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A FINITE PRESENTATION FOR THE AUTOMORPHISM

GROUP OF THE FIRST HOMOLOGY OF A

NON-ORIENTABLE SURFACE OVER Z2 PRESERVING

THE MOD 2 INTERSECTION FORM

RYOMA KOBAYASHI AND GENKI OMORI

Abstract. Let Aut(H1(Ng;Z2), ·) be the group of automorphisms
on the first homology group with Z2 coefficients of a closed non-
orientable surface Ng preserving the mod 2 intersection form. In
this paper, we obtain a finite presentation for Aut(H1(Ng;Z2), ·).
As an application we calculate the second homology group of
Aut(H1(Ng ;Z2), ·).

1. Introduction

For g ≥ 1 and n ≥ 0, let Ng,n be a compact connected non-orientable
surface of genus g with n boundary components (we denote Ng,0 by Ng)
and a bilinear form · : H1(Ng;Z2)×H1(Ng;Z2)→ Z2 the mod 2 intersec-
tion form on the first homology group H1(Ng;Z2) of Ng with Z2 coeffi-
cients. We represent Ng by a sphere with g crosscaps as in Figure 1; i.e.,
we regard Ng as a sphere with g boundary components and a Möbius band
attached to each boundary component. We define Aut(H1(Ng;Z2), ·) by
the subgroup of the automorphism group AutH1(Ng;Z2) of H1(Ng;Z2)
preserving the mod 2 intersection form · . Note that Aut(H1(Ng;Z2), ·)
is isomorphic to O(g,Z2) = {A ∈ GL(g,Z2) |

tAA = E} by taking the
basis {x1, x2, . . . , xg} for H1(Ng;Z2), where xi is a homology class of a
one-sided simple closed curve µi in Figure 1 and E is an identity matrix
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234 R. KOBAYASHI AND G. OMORI

of GL(g,Z2) (see [5]). By Mustafa Korkmaz [3] and Błażej Szepietowski
[12] we have isomorphisms.

Figure 1. Simple closed curves µ1, µ2, . . . , µg in Ng rep-
resenting the basis x1, x2, . . . , xg for H1(Ng;Z2), respec-
tively.

Let ai (i = 1, . . . , g−1, for g ≥ 2) and b (for g ≥ 4) ∈ Aut(H1(Ng;Z2), ·)
be the following elements:

ai :





xi 7→ xi+1,
xi+1 7→ xi,
xk 7→ xk (k 6= i, i+ 1),

b :





x1 7→ x2 + x3 + x4,
x2 7→ x1 + x3 + x4,
x3 7→ x1 + x2 + x4,
x4 7→ x1 + x2 + x3,
xk 7→ xk (k 6= 1, 2, 3, 4).

In this paper, we give a finite presentation for Aut(H1(Ng;Z2), ·).

Theorem 1.1. If g = 1, 2, 3, then Aut(H1(Ng;Z2), ·) is the following

group.

• Aut(H1(N1;Z2), ·) = 1,
• Aut(H1(N2;Z2), ·) =

〈
a1
∣∣a21 = 1

〉
∼= Z2,

• Aut(H1(N3;Z2), ·) =
〈
a1, a2

∣∣a21 = a22 = (a1a2)
3 = 1

〉
.

If g ≥ 4 is odd, g = 4 or 6, then Aut(H1(Ng;Z2), ·) admits a presentation

with generators a1, . . . , ag−1, b and relations

(1) a2i = b2 = 1 for i = 1, . . . , g − 1,
(2) (aiaj)

2 = 1 for g ≥ 4, |i− j| > 1,
(3) (aiai+1)

3 = 1 for g ≥ 3, i = 1, . . . , g − 2,
(4) (aib)

2 = 1 for g ≥ 4, i 6= 4,
(5) (a4b)

3 = 1 for g ≥ 5,
(6) (a2a3a4a5a6b)

12 = (a1a2a3a4a5a6b)
9 for g ≥ 7.

If g ≥ 8 is even, then Aut(H1(Ng;Z2), ·) admits a presentation with gen-

erators a1, . . . , ag−1, b, b0, . . . , b g−2

2

and relations (1)–(6) above and the fol-

lowing relations:

(7) b0 = a1, b1 = b, b2 = (a1a2a3a4a5b)
5,
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(8) bi+1 = (bi−1a2ia2i+1a2i+2a2i+3bi)
5(bi−1a2ia2i+1a2i+2a2i+3)

−6

for 2 ≤ i ≤ g−4
2 ,

(9) [ag−5, b g−2

2

] = 1.

