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Abstract. A continuum is a compact connected metric space.
The second symmetric product of a continuum X, F2(X) is the
hyperspace of all nonempty subsets of X having at most two points.
Let X be a continuum such that F2(X) is unicoherent. Then an
element A ∈ F2(X) makes a hole in F2(X) if F2(X) − {A} is
not unicoherent. In this paper, we characterize the elements A ∈
F2(X) satisfying A makes a hole in F2(X) when X is a unicoherent
locally connected continuum.

1. Introduction

A continuum is a connected compact metric space. Let X be a contin-
uum. For each positive integer n, let Fn(X) = {A ⊆ X : A has at most
n points and A 6= ∅}. The hyperspace Fn(X) is called the nth symmetric
product of X . It is known that each Fn(X) is a continuum (see [6, pp.
876, 877] and [11, Theorem 4.10]).

A connected topological space Z is unicoherent provided that A∩B is
connected whenever A and B are connected closed subsets of Z such that
Z = A ∪B. A point z in a unicoherent topological space Z makes a hole
in Z if Z − {z} is not unicoherent.

In this paper, we are interested in the following problem which arises
in [1, p. 2000].
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Problem. Let H(X) be a unicoherent hyperspace of a
continuum X . Which elements A in H(X) make a hole
in H(X)?

A proof of the unicoherence of each nth symmetric product of a uni-
coherent locally connected continuum can be found in [8, Theorem 1]. In
the current paper, we present the solution to this problem when X is a
unicoherent locally connected continuum and H(X) = F2(X).

Readers especially interested in this problem are referred to [1], [2], [3]
and [4].

2. Preliminaries and Auxiliary Results

A point z of a connected topological space Z is called cut point (non-cut
point, respectively) if Z − {z} is disconnected (connected, respectively).
The set of all cut points (non-cut points, respectively) of Z is denoted by
Cut(Z) (NCut(Z), respectively).

We use the symbols R and S1 to denote the set of real numbers and the
unit circle in the Euclidean plane R

2, respectively. An arc is any space
homeomorphic to [0, 1].

For a metric space (X, dX), a subset F of X , a point x ∈ X , and ε > 0,
let diamX(F ) = sup{dX(w, y) : w, y ∈ F} and BX(x, ε) = {y ∈ X :
dX(x, y) < ε}.

In this paper the word “map” stands for a continuous function. By
exp, we denote the exponential map from R to S1 defined by exp(t) =
(cos t, sin t) for each t ∈ R.

Let Z be a topological space. A map f : Z → S1 has a lifting if there
exists a map h : Z → R satisfying f = exp ◦h. The space Z has property
(b) if each map from Z to S1 has a lifting. It is known that in connected
locally connected metric spaces, the unicoherence and to have property
(b) are equivalent (see [7, Theorem 3]).

Given subsets K and L of a continuum X , the symbol 〈K,L〉 denotes
the set {{x, y} ∈ F2(X) : (x, y) ∈ K × L}.

Proposition 2.1. Let X be a continuum and let p, q ∈ X. If p, q ∈
Cut(X) and p 6= q, then there exist nondegenerate subcontinua K, L, and
M of X such that X = K ∪ L ∪M , K ∩ L = {p}, K ∩M = {q}, and
L ∩M = ∅.

Proof. Since X − {p} is disconnected, there exist nondegenerate subcon-
tinua Y and W of X such that X = Y ∪W and Y ∩W = {p}. Then either
q ∈ Y or q ∈ W . Without loss of generality, we may assume that q ∈ Y .
It is easy to see that q ∈ Cut(Y ). Hence, there exist two nondegenerate
subcontinua A and B of Y such that Y = A ∪ B and A ∩ B = {q}. So
either p ∈ A or p ∈ B. Without loss of generality, we may assume that
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p ∈ A. Then the sets K = A, L = W , and M = B satisfy the required
properties. �

Proposition 2.2. Let X be a continuum and let K and L be connected
subsets (subcontinua) of X. Then 〈K,L〉 is a connected subset (subcon-
tinuum) of F2(X) and it does not have cut points when K and L are
nondegenerate sets.

