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TREE-LIKE INVERSE LIMITS ON [0,1] WITH
INTERVAL-VALUED FUNCTIONS

M. M. MARSH

Abstract. We investigate dimension one, tree-likeness, and di-
mension greater than one in inverse limits on [0, 1] with interval-
valued bonding functions. Our investigation leads to some gener-
alizations of results of W. T. Ingram and to necessary conditions
and sufficient conditions for tree-likeness in this setting.

In recent papers [9], [10], [11], W. T. Ingram has determined a number
of sufficient conditions for inverse limits with set-valued bonding functions
to be 1-dimensional, and in many cases, to be tree-like. We generalize
some of Ingram’s results and establish necessary conditions and sufficient
conditions for tree-likeness of inverse limits on [0, 1] with interval-valued
bonding functions. We also establish necessary and sufficient conditions
for the emergence of dimension greater than one in the sets G′(f1, . . . , fn).
Our conditions involve the notion of flat spots for the bonding functions
and whether the flat spots compose to nondegenerate values of earlier
bonding functions in the inverse sequence. Ingram introduced these con-
cepts in the papers referenced above and he states at the end of section 3
in [11] that it would be interesting to know if the only way that the graph
of a composition of a sequence of interval-valued functions can have di-
mension greater than one is for some flat spot for a term of the inverse
sequence to iterate to a point where an earlier term of the sequence has
a nondegenerate value. Example 14 shows that this does not have to be
the case. That is, the graph of a composition can have dimension two
even though no flat spot composes to a nondegenerate value. However,
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our Corollary 23 shows that it is the only way for dimension greater than
one to appear in the sets G′(f1, . . . , fn).

In [3], Włodzimierz J. Charatonik and Robert P. Roe show that for
inverse sequences on finite dimensional continua with trivial shape, where
each continuum-valued bonding function has values with trivial shape,
the inverse limit space must have trivial shape. One dimensionality is
equivalent to tree-likeness for nondegenerate continua with trivial shape.
Since our setting is inverse limits on [0, 1] with upper semi-continuous
interval-valued bonding functions, it follows that determining if an inverse
limit is tree-like is equivalent to determining if its dimension is one. Along
the way, we establish results involving the emergence of dimension two
or greater in the set G′(f1, . . . , fn) when the set G′(f1, . . . , fn−1) has
dimension one.

It is known that having a flat spot of a bonding function compose to a
nondegenerate value of an earlier bonding function can introduce dimen-
sion two or greater into the sets G′(f1, . . . , fn), see, for example, Ingram’s
papers [10], [11]; in particular, see [11, Theorem 3.6] and [10, examples 5.1
and 5.3]. Also, see [2, §4] about inverse limits on straight quadrilaterals.
Our Theorem 6 points out the sufficiency of this occurrence.

All spaces considered in this paper will be compact metric spaces, re-
ferred to as compacta. A continuum is a connected compactum. A con-
tinuous function with be referred to as a mapping. For a compactum
X, dim(X) will denote covering dimension. In our setting, covering di-
mension is equivalent to inductive dimension (see [18, Theorem 15.2 and
Corollary 15.3] or [7, p. 67, Theorem V 8 and Corollary]), so we use
dimension theorems from both [7] and [18].

A function f : X → 2Y is upper semi-continuous at the point x ∈ X if,
for each open set V in Y containing the set f(x), there is an open set U
in X such that x ∈ U and f(p) ⊂ V for each p ∈ U . If f : X → 2Y is
upper semi-continuous at each point of X, then f is said to be upper semi-
continuous. A function f : X → 2Y is lower semi-continuous at x ∈ X
provided that whenever {xi} converges to x in X and y ∈ f(x), there
exists a sequence {yi} converging to y in Y with yi ∈ f(xi) for each i ≥ 1.

It will be convenient and natural, in our setting, to take the historical
point of view of considering a function f : X → 2Y to be a multi-valued
function (or transformation) from X to Y . This point of view is quite
common in mathematics, particularly in fixed point theory for multi-
valued functions, see [1], [4], [5], [20], [21], [22], [23], [24], [25], [26], [27],
[28].

It is typical, in the references in the previous paragraph, to say “f is a
multi-valued function from X to Y ” and to use the notation f : X → Y .
Following definitions from these references, given a multi-valued function
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f : X → Y , f(x) denotes a subset of Y . For A ⊂ X, let f(A) = {y ∈
Y | there exists x ∈ A such that y ∈ f(x)}. The multi-valued function
f : X → Y is surjective if f(X) = Y . The graph of f , which we denote
by G(f), is the set of points in X × Y consisting of points (x, y) with
y ∈ f(x).

A multi-valued function f : X → Y is continuous if, for each x ∈ X,
f(x) is closed in Y and, whenever a sequence {xn} converges to x0 in X,
the following two conditions are satisfied:

(1) If yn ∈ f(xn) for n ≥ 1, then the set {yn | n ≥ 1} has a limit point
in f(x0), and

(2) if y0 ∈ f(x0), then, for each n ≥ 1, there exists yn ∈ f(xn) such
that {yn} converges to y0.

This definition of continuous is equivalent to that used by Robert L.
Plunkett [22], Ronald H. Rosen [23], Wyman L. Strother [25], [26], L. E.
Ward, Jr. [27], and others. In our setting with closed set values f(x),
condition (1) is equivalent to upper semi-continuity of the associated func-
tion f : X → 2Y and condition (2) is equivalent to lower semi-continuity
of f : X → 2Y . See [23, p. 168] for these equivalences as well as some
others.

Several authors have observed that the multi-valued function f : X →
Y being upper semi-continuous and having closed values f(x) is equivalent
to having G(f) be closed. (See, for example, [4, §2, para. 1].) Ingram
proves this fact in [8, Theorem 1.2].

Note 1. We will hereafter refer to a multi-valued function f : X → Y
as a set-valued function. All set-valued functions in this paper will have
closed values f(x) and closed graphs G(f) and thus will be upper semi-
continuous.