We read every word of every group in this paper from right to left.
In §3, we will prove Theorem 1.1 for g ≥ 4. Theorem 1.1 is clear for
g = 1, 2. For g = 3, 4, Szepietowski [11, proof of Theorem 5.5] gave
the presentation for Aut(H1(Ng;Z2), ·). Note that Aut(H1(N3;Z2), ·) is
isomorphic to the dihedral group D6 and the symmetric group S3. By the
result of Korkmaz [3, Corollary 4.1] and Theorem 1.1, the first homology
group of Aut(H1(Ng;Z2), ·) is as follows:

H1(Aut(H1(Ng;Z2), ·);Z) =






0 for g = 1, g ≥ 7,〈
[a1]
〉
∼= Z2 for g = 2, 3, 5, 6,〈

[a1], [b]
〉
∼= Z2 ⊕ Z2 for g = 4.

Note that the above equality is known for g ≥ 7 odd (see, for instance,
[13]).

In §4, by using the presentation for Aut(H1(Ng;Z2), ·) obtained in The-
orem 1.1, we calculate the second homology group of Aut(H1(Ng;Z2), ·)
for g ≥ 9. We get the following theorem.

Theorem 1.2. For g ≥ 9 or g = 7, the second homology group of

Aut(H1(Ng;Z2), ·) is trivial.

Theorem 1.2 was shown by Michael R. Stein [8] for odd g (see Theorem
2.13 and Proposition 3.3(a)). More precisely, he provedH2(Sp(2h,Zm);Z)
= 0 when h ≥ 3 and m is not divisible by 4 (see also [1]).

We give a generating set for H2(Aut(H1(Ng;Z2), ·);Z) which consists of
one element x0 by an application of the discussion of Wolfgang Pitsch [7] to
prove Theorem 1.2. By using the generator of H2(Aut(H1(Ng;Z2), ·);Z)
and Stein’s result we show that x0 is trivial for g ≥ 9.

2. Preliminaries

Let α1, . . . , αg−1, β be two-sided simple closed curves on Ng as in Fig-
ure 2. Arrows on the side of simple closed curves in Figure 2 indicate
directions of Dehn twists along their simple closed curves. Since the ac-
tions of the Dehn twists along α1, . . . , αg−1, β induce a1, . . . , ag−1, b on
H1(Ng;Z2), respectively, we denote Dehn twists along α1, . . . , αg−1, β by
a1, . . . , ag−1, b and abuse of notation.

Let µ be a one-sided simple closed curve and α a two-sided simple
closed curve such that µ and α intersect transversely in one point. For the
simple closed curves µ and α, we denote by Yµ,α a self-diffeomorphism on
Ng which is described as the result of pushing the regular neighborhood of
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Figure 2. Simple closed curves α1, . . . , αg−1, β on Ng.

µ once along α (see Figure 3). We call Yµ,α a Y-homeomorphism. We set
the direction of Yµi,αj

(1 ≤ i ≤ g, 1 ≤ j ≤ g−1) by the orientation of αj in
Figure 2 and y := Yµ1,α1

. Note that the action of the Y-homeomorphism
on H1(Ng;Z2) is trivial.

Figure 3. The Y-homeomorphism on the regular neigh-
borhood of µ ∪ α.

The mapping class group M(Ng,n) of Ng,n is the group of isotopy
classes of self-diffeomorphisms on Ng fixing each boundary component
pointwise. In [6], Luis Paris and Szepietowski give a finite presentation
forM(Ng). The presentation has a generating set which consists of Dehn
twists along two-sided simple closed curves and “crosscap transpositions.”
In [10], Michaeł Stukow obtains a finite presentation for M(Ng) whose
generators are Dehn twists and a Y-homeomorphism. Stukow’s presenta-
tion is the following.

Theorem 2.1. If g ≥ 4 is odd or g = 4, then M(Ng) admits a pre-

sentation with generators a1, . . . , ag−1, b, y, and ρ. The defining relations

are

(A1) [ai, aj ] = 1 for |i− j| > 1,
(A2) aiai+1ai = ai+1aiai+1 for i = 1, . . . , g − 2,
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(A3) [ai, b] = 1 for i 6= 4,
(A4) a4ba4 = ba4b for g ≥ 5,
(A5) (a2a3a4b)

10 = (a1a2a3a4b)
6 for g ≥ 5,

(A6) (a2a3a4a5a6b)
12 = (a1a2a3a4a5a6b)