Proof. The connectedness of 〈K,L〉 follows from [10, Lemma 1].
In order to prove the second part of this proposition, let {p, q} ∈ 〈K,L〉.

Using the fact that K and L are nondegenerate sets and the arguments
in [9, p. 137, Theorem 11], it can be shown that (K ×L)− {(p, q), (q, p)}
is connected. So since 〈K,L〉 − {{p, q}} is a continuous image of (K ×
L)−{(p, q), (q, p)}, 〈K,L〉−{{p, q}} is connected (see [11, 2.4.3 of Propo-
sition 2.4]). �

Lemma 2.3. Let Y and Z be unicoherent locally connected continua and
let (y, z) ∈ Y × Z. Then (Y × {z}) ∪ ({y} × Z) is unicoherent.

Proof. The proof follows from the fact that the unicoherence and the local
connectedness are topological properties and [5, Theorem 40] �

Lemma 2.4. Let X be a unicoherent locally connected continuum and let
p, q ∈ X. If p ∈ NCut(X) and p 6= q, then (X ×X)− {(p, q), (q, p)} has
property (b).

Proof. Put W = (X ×X)−{(p, q), (q, p)}. Let f :W → S be a map. We
shall prove that f has a lifting.

First, we define D = {(x, x) : x ∈ X} and, for each x ∈ X − {p, q}, let
G(x) = (X×{x})∪({x}×X). Since X is a unicoherent locally connected
continuum, D and each G(x) are unicoherent (see Lemma 2.3). Then, by
[7, Theorem 3]), D and each G(x) have property (b). So there exists a
map ψ : D → R such that f |D = exp ◦ψ, and for each x ∈ X − {p, q},
by [9, p. 407, Theorem 4], there exists a map ϕx : G(x) → R satisfying
f |G(x) = exp ◦ϕx and ϕx(x, x) = ψ(x, x).

Now, we are going to verify that ϕx(x, y) = ϕy(x, y) for every x, y ∈
X − {p, q}. Take x, y ∈ X − {p, q}. Since X − {p} is a connected open
subset of X , by [12, p. 132, Theorem 8.26], there exists an arc L from
x to y contained in X − {p}. Now, by [7, Theorem 3 and Corollary 6],
L × L has property (b). Put N = L × L. Then there exists a map
λ : N → R satisfying f |N = exp ◦λ and λ(x, x) = ψ(x, x) (see [9, p. 407,
Theorem 4]). From the facts that N ∩ D = {(x, x) : x ∈ L} and N ∩
G(x) = ({x} × L) ∪ (L × {x}) are connected, (x, x) ∈ N ∩ D ∩ G(x),
λ(x, x) = ψ(x, x) = ϕx(x, x), exp ◦λ|N∩D = f |N∩D = exp ◦ψ|N∩D, and
exp ◦λ|N∩G(x) = f |N∩G(x) = exp ◦ϕx|N∩G(x), by [7, p. 64, (3)], we have
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λ|N∩D = ψ|N∩D and λ|N∩G(x) = ϕx|N∩G(x). So, using (y, y) ∈ N ∩ D,
it follows λ(y, y) = ψ(y, y). Hence, since exp ◦λ|N∩G(y) = f |N∩G(y) =
exp ◦ϕy|N∩G(y), and N ∩G(y) is connected, by [7, p. 64, (3)], λ|N∩G(y) =
ϕy|N∩G(y). Thus, ϕx(x, y) = λ(x, y) = ϕy(x, y) since (x, y) ∈ N ∩G(x) ∩
G(y).

Define h :W → R as follows: for each (x, y) ∈W , let

h(x, y) =







ψ(x, x), if x = y,
ϕx(x, y), if x /∈ {p, q},
ϕy(x, y), if y /∈ {p, q}.

