], we give here a particular method of defining a continuous
map from X ∪ Z to [0, 1] where Z is a countable subset of [0, 1] defined
based on the elements of X. This is similar to the proof in section 2.1.

Choose a sequence (ak) in [0,1] such that if (xk) is strictly increasing,
then xk < ak < xk+1; otherwise, take ak = xk(= a) for every k. Similarly,
define (bk) such that, for every k ∈ N, yk+1 < bk < yk or bk = yk(= b)
depending on whether (yk) is strictly decreasing or not. Let Z = {ak :
k ∈ N} ∪ {bk : k ∈ N}. We now define f on Z as follows. Note that f is
defined at p, say f(p) = q. Choose two sequences (rk) and (sk) such that
(rk) ↑ q and (sk) ↓ q. In case p = a, f(ak) is already defined for every k;
otherwise, define f on Z as

f(ak) =

{
r k

2
if k is even

sk if k is odd
.

Similarly, if p = b, f(bk) is already defined for every k; otherwise, define

f(bk) =

{
s k

2
if k is even

rk if k is odd
.

This method will be used extensively in the proof of Theorem 2.1,
where it will be referred to simply as “the method” and Z will be referred
as the “sequence of intermediate points.”
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2.3. Proof of Theorem 2.1.

f is extended to [0, 1] in the following n+1 steps. The techniques used
here are similar to those used in section 2.1. Following Lemma 2.3, we
can assume that for every 0 < k ≤ n and for every x ∈ Xk \{0, 1}, there is
a strictly increasing sequence and a strictly decreasing sequence in Xk−1,
both converging to x. Say Xn = {m1,m2, ..,ml} such that mi < mi+1

for every 1 ≤ i < l. Choose n1, n2, ...nl+1 ∈ [0, 1] such that
(1) n1 = 0, nl+1 = 1,
(2) ni /∈ X for 2 ≤ i ≤ l, and
(3) mi ∈ [ni, ni+1] for 1 ≤ i ≤ l.

The hypothesis that each Xj is f -invariant will be used in each step.
Further, observe that X is a discrete set; otherwise, X will have infinite
derived length.
Step 1:

Each of the sets Xn−1 ∩ [ni, ni+1] is a set with unique limit point,
namely mi. So, the method can be applied to each of these, taking a =
ni and b = ni+1. As done in the method, choose an increasing and a
decreasing sequence in Xn−1 ∩ [ni, ni+1] both converging to mi. Then,
for each 1 ≤ i ≤ l, we define the sequences of intermediate points as
done in the method with an additional condition that they are chosen
from [0, 1] \X. Let X(1) be the union of the ranges of these sequences of
intermediate points.

Now fix an i ∈ {1, 2, ...l}. Let f(mi) = mj . Now apply the method to
the set Xn−1 ∩ [ni, ni+1] by choosing r1 = 0, s1 = 1, and (rk)

∞
k=2, (sk)

∞
k=2

to be the sequences that constitute X(1) ∩ [nj , nj+1]. Doing this for every
i, f is thus defined on the set X(1). Define X1 = {(a, b) ∈ X(1) ×X(1) : a
and b are consecutive terms of one of these sequences such that a ̸= b }.
Note that every point of Xn−1 lies in some interval [x, y] where (x, y) ∈ X1,
and, on the other hand, each such interval [x, y] contains exactly one point
of Xn−1.
Step 2:

Consider the collection: {Xn−2 ∩ [x, y] : (x, y) ∈ X1}. The method can
be applied to each member of the collection. First, define the sequences
of intermediate points (again choosing them from [0, 1] \ X ) for all the
sequences as done in the method and let X(2) be the union of the ranges
of these sequences of intermediate points. Now consider a member of the
above collection, say Xn−2 ∩ [x, y], (x, y) ∈ X1. This contains a unique
point of Xn−1, say p. Apply the method to this set, choosing the sequences
(rk) and (sk) such that r1 = x′

2 , s1 = y′+1
2 and (rk)

∞
k=2, (sk)

∞
k=2 are the

sequences that constitute X(2) ∩ [x′, y′], where (x′, y′) ∈ X1 such that
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f(p) ∈ [x′, y′]. Apply the method in the same way for each member of
the collection. Thus, f is defined on X(2). Also, define X2 = {(a, b) ∈
X(2)×X(2) : a and b are consecutive terms of one of these sequences, i.e.,
the sequences defined here}.

In general, for any 2 ≤ k ≤ n, having completed Step k − 1, we do
the following in Step k. First, define the sequences of intermediate points
(choosing them from [0, 1] \ X ) for all the sequences as done in the
method, considering separately each member of the collection {Xn−k ∩
[x, y] : (x, y) ∈ Xk−1}, where Xk−1 = {(a, b) ∈ X(k−1) ×X(k−1) : a and b
are consecutive terms of one of the sequences defined in Step k−1 }. Apply
the method to each member of the collection, choosing the sequences
(rk) and (sk), as done in Step 2. Thus, f is defined on the closed set
Y = X

∪
(∪n

i=1X
(i)).