9 for g ≥ 7,
(B1) y(a2a3a1a2ya

−1
2 a−1

1 a−1
3 a−1

2 ) = (a2a3a1a2ya
−1
2 a−1

1 a−1
3 a−1

2 )y,
(B2) y(a2a1y

−1a−1
2 ya1a2)y = a1(a2a1y

−1a−1
2 ya1a2)a1,

(B3) [ai, y] = 1 for i = 3, . . . , g − 1,
(B4) a2(ya2y

−1) = (ya2y
−1)a2,

(B5) ya1 = a−1
1 y,

(B6) byby−1 = {a1a2a3(y
−1a2y)a

−1
3 a−1

2 a−1
1 }{a

−1
2 a−1

3 (ya2y
−1)a3a2},

(B7) [(a4a5a3a4a2a3a1a2ya
−1
2 a−1

1 a−1
3 a−1

2 a−1
4 a−1

3 a−1
5 a−1

4 ), b] = 1
for g ≥ 6,

(B8) {(ya−1
1 a−1

2 a−1
3 a−1

4 )b(a4a3a2a1y
−1)}{(a−1

1 a−1
2 a−1

3 a−1
4 )b−1(a4a3a2a1)}

= {(a−1
4 a−1

3 a−1
2 )y(a2a3a4)}{a

−1
3 a−1

2 y−1a2a3}{a
−1
2 ya2}y

−1

for g ≥ 5,
(C1a) (a1a2 · · · ag−1)

g = ρ for g odd,

(C1b) (a1a2 · · · ag−1)
g = 1 for g even,

(C2) [a1, ρ] = 1,
(C3) ρ2 = 1,

(C4a) (y−1a2a3 · · · ag−1ya2a3 · · · ag−1)
g−1

2 = 1 for g odd,

(C4b) (y−1a2a3 · · · ag−1ya2a3 · · · ag−1)
g−2

2 y−1a2a3 · · · ag−1 = ρ for g even,

where [X,Y ] = XYX−1Y −1. If g ≥ 6 is even, then M(Ng) admits a

presentation with generators a1, . . . , ag−1, y, b, ρ, and b0, . . . , b g−2

2

. The

defining relations are (A1)–(A6), (B1)–(B8), and (C1a)–(C4b) and the

following relations:

(A7) b0 = a1, b1 = b,
(A8) bi+1 = (bi−1a2ia2i+1a2i+2a2i+3bi)

5(bi−1a2ia2i+1a2i+2a2i+3)
−6

for 1 ≤ i ≤ g−4
2 ,

(A9a) [b2, b] = 1 for g = 6,
(A9b) [ag−5, b g−2

2

] = 1 for g ≥ 8.

Relations (A1) and (A3) are called disjointness relations and relations
(A2) and (A4) are called braid relations. When we deform relations (or
words) by disjointness relations and braid relations, we write “DI” and
“BR” on the left-right arrow (or the equality sign), respectively.

bi (2 ≤ i ≤ g−2
2 ) in the g even case of Theorem 2.1 is the Dehn twist

along a simple closed curve βi in Figure 4. The arrow on the side of the
simple closed curve βi in Figure 4 indicates the direction of the Dehn
twist bi. We note that Ng is diffeomorphic to a surface as in Figure 5
and we can choose the diffeomorphism such that simple closed curves
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Figure 4. Simple closed curves βi on Ng for 2 ≤ i ≤ g−2
2 .

Figure 5. A different view of simple closed curves
αi (1 ≤ i ≤ g − 1) and βj (0 ≤ i ≤ g−2

2 ) on Ng.

αi (1 ≤ i ≤ g − 1) in Figure 2 and βj (0 ≤ j ≤ g−2
2 ) in Figure 4 are sent

to a position in Figure 5.
Since the action ofM(Ng) on H1(Ng;Z2) preserves the mod 2 intersec-

tion form ·, we have a homomorphism ρ2 :M(Ng)→ Aut(H1(Ng;Z2), ·).
John D. McCarthy and Ulrich Pinkall [5] show that ρ2 is surjective.
Γ2(Ng) := kerρ2 is called the level 2 mapping class group of M(Ng).
Szepietowski [11] proves that Γ2(Ng) is generated by Y-homeomorphisms
for g ≥ 2. More precisely, Szepietowski [11, Lemma 3.6 and Theorem 5.5]
shows the following theorem.

Theorem 2.2. For g ≥ 2, Γ2(Ng) is normally generated by y inM(Ng).

We note that squares of Dehn twists along non-separating two-sided
simple closed curves are elements of Γ2(Ng). Hence, {a21, . . . , a

2
g−1, b

2, y}
is a normal generating set for Γ2(Ng) in M(Ng).