Let X1, X2, . . . be a sequence of compacta. Our setting will be the
product space

∏
n≥1 Xn with the usual metric. Our focus will be sub-

compacta of
∏

n≥1 Xn that are inverse limits of inverse sequences X1
f1←−

X2
f2←− X3

f3←− . . ., where the bonding functions are set-valued and sur-
jective. This point of view allows that the sequence above is indeed an
inverse sequence with generalized functions “ bonding” points in the factor
spaces. Ordinarily, inverse sequences have mappings that “ bond” points
in the factor spaces. Hereafter, we let {Xn, fn} denote an inverse sequence
with set-valued bonding functions and its inverse limit is given by

lim
←−
{Xn, fn} = {x = (x1, x2, . . .) ∈

∏
n≥1

Xn | xn ∈ fn(xn+1) for n ≥ 1}.

For j,m ∈ N with j ≤ m, we define the set below.
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Gm+1
j = G′(fj , . . . , fm) = {x ∈

m+1∏
i=j

Xi | xi ∈ fi(xi+1) for j ≤ i ≤ m}.

For j = 1, our set Gm+1
1 is the same set as G′(f1, . . . , fm) in [8, p. 17].

Some of our results and proofs gain clarity by using both superscripts and
subscripts on G. See, for example, Theorem 5.

For consistency of notation in theorems that follow, if 1 ≤ k ≤ m+1, we
let Gk

k = Xk. The notation X
T
≈ Y will indicate that X is homeomorphic

to Y .
Fix 1 ≤ j < m + 1. Since

∏j
i=1 Xi ×

∏m+1
i=j+1 Xi

T
≈

∏m+1
i=1 Xi un-

der the homeomorphism defined by h((x1, . . . , xj), (xj+1, . . . , xm+1)) =
(x1, . . . , xj , xj+1, . . . , xm+1), we will make no distinction between these
spaces or between subsets M and h(M) of the two.

For 1 ≤ j ≤ k < m+1, we denote the set-valued composition function
fk◦fk+1◦. . .◦fm : Xm+1 → Xk by fk,m+1, and we let Fk : G

m+1
k+1 → Gk

j be
the set-valued function defined by (xj , xj+1, . . . , xk) ∈ Fk(xk+1, . . . , xm+1)

if and only if (xj , . . . , xm+1) is in Gm+1
j . We note that G(F−1k )

T≈ Gm+1
j .

For j = 1 and k = m, our function Fm : Xm+1 → Gm
1 is the same as Van

Nall’s function Fm [19, p. 8]. In order to have a simple notation for the
map Fk, one must note, in application, the beginning and ending sub-
scripts of the factor spaces involved in the definition. At the introduction
of such a function Fk, we will always indicate the domain and range of
Fk in order to clarify the factor spaces involved. We will often say, “ Let
Fk : G

m+1
k+1 → Gk

j be given.”
For j ≥ 1, let πj :

∏∞
i=1 Xi → Xj denote jth-coordinate projection and

for k ̸= j, let πj,k :
∏∞

i=1 Xi → Xj×Xk denote projection into the jth and
kth factors. It will be useful to also let πj :

∏m
i=k Xi → Xj denote jth-

coordinate projection for any finite subsequence {k, k + 1, . . . ,m− 1,m}
of N with k < m and k ≤ j ≤ m.

At this point, it is worth reiterating that fi, fi,j , and Fk : G
m+1
k+1 →

Gk
j denote set-valued functions with closed graphs and we have the set

inclusions G(fi) ⊂ Xi+1×Xi, G(fi,j) ⊂ Xj×Xi, and G(F−1k )
T
≈ Gm+1

j ⊂∏m+1
i=j Xi.
If A ⊂ Xi+1 for some i ≥ 1, let fi|A be the set-valued function whose

domain is A and such that fi|A(x) = fi(x) for x ∈ A. If A ⊂ Xm+1, let
Gm+1

j |A = {z ∈ Gm+1
j | πm+1(z) ∈ A}. Also note that

(∗) Gm+1
j |A = G′(fj |fj+1,m+1(A), . . . , fm−1|fm,m+1(A), fm|A).
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A set-valued function f : [0, 1]→ X has a flat spot (at p ∈ X) if there
exists a point p ∈ X and a nondegenerate interval [a, b] ⊂ [0, 1] such that
[a, b] × {p} ⊂ G(f). We say that [a, b] × {p} is a flat spot of f . Suppose
{fi : [0, 1]→ [0, 1]}mi=1 is a finite inverse sequence of set-valued functions.
A flat spot at p of fj composes to a nondegenerate value of fi in the
composition fi ◦ fi+1 ◦ . . . ◦ fj if fi(p) is nondegenerate for i = j − 1 and
if there exists a point q in fi+1,j(p) such that fi(q) is nondegenerate for
i < j − 1.

A set-valued function f : X2 → X1 is continuum-valued if, for each
x ∈ X2, the set f(x) is connected in X1.

Observation 2 is [8, Theorem 2.5].

Observation 2. If f : X2 → X1 is a continuum-valued function and X2

is connected, then G(f) is connected.

Observation 3. Suppose that X1, X2, . . . , Xm+1 are compacta and for
each 1 ≤ i ≤ m, fi : Xi+1 → Xi is a surjective set-valued function. Then
for 1 ≤ i < k ≤ m+ 1, G(f−1i,k ) = πi,k(G

k
i ) = πi,k(G

m+1
1 ).

Proof. The proof is straightforward. �
Observation 4. Suppose that X1, X2, . . . , Xm+1 are finite dimensional
continua with trivial shape, and for each 1 ≤ i ≤ m, fi : Xi+1 → Xi is
a surjective continuum-valued function, each of whose values has trivial
shape. If 1 ≤ i ≤ k ≤ m + 1 and dim(Gk

i ) = 1, then Gk
i is a tree-like

continuum.

Proof. That Gk
i is a continuum follows from [8, Theorem 2.6]. By [3, proof

of Theorem 2], Gk
i has trivial shape. Since, by hypothesis, dim(Gk

i ) = 1,
it follows that Gk

i is tree-like. �
Theorem 5. Suppose that X1, X2, . . . , Xm+1 are continua and for each
1 ≤ i ≤ m, fi : Xi+1 → Xi is a surjective continuum-valued function.
Then, for 1 ≤ j ≤ k < m+ 1, the set-valued function Fk : G

m+1
k+1 → Gk

j is
continuum-valued.