Since ϕx(x, y) = ϕy(x, y) for every x, y ∈ X−{p, q} and ϕx(x, x) = ψ(x, x)
for every x ∈ X , h is well defined. It is easy to see that f = exp ◦h.
Finally, we shall prove that h is continuous.

To check the continuity of h, we will prove that h is continuous at each
point of W . Take (x0, y0) ∈ W . Let ε > 0. From the continuity of f and
the local connectedness of X , it follows the existence of connected open
subsets U and V of X satisfying (x0, y0) ∈ U×V ⊆W and diamS1(f(U×
V )) < ε

π
. Now, to show that h(U × V ) ⊆ BR(h(x0, y0), ε), we are going

to prove the existence of an arc J(w, z) in W such that (x0, y0), (w, z) ∈
J(w, z) ⊆ U × V and h|J(w,z) is a map for each (w, z) ∈ U × V . Let
(w, z) ∈ U × V . By [12, p. 132, Theorem 8.26], there exist arcs L1 and
L2 from x0 to w contained in U and from y0 to z contained in V . We
consider the following cases.

Case I. x0 = y0.
Without loss of generality, we suppose that U = V , w 6= x0, and

w ∈ X − {p, q}. Let L3 be an arc from w to z contained in U (see [12,
p. 132, Theorem 8.26]). Put J = J(w, z) = (D ∩ (L1 × L1)) ∪ ({w} ×
L3). Clearly, J ⊆ U × V , D ∩ (L1 × L1) ⊆ D, {w} × L3 ⊆ G(w), and
(D ∩ (L1 × L1)) ∩ ({w} × L3) = {(w,w)} is closed in W . Thus, since
h|D∩(L1×L1) = ψ|D∩(L1×L1) and h|{w}×L3

= ϕw|{w}×L3
are maps, h|J is

a map.

Case II. x0 6= y0.
We have that either x0 ∈ X − {p, q} or y0 ∈ X − {p, q}. Without loss

of generality, suppose that x0 ∈ X − {p, q}. Also, we may assume that
z 6= y0. So z ∈ X − {p, q}. Put J = J(w, z) = ({x0} × L2) ∪ (L1 × {z}).
It is easy to see that J ⊆ U × V , {x0} × L2 ⊆ G(x0), L1 × {z} ⊆ G(z),
and ({x0}×L2)∩ (L1 ×{z}) = {(x0, z)} is closed. So, from the fact that
h|{x0}×L2

= ϕx0
|{x0}×L2

and h|L1×{z} = ϕz |L1×{z} are maps, we have
that h|J is a map.

So there exists an arc J(w, z) from (x0, y0) to (w, z) contained in
U × V such that h|J(w,z) is a map and f |J(w,z) = exp ◦h|J(w,z). Then,
since diamS1(f |J(w,z)(J(w, z))) <

ε
π
, by [7, p. 64, (4)], we obtain that
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diamR(h|J(w,z)(J(w, z))) < ε. Thus, from the fact that (x0, y0), (w, z) ∈
J(w, z), it follows that |h(w, z) − h(x0, y0)| < ε. This finishes the proof
of the continuity of h.

Then each map from W to S1 has a lifting. So W has property (b). �

Lemma 2.5. Let Y and Z be unicoherent locally connected subcontinua
of a locally connected continuum X and let p ∈ X. If p ∈ NCut(Y ) ∩
NCut(Z), then (Y × Z)− {(p, p)} has property (b).

Proof. Put W = (Y × Z)− {(p, p)}. Let f : W → S be a map. We shall
show that f has a lifting.