We now explain about the Tietze transformations. Let G be a group
with presentation G =

〈
X
∣∣R
〉
, where X is a subset of G and R is a

set consisting of words of elements of X . Then G is isomorphic to the
quotient group F/K, where F is the free group which is generated by X
and K is the normal subgroup of F which is normally generated by R.
Then the following transformations among presentations do not change
the isomorphism class of G.
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〈
X
∣∣R
〉
←→

〈
X
∣∣R ∪ {k}

〉
for k ∈ K −R,

←→
〈
X ∪ {v}

∣∣R ∪ {vw−1}
〉

for w ∈ F −X.

These transformations are called the Tietze transformations. In this pa-
per, we use these transformations without any comment when we deform
presentations (or relations).

3. Proof of Theorem 1.1 for g ≥ 4

By surjectivity of ρ2 :M(Ng)→ Aut(H1(Ng;Z2), ·) and the definition
of Γ2(Ng), we have the following short exact sequence.

1 −→ Γ2(Ng) −→M(Ng)
ρ2

−→ Aut(H1(Ng;Z2), ·) −→ 1.(3.1)

We have the finite presentation forM(Ng) (Theorem 2.1) and the nor-
mal generating set {a21, . . . , a

2
g−1, b

2, y} for Γ2(Ng) (Theorem 2.2). We can

get a presentation for Aut(H1(Ng;Z2), ·) by adding {a21, . . . , a
2
g−1, b

2, y}
to the relations of the presentation forM(Ng) in Theorem 2.1.

The relations a21 = · · · = a2g−1 = b2 = 1 are clearly nothing but relation
(1) in Theorem 1.1. By Claim 3.2 and relation (1), we have

(a1a2a3a4a5)
6 = (a21a2a3a4a5)

5

= (a2a3a4a5)
5

= (a22a3a4a5)
4

...

= a25

= 1.

Hence, we obtain the relation b2 = (a1a2a3a4a5b)
5 in relation (7) from

relation (A8) for i = 1. Relations (2), (3), (4), (5), and (9) in Theo-
rem 1.1 are obtained from relations (A1), (A2), (A3), (A4), and (A9b) in
Theorem 2.1 and relation (1).

Since y = 1 in Aut(H1(Ng;Z2), ·), relations (B1), (B3), (B4), (B7),
and (B8) are unnecessary. By using relation (1) and braid relations (The-
orem 2.1(A2) and (A4)), relations (B2), (B5), and (B6) are deformed as
follows.
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(B2)
y=1&(1)
⇐⇒ a2a1a2a1a2 = a1a2a1a2a1a2a1
BR
⇐⇒ a2a1a2a1a2 = a2a1a2a2a2a1a2
(1)
⇐⇒ a2a1a2a1a2 = a2a1a2a1a2.

(B5)
y=1
⇐⇒ a1 = a−1

1 ⇐⇒ (1).

(B6)
y=1&(1)
⇐⇒ 1 = a1a2a3a2a3a2a1a2a3a2a3a2
BR
⇐⇒ 1 = a1a3a2a3a3a2a1a2a3a3a2a3

⇐⇒ 1 = a1a3a1a3
(A1)&(1)
⇐⇒ 1 = a21.

Therefore, relations (B1), (B2), . . . , and (B8) drop out.

It is sufficient for proof of this theorem to show the following three
claims.

Claim 3.1. Relations (C1a) and (C4b) are equivalent to ρ = 1 under

y = 1, relations (1), (BR), and (DI). It allows us to rule out generator ρ
and relations (C1a), (C2), (C3), and (C4b) from the presentation.

Claim 3.2. Let G be a group and assume that g1, g2, . . . , gn ∈ G satisfy

relations

(BR) gigi+1gi = gi+1gigi+1 for i = 1, . . . , n− 1,
(DI) [gi, gj] = 1 for |i− j| > 1 .

Then we have a relation (g1g2 · · · gn)
n+1 = (g21g2 · · · gn)

n on G.

“BR” and “DI” means braid relations and disjointness relations, re-

spectively.

Claim 3.3. Relation (A9a) follows from relations (1), (2), (3), (4), and
(5).

We suppose that Claim 3.2 and Claim 3.3 are true.

Proof of Claim 3.1. Since y = 1 in Aut(H1(Ng;Z2), ·) and Aut(H1(Ng;Z2), ·)
has relations (C1a) and (C4b), ρ is represented by the form

ρ =

{
(a1a2 · · · ag−1)

g for g odd,
(a2 · · · ag−1)

g−1 for g even.