Proof. We use induction on the number of bonding functions in the se-
quence fj , . . . , fm. If j = m, then k = j. So we have one bonding function
fm and we have that Fm : Gm+1

m+1 = Xm+1 → Gm
m = Xm is the same func-

tion as fm, which is continuum-valued by assumption. Assume j < m
and the theorem is true whenever there are fewer than m+1− j bonding
functions.

For j ≤ k ≤ m and (xk+1, . . . , xm+1) ∈ Gm+1
k+1 , we have that the set

Fk(xk+1, . . . , xm+1)
T
≈ Gk

j |fk(xk+1). Since fk(xk+1) is a continuum and
Fk−1 : G

k
k = Xk → Gk−1

j is continuum-valued by inductive assumption,
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it follows from Observation 2 that Gk
j |fk(xk+1) is a continuum. So Fk is

continuum-valued. �

Corollary 6. Suppose that X1, X2, . . . , Xm+1 are finite dimensional con-
tinua with trivial shape, and for each 1 ≤ i ≤ m, fi : Xi+1 → Xi is
a surjective continuum-valued function, each of whose values has trivial
shape. Suppose also that dim(Gm+1

1 ) = 1. Then, for 0 ≤ k < m + 1,
Gm+1

k+1 is tree-like. So if dim(Gn
1 ) = 1 for all 1 ≤ n ≤ m+ 1, then for all

1 ≤ i ≤ j ≤ m+ 1, Gj
i is tree-like.

Proof. If k = 0, Gm+1
1 is tree-like by Observation 4. So assume that

k ≥ 1.
By Theorem 5, Fk : G

m+1
k+1 → Gk

1 is continuum-valued. It follows that
η : Gm+1

1 → Gm+1
k+1 is a monotone mapping, where η is projection onto

the (k + 1)th through (m + 1)th coordinates. By [17, Theorem 2.1], the
confluent image of a tree-like continuum is tree-like. Since monotone maps
are confluent, it follows that Gm+1

k+1 is tree-like.
It follows that if dim(Gn

1 ) = 1 for all 1 ≤ n ≤ m + 1, then for all
1 ≤ i ≤ j ≤ m+ 1, Gj

i is tree-like. �

Note 7. Hereafter, we consider only inverse sequences where each factor
space is [0, 1] and each set-valued bonding function fi : [0, 1] → [0, 1] is
interval-valued. We consider a point to be a degenerate interval. We
let [0, 1]kj =

∏k
i=j [0, 1]. The notation [0, 1]j will denote [0, 1] as the jth

factor in a product [0, 1]m+1
1 or [0, 1]∞1 . In this setting, all sets Gj

i =
G′(fi, . . . , fj) and inverse limits are continua; see [8, theorems 2.6 and
2.7].

Remark 8. The following lemmas, theorems, and corollaries preceding
Theorem 22 remain valid if each factor space [0, 1] is replaced with an ar-
bitrary real number interval, so long as the largest indexed factor (usually
m+ 1) is nondegenerate.

Lemma 9. Let f : [0, 1]m+1 → [0, 1]m1 be a continuum-valued function.
Let M = {t | f(t) is nondegenerate}. If dim(πi,m+1G(f−1)) = 1 for each
1 ≤ i ≤ m, then for t ∈M , f is not lower semi-continuous at t.

Proof. We think of G(f−1) as a subset of [0, 1]m+1
1 . The proof is similar

to [11, proof of Theorem 3.2]. Let t ∈ M . Since f(t) is a nondegenerate
continuum, there exists 1 ≤ i ≤ m such that πif(t) is a nondegenerate
interval [a, b]. Let p be the midpoint of the interval [a, b]. By hypothesis,
dim(πi,m+1G(f−1)) = 1. So no open set in [0, 1]i × [0, 1]m+1 is a subset
of πi,m+1G(f−1). Note that [a, b] × {t} ⊂ πi,m+1G(f−1). Let {Uj} be a
sequence of open sets in [0, 1]i× [0, 1]m+1 closing down on the point (p, t).
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For each j ≥ 1, let (zj , tj) be a point of Uj not in πi,m+1G(f−1). So, zj ̸∈
πif(tj) for each j ≥ 1. Since f(tj) is a continuum (possibly degenerate)
for each j ≥ 1, so is πif(tj). It follows that either πif(tj) ⊂ (zj , 1] or
πif(tj) ⊂ [0, zj). Assume, without loss of generality, that for all j ≥ 1,
πif(tj) ⊂ (zj , 1]. Since {zj} converges to p, it follows that there exists
k ∈ N and a < c ≤ b such that for all j ≥ k, πif(tj) ⊂ [c, 1]. Let y ∈ f(t)
so that πi(y) = a and for each j ≥ 1, let yj ∈ f(tj). Since for each j ≥ k,
πi(yj) ∈ [c, 1], it follows that {πi(yj)} does not converge to πi(y). Hence,
{yj} does not converge to y; i.e., f is not lower semi-continuous at t. �

Corollary 10. Let {fi : [0, 1] → [0, 1]}mi=1 be a finite inverse sequence
of surjective interval-valued functions. If dim(G(f−1i,m+1)) = 1 for each
1 ≤ i ≤ m, then Fm : Xm+1 → Gm

1 is not lower semi-continuous at each
point of M = {t | Fm(t) is nondegenerate}.

Proof. Corollary 10 follows immediately from Observation 3, Theorem 5,
Lemma 9, and the fact that G(F−1m )

T
≈ Gm+1

1 . �

The following corollary follows from [12, p. 71, Corollary 1].

Corollary 11. The set M in Lemma 9 and Corollary 10 is a 1st Category
set.

Observation 12 will be used frequently in the theorems and lemmas
that follow.

Observation 12. Let {fi : [0, 1]→ [0, 1]}mi=1 be a finite inverse sequence
of surjective interval-valued functions, and let Fm : Xm+1 → Gm

1 be given.
If H ⊂ Gm+1

1 such that H ⊂ Fm(t)×{t} for some t ∈ [0, 1]m+1, then H is
homeomorphic to a subset of Gm

1 . So if dim(Gm
1 ) ≤ 1, then dim(H) ≤ 1.

Proof. The range of the function Fm is Gm
1 . So Fm(t)× {t} ⊂ Gm

1 × {t},
and the observation follows. �

Theorem 13 generalizes [11, Theorem 4.2].