Fix b ∈ Y −{p} and set P = (Y −{p})×(Z−{p}). Define D = {b}×Z
and, for each (y, z) ∈ P , let G(y, z) = ({y} × Z) ∪ (Y × {z}). Since Y
and Z are unicoherent locally connected continua, D and each G(y, z)
are unicoherent (see Lemma 2.3). Hence, by [7, Theorem 3], D and each
G(y, z) have property (b). Then there exists a map ψ : D → R such that
f |D = exp ◦ψ and, for each (y, z) ∈ P , by [9, p. 407, Theorem 4], there
exists a map ϕ(y,z) : G(y, z) → R such that f |G(y,z) = exp ◦ϕ(y,z) and
ϕ(y,z)(b, z) = ψ(b, z).

Let (y, z), (u, v) ∈ P . We are going to verify that ϕ(y,z)(y, v) =
ϕ(u,v)(y, v). By the local connectedness of X and [12, p. 132, Theo-
rem 8.26], since Y − {p} and Z − {p} are connected open subsets of X ,
there exist arcs I and L from y to u and from z to v contained in Y −{p}
and Z − {p}, respectively. Put N = (I × Z) ∪ (Y × L). Clearly, N ⊆ W
and (I × Z) ∩ (Y × L) = I × L is connected. So, by [7, Corollary 6]
and [5, Theorem 40 and Corollary 48], N is unicoherent. Then, by [7,
Theorem 3], N has property (b). Hence, there exists a map λ : N → R

satisfying f |N = exp ◦λ and λ(b, v) = ψ(b, v) (see [9, p. 407, Theorem 4]).
Notice {b} × L ⊆ N . Then, since exp ◦λ|{b}×L = f |{b}×L = exp ◦ψ|{b}×L

and λ(b, v) = ψ(b, v), by [7, p. 64, (3)], λ|{b}×L = ψ|{b}×L. Thus,
λ(b, z) = ψ(b, z). Now, from the fact that G(y, z), G(u, v) ⊆ N , λ(b, z) =
ψ(b, z) = ϕ(y,z)(b, z), λ(b, v) = ψ(b, v) = ϕ(u,v)(b, v), exp ◦λ|G(y,z) =
f |G(y,z) = exp ◦ϕ(y,z), and exp ◦λ|G(u,v) = f |G(u,v) = exp ◦ϕ(u,v), it fol-
lows that λ|G(y,z) = ϕ(y,z) and λ|G(u,v) = ϕ(u,v) (see [7, p. 64, (3)]). Thus,
ϕ(y,z)(y, v) = λ(y, v) = ϕ(u,v)(y, v).

Define h : W → R as follows: for each (y, z) ∈ W , if (y, z) ∈ G(u, v)
for some (u, v) ∈ P , let

h(y, z) = ϕ(u,v)(y, z).

From the fact that ϕ(y,z)(y, z) = ϕ(u,v)(y, z) for each (u, v) ∈ P such that
(y, z) ∈ G(u, v), we have that h is well defined. Clearly, f = exp ◦h. We
shall prove that h is continuous.
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To check the continuity of h, we are going to show that h is con-
tinuous at each point of W . Take (y0, z0) ∈ W . Let ε > 0. By
the continuity of f and the local connectedness of Y and Z, there ex-
ist connected open subsets U of Y and V of Z, such that (y0, z0) ⊆
U ×V ⊆W and diamS1(f(U ×V )) < ε

π
. Now, to prove that h(U ×V ) ⊆

BR(h(y0, z0), ε), we will verify that there exists an arc J(w, x) in W such
that (y0, z0), (w, x) ∈ J(w, x) ⊆ U × V and h|J(w,x) is a map for each
(w, x) ∈ U × V . Let (w, x) ∈ U × V . Since (y0, z0) ∈ W , either
y0 ∈ Y − {p} or z0 ∈ Z − {p}. Without loss of generality, we may
assume that y0 6= p. Also, we suppose that w 6= p. By the local connect-
edness of Y and Z and [12, p. 132, Theorem 8.26], since U and V are
connected open subsets of Y of Z, respectively, there exist arcs L1 and
L2 such that L1×L2 ⊆ U ×V , NCut(L1) = {y0, w}, {z0, x} ⊆ NCut(L2),
and NCut(L2) − {z0} ⊆ Z − {p}. Take a ∈ NCut(L2) − {z0}. Put
J = J(w, x) = ({y0} × L2) ∪ (L1 × {a}) ∪ ({w} × L2). Notice that
(w, x) ∈ J ⊆ U × V , h|({y0}×L2)∪(L1×{a}) = ϕ(y0,a)|({y0}×L2)∪(L1×{a}),
and h|{w}×L2