We get ρ = 1 by repeatedly applying Claim 3.2 and relation (1) to the
right-hand side of the above equation. For example, in g odd case,

ρ = (a1a2 · · · ag−1)
g Claim 3.2

= (a2 · · · ag−1)
g−1 Claim 3.2

= (a3 · · · ag−2)
g−2

Claim 3.2
= · · ·

Claim 3.2
= a2g−1

(1)
= 1.
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Thus, we obtain the claim. �

By Claim 3.1, relations (C2) and (C3) are unnecessary. By a discussion
similar to the proof of Claim 3.1, relations (C1b) and (C4a) are unnec-
essary, too. Therefore, relations (C1a), (C1b), (C2), (C3), (C4a), and
(C4b) drop out. For relation (A5), we apply Claim 3.2 as follows.

(A5)⇐⇒ (a2a3a4b)
10 = (a1a2a3a4b)

6 Claim 3.2
⇐⇒ (a2a3a4b)

10 = (a2a3a4b)
5

⇐⇒ (a2a3a4b)
5 = 1

Claim 3.2
⇐⇒ · · ·

Claim 3.2
⇐⇒ b2 = 1⇐⇒ (1).

We have completed the proof of Theorem 1.1 without proofs of Claim 3.2
and Claim 3.3.

Proof of Claim 3.2.

(g1g2 · · · gn)
n+1 = (g1g2 · · · gn)(g1g2 · · · gn) · · · (g1g2 · · · gn).

Let Ai (i = n + 1, n, . . . , 1) be the i-th sequence (g1g2 · · · gn) from
the right in the right-hand side. By using disjointness relations and braid
relations, the above equation is deformed as follows.

(g1g2 · · · gn)
n+1 = An+1An · · ·A1

= (g1g2 · · · gn−1gn)AnAn−1 · · ·A1

DI
= (g1g2 · · · gn−1)(g1g2 · · · gn−2gngn−1gn)An−1 · · ·A1

BR
= (g1g2 · · · gn−1)(g1g2 · · · gn)gn−1An−1 · · ·A1.

We replace the first sequence (g1g2 · · · gn) from the left in the bottom with
An. Then we have

(g1g2 · · · gn)
n+1

= (g1g2 · · · gn−1)Angn−1An−1 · · ·A1

DI
= (g1g2 · · · gn−1)An(g1g2 · · · gn−3gn−1gn−2gn−1gn)An−2 · · ·A1

BR
= (g1g2 · · · gn−1)An(g1g2 · · · gn−3gn−2gn−1gn−2gn)An−2 · · ·A1

DI
= (g1g2 · · · gn−1)An(g1g2 · · · gn)gn−2An−2 · · ·A1.
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We replace the second sequence (g1g2 · · · gn) from the left in the bottom
with An−1 and repeat it. Then we have

(g1g2 · · · gn)
n+1 = (g1g2 · · · gn−1)AnAn−1gn−2An−2 · · ·A1

= (g1g2 · · · gn−1)AnAn−1An−2gn−3An−3 · · ·A1

...

= (g1g2 · · · gn−1)An · · ·A2g1A1

= (g1g2 · · · gn−2)Angn−2An−1 · · ·A2g1A1

...

= (g1g2 · · · gn−2)An · · ·A3g1A2g1A1

...

= g1An · · · g1A3g1A2g1A1

= (g21g2 · · · gn)
n.

Thus, we obtain the claim. �

Proof of Claim 3.3. Note that b2 = (a1a2a3a4a5b)
5. We first show the

following.

(a) ai(a1a2a3a4a5b) = (a1a2a3a4a5b)ai−1 for i = 2, 3, 4.
(b) b(a1a2a3a4a5b) = (a1a2a3a4a5b)a4a5a4.
(c) a5(a1a2a3a4a5b) = (a1a2a3a4a5b)a4ba4.

Relation (a) is obtained by an argument similar to the proof of Claim 3.2.
The other relations are obtained by the following deformations.

(b) b(a1a2a3a4a5b)
DI
= a1a2a3ba4ba5

BR
= a1a2a3a4ba4a5

(1)
= a1a2a3a4b(a5a5)a4a5

BR
= (a1a2a3a4a5b)a4a5a4.

(c) a5(a1a2a3a4a5b)
DI
= a1a2a3a5a4a5b

BR
= a1a2a3a4a5a4b

(1)
= a1a2a3a4a5(bb)a4b

BR
= (a1a2a3a4a5b)a4ba4.