Theorem 13. Let {fi : [0, 1] → [0, 1]}mi=1 be an inverse sequence of sur-
jective interval-valued functions with dim(Gm

1 ) = 1. If, for each integer j
with 1 ≤ j ≤ m, dim(G(fj,m+1)) = 1, then dim(Gm+1

1 ) = 1.

Proof. Let Fm : Xm+1 → Gm
1 and let M = {t | Fm(t) is nondegenerate}.

Let G = Gm+1
1 . Recall that G(F−1m )

T≈ G. Since G is a nondegenerate
continuum, dim(G) ≥ 1. By corollaries 10 and 11, M is a 1st Category
set. Let C = [0, 1]m+1 −M . So C is dense in [0, 1]m+1.

Let G1 = G|C and G2 = G−G1. Since G1 is closed, it follows from [7,
p. 32, Corollary 1] that dim(G) ≤ max{dim(G1),dim(G2)}.
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Suppose dim(G2) ≥ 2. We note that if (x1, . . . , xm, t) ∈ G2, then
t ∈ M . Also, since G1 is closed in [0, 1]m+1

1 , G2 is open relative to G.
So G2 = U ∩G for some open set U in [0, 1]m+1

1 . Since U is a countable
union of closed sets Kn, we have that G2 = U ∩ G = (∪n≥1Kn) ∩ G =
∪n≥1(Kn ∩G). By [7, p. 30, Theorem III 2], dim(Kn ∩G) ≥ 2 for some
n ≥ 1. Since M is 0-dimensional [7, p. 22, D)], the components of G2 lie
in the disjoint sets G ∩ ([0, 1]m1 × {t}) = Fm(t) × {t} for t ∈ M . So the
components of Kn ∩G lie in the disjoint sets Fm(t)× {t} for t ∈ M . By
[7, p. 94, Theorem VI 8], there exists a continuum H in Kn∩G such that
dim H ≥ 2. But H ⊂ Fm(t) × {t} for some t ∈ M . So, by Observation
12, dim(H) ≤ 1, a contradiction. Thus, dim(G2) ≤ 1,

Suppose dim(G1) ≥ 2. Again, applying [7, p. 94, Theorem VI 8] as
in the previous paragraph, we get that some subcontinuum K of G1 has
dimension larger than one. If πm+1(K) is degenerate, then K is contained
in the fiber Fm(t) × {t} for {t} = πm+1(K), contradicting Observation
12.

So we assume that πm+1(K) = [a, b] for a ̸= b. Let p = (x1, . . . , xm, a)
and q = (y1, . . . , ym, b) be points of K. We observe that K is irreducible
between p and q. Suppose P is a subcontinuum of K that contains p
and q. Since, for each t ∈ C ∩ [a, b], (Fm(t), t) is a separating point of
G, it follows that (Fm(t), t) ∈ P . So G|C∩[a,b] ⊂ P . Thus, we have that
K ⊂ G|C∩[a,b] ⊂ P = P . So P = K.

By [13, Theorem 1], some fiber of K has dimension larger than one.
Again, we have a contradiction. So dim(G1) ≤ 1.

It follows that dim(G) = 1. �

The following example shows that the dimension of the graph of a
composition of bonding functions can be two, even though no flat spot
composes to a nondegenerate value. It also shows that the converse of
Theorem 13 does not hold and that having dim(G(fi,j)) = 1 for all i < j
is not a necessary condition for tree-likeness of the inverse limit (see [11,
Theorem 4.3]).

Example 14. Let C be the standard “middle thirds” Cantor set in [0, 1].
Let f1 : [0, 1] → [0, 1] be the interval-valued function defined by f1(t) =
[0, 1] for t ∈ C, and f1(t) is alternately 0 or 1 for t in components of
the complement of C of decreasing lengths. That is, f1(t) = 0 for t ∈
(1/3, 2/3), f1(t) = 1 for t ∈ (1/9, 2/9) ∪ (7/9, 8/9), etc. For a picture of
the graph of f1, see [12, p. 191, Figure 3].

Let f2 : [0, 1] → [0, 1] be the inverse of the standard Cantor mapping
g : [0, 1]→ [0, 1]; that is, f2 = g−1. For a picture of the graph of g, see [6,
p. 131, Figure 3–19].
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Clearly, dim(G(f1)) = 1 and dim(G(f2)) = 1. We point out that π1,2

maps G3
1 homeomorphically onto G(f−11 ). Suppose (r, s, t) and (r, s, c)

are in (π1,2)
−1(r, s)∩G3

1. Since (f2)
−1 is a mapping, it follows that t = c.

So π1,2|G3
1

is injective. Surjectiveness is clear. It follows that π1,2|G3
1

is a
homeomorphism. Hence, dim(G3

1) = 1.
We now observe that π1,3(G

3
1) = [0, 1]1 × [0, 1]3. Let (r, t) ∈ [0, 1]1 ×

[0, 1]3. There exists a point s ∈ C such that g(s) = t. By definition,
f1(s) = [0, 1]; so, r ∈ f1(s), (r, s, t) ∈ G3

1, and (r, t) ∈ π1,3(G
3
1).

We note that although dim(G(f−11,3 )) = 2, no flat spot of f2 composes
to a nondegenerate value of f1. By taking fi = id: [0, 1]→ [0, 1] for each

i ≥ 3, we have that lim
←−
{[0, 1], fi}

T
≈ G3

1 is tree-like. Thus, the converses
of Ingram’s theorems 4.2 and 4.3 in [11] do not hold.

Lemma 15. Let {fi : [0, 1] → [0, 1]}mi=1 be a finite inverse sequence of
surjective interval-valued functions and let Fm : Xm+1 → Gm

1 be given. If
dim(Gm+1

1 ) = 1, then Fm is not lower semi-continuous at each point of
M = {t | Fm(t) is nondegenerate}.
Proof. We use induction on the number of bonding functions. If m = 1,
the result follows from [11, Theorem 3.2]. Assume m > 1 and the theorem
is true for fewer than m bonding functions.

By Corollary 6, dim(Gm+1
2 ) = 1. Thus, by inductive assumption,

F ′m : Xm+1 → Gm
2 is not lower semi-continuous at each point t ∈ [0, 1]m+1

where F ′m(t) is nondegenerate. We use F ′m notation here to distinguish
from Fm in the statement of the lemma.