Note that, in the beginning, [0, 1] is divided into l intervals, each con-
taining an element of Xn, and any two of these intersect, at most, in an
end point. Each of these is further divided into smaller intervals, whose
end points are represented as ordered pairs by the elements of X1. This
division goes on until Step n and finally [0, 1] is the union of the intervals
of type [x, y], where (x, y) ∈ Xn. In one step earlier, i.e., for (u, v) ∈ Xn−1,
the interval [u, v] contains four sequences, two of which constitute X∩[u, v]
and the other two constitute X(n) ∩ [u, v].

Consider the set (X∪X(n))∩ [u, v] for some (u, v) ∈ Xn−1. X(n)∩ [u, v]
consists of an increasing sequence, say (ak), and a decreasing sequence, say
(bk). Suppose x and y are consecutive numbers in (X ∪X(n))∩ [u, v] and
the modulus of the slope of the line segment joining (x, f(x)) and (y, f(y))
is at most 4. Consider a particular case where x = ah for some h. Then
(ak) is strictly increasing because otherwise, ak = u for every k, and thus
ah is the limit of all the four sequences that constitute (X ∪X(n))∩ [u, v],
contradicting the fact that ah and y are consecutive (distinct) numbers of
Z∪X. Now, choose a′h and a′h+1 such that ah < a′h < a′h+1 < y and define
f(a′h) = f(ah+1) and f(a′h+1) = f(ah). By the definition of f , f(ah) ̸=
f(ah+1); thus, the slope of each line segment joining the successive points
in these four points is more than the slope of the earlier segment joining
(x, f(x)) and (y, f(y)). Repeat this, if necessary, by replacing x and y
with the new successive points until the slope of the line segment joining
any two consecutive points is greater than 4. A similar technique can
be applied in other cases also. Doing this for all the pairs where the
required slope is at most 4, we finally get a set F such that if x and y are
consecutive terms of X(n) ∪X ∪ F , the slope of the line segment joining
(x, f(x)) and (y, f(y)) is greater than 4 in absolute value.

In the final step, extend the function f to [0, 1] as done in Lemma 2.2.
Note that (pk) is a trajectory of f .
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It is now claimed that f is chaotic. Before proving this, following are
four important observations that will be used in the proof later.

(1) The graph of f consists of line segments, each of slope greater
than 4 in absolute value.

(2) The set of critical points of f is contained in Y ∪ F .
(3) In Step k, we define X(k) and Xk ⊂ X(k) × X(k). Further, the

terms of the sequences of intermediate points contained in X(k)

lie between the terms of the sequences that constitute Xn−k.
(4) If x, y ∈ X(1) such that x and y are the first terms of the increasing

and the decreasing sequences, respectively, in X(1) ∩ [ni, ni+1] for
some i, then f(x) = 1 and f(y) = 0. So, if (a, b) is a subinterval
containing x and y, then f(a, b) = [0, 1].

Let (a, b) ⊂ [0, 1]. We prove that f t(a, b) = [0, 1] for some t, which
establishes the transitivity of the system and thus chaoticity.

Recall that Xn = {m1,m2, ...,ml} is a finite f -invariant set and mi

is the unique element of Xn in [ni, ni+1]. Observe that each set X(1) ∩
[ni, ni+1] consists of an increasing and a decreasing sequence, say (y

(i)
k )

and (z
(i)
k ), respectively, both converging to mi. Suppose m1 = 0 and [0, u)

is a neighborhood of m1. Choose the least integer m such that z(1)2m ∈ [0, u).
It follows from the definition of f that [f(0), z(i)2m−1 ] ⊂ f([0, u)), where i is
given by mi = f(0). Iterating further, we get [fm(0), z

(j)
1 ] ⊂ fm([0, u)) for

some j. Since fm(0) ∈ Xn, we have z
(j)
2 ∈ [fm(0), z

(j)
1 ]. Now, f(z(j)1 ) = 0

and f(z
(j)
2 ) = 1, and hence fm+1([0, u)) = [0, 1]. Similarly, if ml = 1 and

(v, 1] is a neighborhood of ml, then the same conclusion follows.
Now consider the interval (a, b). Suppose that mi ∈ (a, b) for some

i. Choose the least positive integer m such that y
(i)
2m , z

(i)
2m ∈ (a, b). If

neither 0 nor 1 occurs in the first m + 1 terms of the trajectories of
y
(i)
2m and z

(i)
2m (i.e., until the mth iterate), then, by iterating as above,

we get [y
(j)
1 , z

(j)
1 ] ⊂ fm(a, b) for some j, and thus fm+1(a, b) = [0, 1].