We now prove bb2 = b2b by using only relations (a), (b), (c), (1), and
disjointness relations. It means the relation bb2 = b2b is unnecessary.
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bb2 = b(a1a2a3a4a5b)
5

(b)
= (a1a2a3a4a5b)a4a5a4(a1a2a3a4a5b)

4

(a),(c)
= (a1a2a3a4a5b)

2a3a4ba4a3(a1a2a3a4a5b)
3

(a),(b)
= (a1a2a3a4a5b)

3a2a3a4a5a4a3a2(a1a2a3a4a5b)
2

(a),(c)
= (a1a2a3a4a5b)

4a1a2a3a4ba4a3a2a1(a1a2a3a4a5b)

(1)
= (a1a2a3a4a5b)

4a1a2a3a4ba5b

DI
= (a1a2a3a4a5b)

5b

= b2b.

Thus, we obtain the claim. �

4. The Second Homology Group of Aut(H1(Ng;Z2), ·)

In this section, we prove Theorem 1.2. First, we obtain a generating
set for H2(Aut(H1(Ng;Z2), ·);Z) when g ≥ 9 by using the Hopf formula
and applying the discussion of Pitsch [7]. More precisely, we obtain the
following proposition.

Proposition 4.1. For g ≥ 9, H2(Aut(H1(Ng;Z2), ·);Z) is generated by

one element x0 which is represented by the following element:

A−7B−2
1 B−4

2 B−6
3 B4

4B
2
5B

12C2,

where A, Bi (i = 1, . . . , 5), B, and C are the following.

A := b2,

Bi := aiai+1aia
−1
i+1a

−1
i a−1

i+1,

B := ba4ba
−1
4 b−1a−1

4 ,

C := (a2a3a4a5a6b)
6(a−1

2 a−1
3 a−1

4 a−1
5 a−1

6 b−1)6(a1a2a3a4a5a6b)
−4

·(a−1
1 a−1

2 a−1
3 a−1

4 a−1
5 a−1

6 b−1)−5.

Now we recall the classical Hopf formula. Let G be a group with finite
presentation G =

〈
X
∣∣R
〉
, where X is a finite subset of G and R is a finite

set consisting of words of the elements of X . Then G is isomorphic to the
quotient group F/K, where F is the free group which is generated by X
and K is the normal subgroup of F which is normally generated by R.
The classical Hopf formula states that

H2(G;Z) ∼=
K ∩ [F, F ]

[K,F ]
.
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We remark that (K ∩ [F, F ])/[K,F ] is an abelian group and any element
of (K ∩ [F, F ])/[K,F ] is represented by a product of commutators of
elements of F and by a product of conjugations of elements of R on F .
Since fkf−1 ≡ k in K/[K,F ] for any f ∈ F and k ∈ K, every element of
H2(G;Z) is represented by Π rni

i , where R = {r1, . . . , rN} and ni ∈ Z.
We modify the presentation for Aut(H1(Ng;Z2), ·) for g ≥ 9 in Theo-

rem 1.1 to easily apply the Hopf formula to Aut(H1(Ng;Z2), ·).
At first we know that Aut(H1(Ng;Z2), ·) admits a presentation with

generators a0, a1, . . . , ag−1 and relators

(1) a2i for i = 0, . . . , g − 1,
(2) [ai, aj ] for “j − i > 1 and i 6= 0” or “i = 0 and j 6= 4,”

(3) aiai+1aia
−1
i+1a

−1
i a−1

i+1 for i = 1, . . . , g − 2 a0a4a0a
−1
4 a−1

0 a−1
4 ,

(4) (a2a3a4a5a6a0)
6(a−1

2 a−1
3 a−1

4 a−1
5 a−1

6 a−1
0 )6(a1a2a3a4a5a6a0)

−4

(a−1
1 a−1

2 a−1
3 a−1

4 a−1
5 a−1

6 a−1
0 )−5,

(5) [ag−5, b g−2

2

] for g ≥ 8 even,

where a0 = b and b g−2

2

is inductively defined as b1 = a0, b2 = (a1a2a3a4a5b)
5,

and bi+1 = (bi−1a2ia2i+1a2i+2a2i+3bi)
5(bi−1a2ia2i+1a2i+2a2i+3)

−6 for 2 ≤
i ≤ g−4

2 .

Lemma 4.2. In the above presentation, relators a21, . . . , a
2
g−1 in (1) are

unnecessary.