Let t ∈M .
Case 1. Suppose F ′m(t) is degenerate; let F ′m(t) = {x}. Since t ∈ M ,

f1π2(x) is nondegenerate; say f1π2(x) = [a, b]. Let p be the midpoint of
[a, b]. So (p, x) ∈ Fm(t). Let {(aj , bj)× Uj}∞j=1 be a sequence of product
open sets closing down on (p, (x, t)) in [0, 1]×Gm+1

2 . Since dim(Uj) = 1
for j ≥ 1, by Hurewicz’s Product Theorem (see [18, p. 127]) and by [18,
Theorem 20.2], it follows that dim((aj , bj) × Uj) = 2 for j ≥ 1. Since
dim(Gm+1

1 ) = 1, there exists, for each j ≥ 1, a point (sj , (xj , tj)) in
(aj , bj)× Uj that is not in Gm+1

1 . Also, {(xj , tj)} converges to (x, t) and
{sj} converges to p.

Hereafter, the argument follows analogously to the second half of the
proof of Lemma 9. For clarity, we complete the argument. We have
that, for j ≥ 1, (xj , tj) ∈ Gm+1

2 , but sj ̸∈ f1π2(xj). Since f1π2(xj)
is an interval for each j ≥ 1, we have that either f1π2(xj) ⊂ (sj , 1] or
f1π2(xj) ⊂ [0, sj) for each j ≥ 1. Assume, without loss of generality, that
for all j ≥ 1, f1π2(xj) ⊂ (sj , 1]. Since {sj} converges to p, it follows that
there exist k ∈ N and a < c ≤ b such that for all j ≥ k, f1π2(xj) ⊂ [c, 1].
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For j ≥ 1, let (rj , xj) ∈ Fm(tj); so rj ≥ c for each j ≥ k. It follows that
{(rj , xj)} does not converge to (a, x) and {((rj , xj), tj)} does not converge
to ((a, x), t). So Fm is not lower semi-continuous at t.

Case 2. Suppose F ′m(t) is nondegenerate. Since F ′m is not lower
semi-continuous at t, there exists a point y in F ′m(t) and a sequence {tj}
converging to t such that whenever yj ∈ F ′m(tj) for j ≥ 1, {yj} does not
converge to y. Let (s, y) ∈ Fm(t). Then whenever (sj , yj) ∈ Fm(tj) for
j ≥ 1, {(sj , yj)} does not converge to (s, y). That is, Fm is not lower
semi-continuous at t. �

Corollary 16. The set M in Lemma 15 is a 1st Category set.

A continuum is hereditarily unicoherent if the intersection of each pair
of its subcontinua is connected. A continuum is decomposable if it can
be written as the union of two proper subcontinua; otherwise, it is in-
decomposable. A continuum X is hereditarily divisible by points if each
subcontinuum K of X contains a point that separates K. A continuum
X is a λ-dendroid if X is hereditarily decomposable and hereditarily uni-
coherent.

Theorem 17. If {fi : [0, 1] → [0, 1]}mi=1 is a finite inverse sequence of
surjective interval-valued functions and dim(Gn

1 ) = 1 for each 1 ≤ n ≤
m+ 1, then Gm+1

1 is a λ-dendroid, as is Gn
1 for each 1 ≤ n ≤ m+ 1. In

fact, Gj
i is a λ-dendroid for all 1 ≤ i ≤ j ≤ m+ 1.

Proof. By T. Maćkowiak [14, (2.16)], if a continuum is hereditarily divis-
ible by points, then it is a λ-dendroid. We use induction on m to show
that Gm+1

1 is hereditarily divisible by points. If m = 0, then by notational
convention, G1

1 = [0, 1]. Clearly, [0, 1] is hereditarily divisible by points.
Assume true for m ≥ 0. From Theorem 5, the map Fm : [0, 1]→ Gm

1 is
continuum-valued. By inductive assumption, Gm

1 is hereditarily divisible
by points.

Let H be a nondegenerate subcontinuum of Gm+1
1 . If, for some t,

H ⊂ Fm(t) × {t}, then, by Observation 12, H is homeomorphic to a
subcontinuum of Gm

1 . By inductive assumption, H has a separating point.
So, assume that s, t ∈ πm+1(H) with s ̸= t. By Corollary 16, there

exists r such that s < r < t and Fm(r) is degenerate. So H meets
[0, 1]m1 × {r} only at the point (Fm(r), r). It follows that (Fm(r), r) is a
separating point of H. So Gm+1

1 is hereditarily divisible by points and
thus, Gm+1

1 is a λ-dendroid. It follows that Gn
1 is a λ-dendroid for each

1 ≤ n ≤ m+ 1.
Lastly, let 1 ≤ i ≤ j ≤ m + 1. By Theorem 5, Fi−1 : G

j
i → Gi−1

1

is continuum-valued. It follows that η : Gj
1 → Gj

i is monotone, where
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η is projection onto coordinates i through j. By [14, (7.24)], the semi-
confluent image of a λ-dendroid is a λ-dendroid. Since Gj

1 is a λ-dendroid
and monotone maps are semi-confluent, it follows that Gj

i is also a λ-
dendroid. �

A mapping f : X → Y has a fixed point if there exists a point x ∈ X
such that f(x) = x. A continuum X has the fixed point property if each
mapping of X to itself has a fixed point.

Let {Xi, fi}i≥1 be an inverse sequence of compacta with surjective
set-valued bonding functions. The following definition was introduced in
[16, p. 244]. Suppose there exists k ∈ N such that, for i ≥ k, there exists
Yi ⊂ Xi and a set-valued function gi : Yi+1 → Xi such that G(gi) ⊂ G(fi),
Yi ⊂ gi(Yi+1), and g−1i : gi(Yi+1) → Xi+1 is a mapping. Then we say
that {gi}i≥k is a k-tail sequence of inverse mappings. If, for each i ≥ k,
gi(Yi+1) = Xi, then we say that {gi}i≥k is a surjective k-tail sequence.
Simply stated, the existence of a surjective k-tail sequence implies that for
all i ≥ k, the graph of fi contains the graph of the inverse of a mapping
from Xi into Xi+1.