= ϕ(w,x)|{w}×L2
are maps. So, since (({y0} × L2) ∪ (L1 ×

{a})) ∩ ({w} × L2) is closed, h|J is a map. Then, from the fact that
diam(f |J(J)) <

ε
π
, by [7, p. 64, (4)], it follows that diam(h|J(J)) < ε.

Thus, |h(w, x) − h(y0, z0)| < ε. This proves that h is continuous.
Therefore, each map from W to S1 has a lifting. So W has property

(b). �

3. Main Results

Theorem 3.1. Let X be a continuum such that F2(X) is unicoherent
and let p ∈ X. If X − {p} has at least three components, then {p} makes
a hole in F2(X).

Proof. Since X − {p} has at least three components, there exist sub-
continua Y and Z of X such that X = Y ∪ Z, Y ∩ Z = {p}, and
p ∈ Cut(Y ) ∪ Cut(Z). Assume that p ∈ Cut(Y ). Define A = F2(Y ) −
{{p}} and B = 〈X,Z〉 − {{p}}. Then A and B are closed subsets of
F2(X) − {{p}} and, by Proposition 2.2, A and B are connected. No-
tice that A ∩ B = 〈{p}, Y 〉 − {{p}} and {p} ∈ Cut(〈{p}, Y 〉). So, since
F2(X)−{{p}} = A∪B and A∩B is disconnected, F2(X)−{{p}} is not
unicoherent. �

Theorem 3.2. Let X be a continuum such that F2(X) is unicoherent
and let p, q ∈ X. If p, q ∈ Cut(X) and p 6= q, then {p, q} makes a hole in
F2(X).

Proof. By Proposition 2.1, there exist nondegenerate subcontinua K, L,
and M of X such that X = K ∪L∪M , K ∩L = {p}, K ∩M = {q}, and
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L ∩M = ∅. Define A = F2(K) − {{p, q}} and B = (〈X,L〉 ∪ 〈X,M〉)−
{{p, q}}. Thus, A and B are closed subsets of F2(X) − {{p, q}}. Now,
since 〈L,M〉− {{p, q}} ⊆ (〈X,L〉 − {{p, q}})∩ (〈X,M〉 − {{p, q}}), using
Proposition 2.2, it can be proved that A and B are connected. Finally,
from the facts that F2(X) − {{p, q}} = A ∪ B and A ∩ B = (〈{p},K〉 ∪
〈{q},K〉)−{{p, q}} is disconnected, we have that F2(X)−{{p, q}} is not
unicoherent. �

Theorem 3.3. Let X be a unicoherent locally connected continuum and
let p, q ∈ X. If p ∈ NCut(X), then {p, q} does not make a hole in F2(X).

Proof. By [8, Theorem 1], F2(X) is unicoherent. In order to prove the
unicoherence of F2(X) − {{p, q}}, by [7, Theorem 2], it suffices to show
that F2(X)− {{p, q}} has property (b).

Put W = F2(X) − {{p, q}} and let f : W → S1 be a map. Define
Z = (X ×X) − {(p, q), (q, p)} and consider the surjective map π : Z →
W defined by π(x, y) = {x, y}. Notice that Z has property (b) (see
lemmas 2.4 and 2.5). Since f ◦ π is a map from Z to S1, there exists a
map ϕ : Z → R such that f ◦ π = exp ◦ϕ. Now, we are going to prove
that ϕ(x, y) = ϕ(y, x) for every (x, y) ∈ Z.