Proof. By relator (3), we can write a1, . . . , ag−1 as conjugations of a0 in
Aut(H1(Ng;Z2), ·) inductively, as follows.

a4 = a0a4a0a
−1
4 a−1

0 ,

a5 = a4a5a4a
−1
5 a−1

4 , a3 = a4a3a4a
−1
3 a−1

4 ,

a6 = a5a6a5a
−1
6 a−1

5 , a2 = a3a2a3a
−1
2 a−1

3 ,

... a1 = a2a1a2a
−1
1 a−1

2 .

ag−1 = ag−2ag−1ag−2a
−1
g−1a

−1
g−2,

Thus, a21, · · · , a2g−1 are conjugations of a20 in Aut(H1(Ng;Z2), ·). �
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We set

A := a20,

Di,j := [ai, aj ],

Bi := aiai+1aia
−1
i+1a

−1
i a−1

i+1,

B := a0a4a0a
−1
4 a−1

0 a−1
4 ,

C := (a2a3a4a5a6a0)
6(a−1

2 a−1
3 a−1

4 a−1
5 a−1

6 a−1
0 )6(a1a2a3a4a5a6a0)

−4

(a−1
1 a−1

2 a−1
3 a−1

4 a−1
5 a−1

6 a−1
0 )−5,

D := [ag−5, b g−2

2

].

Then any element x of H2(Aut(H1(Ng;Z2), ·);Z) is represented by

x = An

(
∏

(∗)

D
ni,j

i,j

)(
g−2∏

i=1

Bmi

i

)
BmClDl′ ,

where n, ni,j ,mi,m, l, l′ ∈ Z, and (∗) means the condition “j − i > 1 and
i 6= 0” or “i = 0 and j 6= 4.”

Definition 4.3. Let G and F be groups which are given in the Hopf
formula. For g, h ∈ F such that [g, h] = 1 in G, we denote by {g, h} the
equivalence class of the commutator [g, h] ∈ [F, F ] in H2(G;Z).

Korkmaz and András Stipsicz [4, Lemma 3.3] give the following re-
lations in H2(G;Z). For g, h, k ∈ G such that g commutes with h and
k,

(I) {g, hk} = {g, h}+ {g, k},

(II) {g, h−1} = −{g, h}.

Note that relation (I) is obtained from relation (II).
Let T (Ng,n) be the subgroup ofM(Ng,n) generated by all Dehn twists

and let M(Σg,n) be the mapping class group of a compact connected
orientable surface Σg,n of genus g with n boundary components (i.e.,
M(Σg,n) is the group of isotopy classes of orientation preserving self-
diffeomorphisms on Σg,n which fix each boundary component pointwise).

Lemma 4.4. Let g ≥ 9. If α and β are disjoint non-separating two-sided

simple closed curves on Ng, then {tα, tβ} = 0 in H2(T (Ng);Z), where tα
and tβ are Dehn twists along simple closed curves α and β, respectively.

Proof. Let S be the surface obtained by cutting Ng along the simple
closed curve α and let g′ be the genus of S. Note that if g is even and
S is orientable, then g′ = g−2

2 ≥ 10−2
2 = 4, and if g is odd or S is non-

orientable, then g′ = g−2 ≥ 7 since g ≥ 9. We regard tβ as an element of
M(Σg′,2) when g is even and S is orientable or T (Ng′,2) when g is odd or S
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is non-orientable. John Harer [2] proved that H1(M(Σh,n);Z) = 1 for h ≥
3 and Stukow [9] proved that H1(T (Nh,n);Z) = 1 for h ≥ 7. Thus, there
exist either Xi, Yi ∈ M(S) or Xi, Yi ∈ T (S) such that tβ =

∏
i[Xi, Yi].

Note that Xi and Yi commute with tα. Therefore, in H2(T (Ng);Z), we
have

{tα, tβ} =
{
tα,
∏

i

[Xi, Yi]
}

(I)
=
∑

i

{tα, [Xi, Yi]}

(I)&(II)
=

∑

i

[
{tα, Xi}+ {tα, Yi} − {tα, Xi} − {tα, Yi}

]

= 0.

Thus, we obtain the claim. �

The homomorphism ρ2|T (Ng) : T (Ng) → Aut(H1(Ng;Z2), ·) induces a
homomorphism H2(T (Ng);Z) → H2(Aut(H1(Ng;Z2), ·);Z) on their ho-
mology groups. Hence, the equivalence classes of Di,j and D in
H2(Aut(H1(Ng;Z2), ·);Z) are trivial by Lemma 4.4, and any element of
H2(Aut(H1(Ng;Z2), ·);Z) is represented by

x = An

(
g−2∏

i=1

Bmi

i

)
BmCl.