Corollary 18. Suppose X = lim
←−
{[0, 1], fi}, where for each i ≥ 1, fi is a

surjective interval-valued function and dim(Gi
1) = 1. If, for some k ≥ 1,

there exists a surjective k-tail sequence {gi}i≥k of inverse mappings, then
X has the fixed point property.

Proof. By Theorem 17, for each n ≥ 1, Gn
1 is a λ-dendroid. Since λ-

dendroids have the fixed point property [15], the result follows immedi-
ately from [16, Corollary 2.4]. �

Corollary 18 gives an answer to [8, Problem 6.54] and also shows that
[10, Example 5.5] and [11, Example 6.1] have the fixed point property.

Question 19. Do all tree-like continua obtainable as inverse limits on
[0, 1] with interval-valued functions have the fixed point property?

The following lemma is a generalization of [11, Theorem 3.5].

Lemma 20. If X is a 1-dimensional, hereditarily unicoherent continuum,
f : [0, 1] → X is a continuum-valued function, and dim(G(f)) = 1, then
{x ∈ X | dim(f−1(x)) = 1} is countable.

Proof. The proof is similar to [11, proof of Theorem 3.5]. Let x1 and
x2 be two points of X, and let J1 and J2 be nondegenerate intervals in
f−1(x1) and f−1(x2), respectively. Since X is hereditarily unicoherent,
there is a unique irreducible continuum L in X containing x1 and x2.

For each point t in J1 ∩ J2, f(t) is a continuum in X. Also, x1 ∈ f(t)
and x2 ∈ f(t), so L ⊂ f(t). If J1 ∩ J2 is a nondegenerate interval, it
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follows that dim((J1 ∩ J2) × L) = 1 + dim(L) = 2 (see [18, p. 127] and
[18, Theorem 20.2]). Also, (J1 ∩ J2) × L ⊂ G(f), a contradiction. The
result follows. �

The following theorem is a generalization of [11, Theorem 4.2].

Theorem 21. Let {fi : [0, 1] → [0, 1]}mi=1 be an inverse sequence of sur-
jective interval-valued functions. If dim(Gm

1 ) = 1, dim(Gm+1
2 ) = 1, and

dim(G(f1,m+1)) = 1, then dim(Gm+1
1 ) = 1.

Proof. The basic idea of the proof is similar to [11, proof of Theorem 4.2].
Let H be a nondegenerate subcontinuum of Gm+1

1 .
Suppose πm+1(H) = {t} is degenerate. Let Fm : [0, 1]m+1 → Gm

1 be
given. Then H ⊂ Fm(t)× {t}, and, by Observation 12, dim(H) = 1.

Suppose πm+1(H) is nondegenerate; let πm+1(H) = [a, b]. We consider
the three term inverse sequence below with continuum-valued bonding
functions.

[0, 1]1
F1←− Gm

2

F ′
m←− [0, 1]m+1

Note that G′(F1, F
′
m)

T≈ Gm+1
1 and F1 ◦ F ′m = f1,m+1. Since the

dimension of G(f1,m+1) is one, it follows from [11, Corollary 3.3] that
{t | f1,m+1(t) is nondegenerate} is a 1st Category set. By hypothesis,
dim(Gm+1

2 ) = 1. So, by Corollary 16, {t | F ′m(t) is nondegenerate} is a
1st Category set.

So there exists a countable dense set of points {zi}, with a < zi < b
for each i ≥ 1, such that each of f1,m+1(zi) and F ′m(zi) is degenerate for
each i ≥ 1. Thus, for each i ≥ 1, {x ∈ H | πm+1(x) = zi} is a degenerate
set that separates H. Let xi be the point of H such that πm+1(xi) = zi
for i ≥ 1.

We will now show that each pair of points of H can be separated by a
0-dimensional subset of H. Let p and q be two points of H.

Suppose πm+1(p) < πm+1(q). Pick a point zi such that πm+1(p) <
zi < πm+1(q). Then xi separates H between p and q.

Suppose πm+1(p) = t = πm+1(q). Referring to the second paragraph
of this proof, we see that Ht = H ∩ (Fm(t)×{t}) is one dimensional, and
hence, there exists a 0-dimensional subset B of Ht that separates p from
q in Ht [18, Theorem 8.4]. It follows that B ∪ {xi}i≥1 separates p from q
in H. Since B ∪ {xi}i≥1 is 0-dimensional, dim(H) = 1.

Since Gm+1
1 does not contain a 2-dim subcontinuum, dim(Gm+1

1 ) = 1
[7, p. 94, Theorem VI 8]. �

Theorem 22. Let {fi : [0, 1] → [0, 1]}mi=1 be an inverse sequence of sur-
jective interval-valued functions. If dim(Gm

1 ) = 1, dim(Gm+1
2 ) = 1, and
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dim(Gm+1
1 ) ≥ 2, then there exist a 1-dimensional continuum A in Gm+1

2

and a nondegenerate interval [a, b] such that [a, b]×A ⊂ Gm+1
1 .

Proof. Let F ′m : [0, 1]m+1 → Gm+1
2 . Let M = {t | F ′m(t) is nondegenerate}

and let G = Gm+1
2 . Recall that G

T
≈ G((F ′m)−1). By Corollary 16, M is

a 1st Category set. Let C = [0, 1]m+1 −M . So C is dense in [0, 1]m+1.

Let G1 = G|C and G2 = G−G1. By hypothesis, dim(G) = 1, so both
G1 and G2 have dimension less than or equal to one.

Let H = Gm+1
1 ⊂ [0, 1]1 × G. Let H1 = H ∩ ([0, 1] × G1) and H2 =

H ∩ ([0, 1] ×G2). So H = H1 ∪H2 and H1 is closed in [0, 1]m+1
1 . By [7,

p. 32, Corollary 1], either dim(H1) ≥ 2 or dim(H2) ≥ 2.