On the other hand, if fk(y
(i)
2m) = 0 for some 0 ≤ k ≤ m, then we have

[0, z
(i′)

2m−k ] ⊂ fk(a, b) for some i′. However, this happens only if i′ = 1
and m1 = 0. It then immediately follows from the above discussion that
fm+1(a, b) = [0, 1]. Similarly, even if 1 occurs in one of the first m + 1

terms of the trajectory of z(i)2m , we can arrive at the same conclusion.
Suppose that Xn ∩ (a, b) = ∅, but D(X) ∩ (a, b) ̸= ∅. Choose the least

positive integer m such that (a, b) ∩Xm+1 = ∅. Choose q ∈ (a, b) ∩Xm.
There exists a unique ordered pair (x, y) ∈ Xn−m such that q ∈ [x, y]. We
applied the method to the set Xm−1∩ [x, y] in Step (n−m+1) to get the
sequences of intermediate points, say (uk) and (vk), respectively, such that
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(uk) ↑ q and (vk) ↓ q and the terms of these sequences constitute the set
X(n−m+1) ∩ (x, y). Choose the least integer s such that [u2s , v2s ] ⊂ (a, b).

By a similar argument as done in the previous case, it can be proved
that one of the following cases arises: [f i(0), v′1] ⊂ fs(a, b), [u′

1, f
i(1)] ⊂

fs(a, b), or [u′
1, v

′
1] ⊂ fs(a, b) for some i, where u′

1 and v′1 are the first
terms of some sequences (u′

k) and (v′k), whose ranges are contained in the
set X(n−m+1). It follows from the definition of f at u′

1, u′
2, v′1, and v′2 that,

in any of the three cases, [x′, y′] ⊂ fs+1(a, b) for some (x′, y′) ∈ Xn−m.
Say q′ is the limit of the sequence in X(n−m), of which x′ and y′ are
terms. Then q′ ∈ Xm+1 and, by the definition of f , f(q′) lies between
f(x′) and f(y′), and thus f(q′) ∈ fs+2(a, b). Moreover, f(q′) ∈ Xm+1.
Thus, fs+2(a, b)∩Xm+1 ̸= ∅. Repeating the above argument by choosing
a point in fs+2(a, b)∩Xm+1, we get fs′(a, b)∩Xm+2 ̸= ∅ for some s′ ∈ N,
and thus, finally, fr(a, b) ∩Xn ̸= ∅ for some r ∈ N. Then from the above
case, it follows that fr′(a, b) = [0, 1] for some r′ ∈ N.

Now, let D(X) ∩ (a, b) = ∅. If there are two distinct points x, y ∈
(X(n)∪F )∩(a, b), then by the definition of f on X(n)∪F , f(a, b)∩X1 ̸= ∅,
and this falls under the previous case. So it is enough to prove that there
are at least two distinct points of X(n) ∪ F in f t′(a, b) for some t′ ∈ N.

If (a, b) contains at most one point of X(n) ∪ F , then (a, b) can be
divided into at most four subintervals, on each of which f is linear. Choose
a maximal such subinterval, say (c, d). We have d − c ≥ 1

4 (b − a). Since
the modulus of the slope of the graph of f on (c, d) is greater than 4, we
have |f(d) − f(c)| > 4(d − c) ≥ (b − a). Thus, the length of the interval
f(a, b) is greater than the length of (a, b). By iterating, the length keeps
on increasing, until it contains at least two points of X(n) ∪ F ; i.e., the
cardinality of the set (X(n)∪F )∩f t′(a, b) is at least 2 for some t′ ∈ N. �

The following proposition shows that there are several sequences which
occur as trajectories of some interval maps in general, but not as trajec-
tories of chaotic interval maps. A subset Y of a topological space X is
said to be somewhere-dense in X if the closure of Y in X has non-empty
interior.

Proposition 2.4. Let (xn) be a sequence in [0, 1].

(1) If {xn : n ∈ N} is dense in [0, 1], then any interval map with (xn)
as a trajectory is chaotic.

(2) If {xn : n ∈ N} is somewhere-dense but not dense in [0, 1], then
no interval map with (xn) as a trajectory is chaotic.

Proof. The proof of the first statement is obvious from the fact that {xn :
n ∈ N} is a dense orbit of the map.
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Now suppose the set X = {xn : n ∈ N} is somewhere-dense but not
dense in [0, 1]. Let f be an interval map with (xn) as a trajectory. It
can be easily seen that the closure of any orbit is f -invariant, so X is
f -invariant. As X is somewhere-dense, we can choose a non-empty open
set U ⊂ X. Then fk(U) ⊂ X for every k ∈ N. Observe that [0, 1] \X is
a non-empty open set and fk(U)∩ ([0, 1] \X) = ∅ for every k ∈ N, which
shows that f is not transitive and thus not chaotic. �
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