Proof of Proposition 4.1. By the Hopf formula, any element of
H2(Aut(H1(Ng;Z2), ·);Z) is a product of commutators of the free group
generated by {a0, a1, · · · , ag−1}. Hence, the exponent sum of each ai in
x is zero. The exponent sum of each ai in x is the following.

(the exponent sum of a0) = 2n+m+ l,

(the exponent sum of a1) = m1 + l,

(the exponent sum of a2) = −m1 +m2 + l,

(the exponent sum of a3) = −m2 +m3 + l,

(the exponent sum of a4) = −m3 +m4 −m+ l,

(the exponent sum of a5) = −m4 +m5 + l,

(the exponent sum of a6) = −m5 +m6 + l,

(the exponent sum of a7) = −m6 +m7,

...

(the exponent sum of ag−2) = −mg−3 +mg−2,

(the exponent sum of ag−1) = −mg−2.
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The above equations give mg−2 = mg−3 = · · · = m7 = m6 = 0 and the
following system of equations.




2 0 0 0 0 0 1 1
0 1 0 0 0 0 0 1
0 −1 1 0 0 0 0 1
0 0 −1 1 0 0 0 1
0 0 0 −1 1 0 −1 1
0 0 0 0 −1 1 0 1
0 0 0 0 0 −1 0 1







n
m1

m2

m3

m4

m5

m
l




=




0
0
0
0
0
0
0




.

By an elementary calculation, this matrix has rank 7 and so the lin-
ear map Z

8 → Z
7 has a 1-dimensional kernel. We can check that the

kernel is generated by the vector (−7,−2,−4,−6, 4, 2, 12, 2). Therefore,
H2(Aut(H1(Ng;Z2), ·);Z) is generated by x0 which is represented by an
element

A−7B−2
1 B−4

2 B−6
3 B4

4B
2
5B

12C2.

Thus, we finish the proof. �

When g ≥ 7 is odd, Theorem 1.2 is proved by Stein [8]. It is sufficient
for a proof of Theorem 1.2 to show that x0 = 0 when g ≥ 10 is even.

Proof of Theorem 1.2. Recall that Aut(H1(Ng;Z2), ·) is isomorphic to
O(g,Z2) = {A ∈ GL(g,Z2) |

tAA = E}. Under this identification, we
define the injective homomorphism

ιg : Aut(H1(Ng−1;Z2), ·) →֒ Aut(H1(Ng;Z2), ·)

∈ ∈

A 7→




0

A
...
0

0 · · · 0 1


 .

Note that ιg(ai) = ai for i = 1, . . . , g − 2 and ιg(b) = b. Let F and F ′

be free groups generated by {a1, . . . , ag−1, b} and {a1, . . . , ag−2, b}, respec-
tively, and let ν : F → Aut(H1(Ng;Z2), ·) and ν′ : F ′ →
Aut(H1(Ng−1;Z2), ·) be natural projections. Then the following diagram
is commutative.

F ′

ν′

��

ι̃g
//

	

F

ν

��

Aut(H1(Ng−1;Z2), ·)
ιg

// Aut(H1(Ng;Z2), ·)
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The homomorphism ι̃g : F ′ → F is defined by ι̃g(ai) = ai for i =
1, . . . , g−2 and ι̃g(b) = b. We denote the kernels of ν and ν′ by K and K ′,
respectively. By the Hopf formula, the restriction ι̃g : K ′∩ [F ′, F ′]→ K∩
[F, F ] of ι̃g induces the homomorphism ι̃g∗ : H2(Aut(H1(Ng−1;Z2), ·);Z)→
H2(Aut(H1(Ng;Z2), ·);Z). Since H2(Aut(H1(Ng−1;Z2), ·);Z) = 0 for
g ≥ 10 even ([8]), it is enough for the proof of Theorem 1.2 to show that ι̃g∗
is surjective for g ≥ 10. By Proposition 4.1, H2(Aut(H1(Ng;Z2), ·);Z) is

generated by x0 for g ≥ 9 such that x0 is represented by A−7B−2
1 B−4

2 B−6
3

B4
4B

2
5B

12C2. Thus, we can check ι̃g∗(x
′
0) = x0 by the definition of ι̃g,

where x′
0 is represented by an element A−7B−2

1 B−4
2 B−6

3 B4
4B

2
5B

12C2 ∈
K ′ ∩ [F ′, F ′]. Therefore, x0 is trivial and we complete the proof. �
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