Suppose dim(H2) ≥ 2. Since H1 is closed in [0, 1]m+1
1 , H2 is open

relative to H. So H2 = U∩H for some open set U in [0, 1]m+1
1 . Since U is a

countable union of closed sets Kn, we have that H2 = U∩H = (∪n≥1Kn)∩
H = ∪n≥1(Kn ∩ H). By [7, p. 30, Theorem III 2], dim(Kn ∩ H) ≥ 2
for some n ≥ 1. Since M is 0-dimensional, the components of H2 lie in
the disjoint sets [0, 1]1 × (G ∩ ([0, 1]m2 × {t})) = [0, 1]1 × F ′m(t) × {t} for
t ∈M . So the components of Kn ∩H lie in the disjoint sets Fm(t)× {t}
for t ∈M . As we have previously seen, there exists a subcontinuum K of
Kn ∩ H such that dim(K) ≥ 2. But by Observation 12, dim(K) ≤ 1, a
contradiction.

Suppose dim(H1) ≥ 2. Clearly, πm+1(G1) = [0, 1]m+1. Once again,
some subcontinuum K of H1 has dimension greater than one. If πm+1(K)
is degenerate, then K is contained in a fiber Fm(t) × {t} for {t} =
πm+1(K), contradicting Observation 12.

So we assume that πm+1(K) = [u, v] for u ̸= v. Let ρ : H → G denote
projection onto the second through (m+ 1)th coordinates. By definition,
ρ(H1|[u,v]) = G1|[u,v] and K ⊂ H1|[u,v], so ρ(K) ⊂ G1|[u,v]. Since ρ(K)
is a continuum and meets both F ′m(u) × {u} and F ′m(v) × {v}, ρ(K)
must contain G((F ′m)−1)|C∩[u,v]. Thus, G1|[u,v] ⊂ ρ(K). We have that
ρ(K) = G1|[u,v]. So G1|[u,v] is a continuum, and since C is dense in [u, v],
πm+1(G1|[u,v]) = [u, v]. It follows that dim(G1|[u,v]) = 1. The continuum
G1|[u,v] will be the 1-dimensional continuum A in the statement of the
theorem.

We also have that K ⊂ H1|[u,v] ⊂ H|[u,v] = Gm+1
1 |[u,v]. If Gm

1 |fm([u,v])

is degenerate, then fm([u, v]) is degenerate. So dim(Gm+1
1 |[u,v]) = 1 and

K ̸⊂ Gm+1
1 |[u,v]. Thus, Gm

1 |fm([u,v]) is nondegenerate and has dimension
one. So, by (∗) (see page 4 at bottom), Remark 8, and Theorem 21, we
have that dim(π1,m+1(H|[u,v])) = 2. Hence, there exist nondegenerate
intervals [a, b] and [c, d] such that [a, b] × [c, d] ⊂ π1,m+1(H|[u,v]). We
assume, without loss of generality, that [c, d] = [u, v].
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For each t ∈ C ∩ [u, v], we must have that [a, b] ⊂ f1(π2(F
′
m(t))), for

otherwise [a, b] × {t} ̸⊂ G(f−11,m+1)|[u,v] and thus, [a, b] × {t} ̸⊂ H|[u,v], a
contradiction. So [a, b]×G((F ′m)−1)|C∩[u,v]) ⊂ Gm+1

1 |[u,v] = H|[u,v].
So we get that

[a, b]×G1|[u,v] = [a, b]×G((F ′m)−1)|C∩[u,v])
⊂ [a, b]×G((F ′m)−1)|C∩[u,v])

⊂ Gm+1
1 = Gm+1

1 ,

which is the desired result. �

Corollary 23 is a necessary condition for the emergence of dimension
two or greater in Gm+1

1 .

Corollary 23. Let m ≥ 2 and let {fi : [0, 1] → [0, 1]}mi=1 be an inverse
sequence with surjective interval-valued functions. If dim(Gn

1 ) = 1 for
each 1 ≤ n ≤ m, dim(Gm+1

2 ) = 1, and dim(Gm+1
1 ) ≥ 2, then some flat

spot of fm composes to a nondegenerate value of f1.

Proof. Let Fm : [0, 1]m+1 → Gm
1 and F ′m : [0, 1]m+1 → Gm

2 be given. By
Theorem 22, there exist a 1-dimensional continuum A in Gm+1

2 and an
interval [a, b] such that [a, b] × A ⊂ Gm+1

1 . Again, by [18, Theorem 20.2
and p. 127], dim([a, b] × A) = 2. Suppose πm+1(A) is degenerate; let
πm+1(A) = {t}. Then A ⊂ F ′m(t)×{t}. So [a, b]×A ⊂ [a, b]×F ′m(t)×{t},
which is topologically a subset of Fm(t) × {t}. But by Observation 12,
dim(Fm(t)× {t}) ≤ 1, a contradiction. So πm+1(A) is nondegenerate; let
πm+1(A) = [u, v].

Suppose πi(A) is nondegenerate for some 2 ≤ i ≤ m. Assume i is the
largest such integer. Then πi(A) is an interval in [0, 1]i. Since [a, b]×A ⊂
Gm+1

1 , it follows that Fi−1(t) contains [a, b] for each t ∈ πi(A), where
Fi−1 : [0, 1]i → Gi−1

1 . So [a, b] × Gi
2|πi(A) ⊂ Gi

1|πi(A). By Corollary 6,
dim(Gi

2|πi(A)) = 1. So dim([a, b] × Gi
2|πi(A)) = 2. But by hypothesis,

dim(Gi
1) = 1, a contradiction.

Thus, πi(A) is degenerate for each 2 ≤ i ≤ m. Let A = {(p2, . . . , pm)}×
[u, v]. So fm has a flat spot at πm(A) = {pm}, specifically [u, v]×{pm} ⊂
G(fm). Also, f1(p2) is nondegenerate since [a, b] ⊂ f1(p2). Hence, a flat
spot of fm composes to a nondegenerate value of f1. �

Theorem 24 gives a sufficient condition for dim(Gm+1
1 ) to be greater

than one.

Theorem 24. Let m ≥ 2 and let {fi : [0, 1] → [0, 1]}mi=1 be an inverse
sequence with surjective interval-valued functions. If some flat spot [s, t]×
{xm} of fm composes to a nondegenerate value of fj for some 1 ≤ j < m,
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then Gm+1
j |[s,t] contains a two cell and dim(Gm+1

1 |[s,t]) ≥ 2. Hence, Gm+1
j

contains a two cell and dim(Gm+1
1 ) ≥ 2.