Define σ : Z → Z by σ(x, y) = (y, x) for each (x, y) ∈ Z. The surjec-
tive map σ satisfies exp ◦ϕ ◦ σ(x, y) = f({x, y}) = exp ◦ϕ(x, y) for every
(x, y) ∈ Z and ϕ(u, u) = ϕ ◦ σ(u, u) for every u ∈ X − {p, q}. Then, by
Proposition 2.2 and [7, p. 64, (3)], ϕ = ϕ◦σ. Thus, ϕ(x, y) = ϕ◦σ(x, y) =
ϕ(y, x) for every (x, y) ∈ Z.

Finally, define h : W → R by h({x, y}) = ϕ(x, y) for each {x, y} ∈ W .
From the fact that ϕ(x, y) = ϕ(y, x) for every (x, y) ∈ Z, we have that h
is well defined. Notice that f = exp ◦h. To prove the continuity of h, let
{w, z} ∈ W and let V be an open subset of S1 such that h({w, z}) ∈ V .
Then (w, z) ∈ Z and ϕ(w, z) ∈ V . Since ϕ is continuous, there exist open
subsets U1 and U2 of X such that (w, z) ∈ U1×U2 ⊆ Z and ϕ(U1×U2) ⊆
V . So {w, z} ∈ 〈U1, U2〉 and h(〈U1, U2〉) ⊆ V . This proves that h is
continuous.

Thus, F2(X)− {{p, q}} has property (b). �

Theorem 3.4. Let X be a unicoherent locally connected continuum and
let p ∈ X. If X − {p} has exactly two components, then {p} does not
make a hole in F2(X).

Proof. The unicoherence of F2(X) follows from [8, Theorem 1]. Now,
using [7, Theorem 4] to prove that F2(X)−{{p}} is unicoherent, it suffices
to prove that there exist unicoherent locally connected closed subspaces
A, B, and C of F2(X)−{{p}} such that F2(X)− {{p}} = A∪B ∪ C and
A ∩ B and (A ∪ B) ∩ C are connected.
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Since X − {p} has exactly two components, then there exist sub-
continua K and L of X such that X = K ∪ L, K ∩ L = {p}, and
p ∈ NCut(K) ∩ NCut(L). By [12, p. 134, 8.37], we have that K and
L are locally connected.

Now, define A = F2(K)−{{p}}, B = 〈K,L〉−{{p}}, and C = F2(L)−
{{p}}. It is easy to see that A, B, and C are closed subsets F2(X)−{{p}}.
By Theorem 3.3, A and C are unicoherent. The local connectedness of A
and C follows from the fact that K and L are locally connected and [8,
Theorem 1]. On the other hand, since K ×L− {(p, p)} is homeomorphic
to B, B is locally connected and, by Lemma 2.5 and [7, Theorem 2], B is
unicoherent. Finally, since p ∈ NCut(K) ∩ NCut(L), A ∩ B = 〈{p}K〉 −
{{p}} and (A∪B)∩C = 〈{p}, L〉−{{p}} are connected. Thus, A, B, and
C satisfy the required properties.

Therefore, F2(X)− {{p}} is unicoherent. �

Classification

Theorem 3.5. Let X be a unicoherent locally connected continuum and
let p, q ∈ X. Then {p, q} makes a hole in F2(X) if and only if either
p = q and X − {p} has at least three components or p 6= q and p and q
are cut points of X.

Proof. If {p, q} makes a hole in F2(X), by Theorem 3.3, p, q /∈ NCut(X).
So p, q ∈ Cut(X). Now, if p = q, by Theorem 3.4, then X − {p} has at
least three components. This proves the first part.

The second part follows from theorems 3.1 and 3.2 since F2(X) is
unicoherent (see [8, Theorem 1]). �
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