Proof. By hypothesis, there exists xj+1 ∈ fj+1,m(xm) such that fj(xj+1)
is a nondegenerate interval [a, b]. Also, there exists xj+2, . . . , xm−1 such

that (xj+1, . . . , xm−1, xm) is in Gm
j+1. Hence, [a, b] × [s, t]

T
≈ [a, b] ×

{xj+1}×. . .×{xm}×[s, t] is a subset of Gm+1
j |[s,t]. So, Gm+1

j |[s,t] contains a
two cell. By (∗) (see page 4 at bottom) and Corollary 6, dim(Gm+1

1 |[s,t]) ≥
2. It follows that Gm+1

j contains a two cell and dim(Gm+1
1 ) ≥ 2. �

Corollary 25. Let m ≥ 2 and let {fi : [0, 1] → [0, 1]}mi=1 be an in-
verse sequence with surjective interval-valued functions. Suppose that
dim(Gn

1 ) = 1 for each 1 ≤ n ≤ m, and that dim(Gm+1
2 ) = 1. Then

dim(Gm+1
1 ) ≥ 2 if and only if some flat spot of fm composes to a nonde-

generate value of fj for some 1 ≤ j < m.

Theorem 26 generalizes [10, Theorem 4.2] and gives sufficient condi-
tions for lim

←−
{[0, 1], fi} to be tree-like.

Theorem 26. Let {fi : [0, 1] → [0, 1]}∞i=1 be an inverse sequence with
surjective interval-valued bonding functions. If dim(G(fi)) = 1 for each
i ≥ 1, and for no j < m does a flat spot of fm compose to a nondegenerate
value of fj, then lim

←−
{[0, 1], fi} is a tree-like continuum.

Proof. We only need to show that lim
←−
{[0, 1], fi} is 1-dimensional. By way

of contradiction, suppose that dim(lim
←−
{[0, 1], fi}) ≥ 2. By [10, Theorem

3.3], dim(Gm+1
1 ) ≥ 2 for some m ≥ 1. Assume m is the least such integer.

If m = 1, then dim(G(f1)) = 2, contradicting the hypothesis. So, m ≥ 2.
Let j be the largest integer such that dim(Gm+1

j ) ≥ 2. If j = m, then
dim(G(fm)) ≥ 2, contradicting the hypothesis. So, j < m. It follows from
the hypothesis, our choice of m, and Corollary 6 that dim(Gn

j ) = 1 for
j ≤ n ≤ m. Also, dim(Gm+1

j+1 ) = 1 by choice of j. By Corollary 23, some
flat spot of fm composes to a nondegenerate value of fj , contradicting the
hypothesis. Therefore, dim(lim

←−
{[0, 1], fi}) = 1. By [3], lim

←−
{[0, 1], fi} has

trivial shape and thus is tree-like. �
Corollary 27 gives necessary conditions for lim

←−
{[0, 1], fi} to be 1-dimen-

sional, and therefore to be tree-like.

Corollary 27. Suppose {fi : [0, 1] → [0, 1]}∞i=1 is an inverse sequence
with surjective interval-valued bonding functions and dim(G(fi)) = 1 for
each i ≥ 1. If there exist integers j and m with j < m such that a
flat spot [s, t] × {xm} of fm composes to a nondegenerate value of fj,
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and there exists an (m+ 1)-tail sequence of inverse mappings {gi}i≥m+1

where the domain of g−1m+1 is a nondegenerate subinterval of [s, t], then
dim(lim

←−
{[0, 1], fi}) ≥ 2.

Proof. Suppose the domain of g−1m+1 is [u, v]. Note that [u, v] × {xm} is
a flat spot of fm that composes to a nondegenerate value of fj . So, by
Theorem 24, dim(Gm+1

1 |[u,v]) ≥ 2. By [16, Theorem 2.1], lim
←−
{[0, 1], fi}

contains a homeomorphic copy of Gm+1
1 |[u,v]. So dim(lim

←−
{[0, 1], fi}) ≥

2. �
Corollary 28. Suppose {fi : [0, 1] → [0, 1]}∞i=1 is an inverse sequence
with surjective interval-valued bonding functions and dim(G(fi)) = 1 for
each i ≥ 1. If there exist integers j and m with j < m such that a flat
spot [s, t] × {xm} of fm composes to a nondegenerate value of fj, and
there exists u ∈ [0, 1]m+2 such that fm+1(u)∩ [s, t] is nondegenerate, then
dim(lim

←−
{[0, 1], fi}) ≥ 2.

Proof. Let x = (x1, x2, . . .) be a point of lim
←−
{[0, 1], fi} where xm+2 = u.

Let fm+1(u) = [v, w] ⊂ [s, t]. We define an (m+1)-tail sequence of inverse
mappings {gi}i≥m+1 as follows. Let G(gm+1) = {u}× [v, w], and for each
i ≥ m+2, let G(gi) = {(xi+1, xi)}. We see that {gi}i≥m+1 is an (m+1)-
tail sequence of inverse mappings satisfying the conditions of Corollary
27, and hence, dim(lim

←−
{[0, 1], fi}) ≥ 2. �

Corollary 29. Suppose X = lim
←−
{[0, 1], fi}, dim(G(fi)) = 1 for each

i ≥ 1, and for each k ∈ N and each subinterval [s, t] of [0, 1]k, there is
a k-tail sequence {gi} of inverse mappings where the domain of g−1k is a
nondegenerate subinterval of [s, t]. Then X is tree-like if and only if for
no j < m does a flat spot of fm compose to a nondegenerate value of fj.

Corollary 30. Suppose X = lim
←−
{[0, 1], fi}, dim(G(fi)) = 1 for each i ≥

1, and there exists a surjective 3-tail sequence {gi} of inverse mappings.
Then X is tree-like if and only if for no j < m does a flat spot of fm
compose to a nondegenerate value of fj.

Question 31. Can the assumption of the existence of k-tail sequences
be omitted in corollaries 27, 28, 29, and 30?

As an application of Corollary 28, [10, examples 5.1, 5.2, and 5.6] are
immediately seen to have dimension larger than one. By Theorem 26, [10,
examples 5.3 and 5.5] and [11, Example 6.1] are seen to be tree-like.
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