http://topology.auburn.edu/tp/

TOPOLOGY PROCEEDINGS

Volume 48, 2016
Pages 277-287
http://topology.nipissingu.ca/tp/

CAT(0) Extensions of
 Right-Angled Coxeter Groups

by
Charles Cunningham, Andy Eisenberg, Adam Pigqott, and Kim Ruane

Electronically published on December 3, 2015

Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
Department of Mathematics \& Statistics
Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.
http://topology.auburn.edu/tp/
http://topology.nipissingu.ca/tp/

TOPOLOGY PROCEEDINGS

CAT(0) EXTENSIONS OF RIGHT-ANGLED COXETER GROUPS

CHARLES CUNNINGHAM, ANDY EISENBERG, ADAM PIGGOTT, AND KIM RUANE

Abstract

We show that any split extension of a right-angled Coxeter group W_{Γ} by a generating automorphism of finite order acts faithfully and geometrically on a CAT(0) metric space.

1. Introduction

An isometric group action is faithful if its kernel is trivial, and it is geometric if it is cocompact and properly discontinuous. A finitely generated group G is a $C A T(0)$ group if there exists a CAT(0) metric space X equipped with a faithful geometric G-action. The CAT(0) property is not an invariant of the quasi-isometry class of a group (see, for example, [1], [6], and [3, p. 258]). Whether or not it is an invariant of the abstract commensurability class of a group is as yet unknown. Attention was brought to this matter in [8]. In this article we illustrate that answering this question for any family of $\operatorname{CAT}(0)$ groups may require a variety of techniques.

It is well known that an arbitrary right-angled Coxeter group W is a $\mathrm{CAT}(0)$ group because it acts faithfully and geometrically on a $\operatorname{CAT}(0)$ cube complex X. It is also well known that the automorphism group $\operatorname{Aut}(W)$ is generated by three types of finite-order automorphisms. As a natural source of examples we consider split extensions of right-angled Coxeter groups by finite cyclic groups, where, in each case, the cyclic

[^0]group acts on W as the group generated by one of these various generating automorphisms. Our theorem is the following.

Theorem 1.1. Suppose W is a right-angled Coxeter group and $\phi \in$ $\operatorname{Aut}(W)$ is an automorphism induced by a graph automorphism, a partial conjugation, or a transvection. Let m denote the order of ϕ. Then the group $G=W \rtimes_{\phi} \mathbb{Z} / m \mathbb{Z}$ is a $C A T(0)$ group.

What is most interesting is that G is a $\operatorname{CAT}(0)$ group for different reasons in each of the three cases. When ϕ is an automorphism induced by a graph automorphism, the left multiplication action $W \circlearrowright X$ extends to an action $G \circlearrowright X$; when ϕ is a partial conjugation, G is itself a rightangled Coxeter group; when ϕ is a transvection, G is not a right-angled Coxeter group and the action $W \circlearrowright X$ cannot extend to all of G, but we can explicitly construct a new $\operatorname{CAT}(0)$ space Y and describe a faithful geometric action $G \circlearrowright Y$.

After necessary background material is described in $\S 2$, the three cases of the theorem are treated, in turn, in sections 3,4 , and 5 .

We also note that, in each case of the theorem, we take an extension $W_{\Gamma} \rtimes H$ where $H \leqslant \operatorname{Aut}\left(W_{\Gamma}\right)$ is finite. In [4], we give an example in which H is infinite and $W_{\Gamma} \rtimes H$ is not a right-angled Coxeter group. We currently do not know whether such extensions with infinite H are $\operatorname{CAT}(0)$ or not. Since this question does not address the abstract commensurability of the CAT(0) property, we will not address it further in this paper.

2. Right-Angled Coxeter Groups and Their Automorphisms

In this section we briefly recall a very small part of the rich combinatorial and geometric theory of right-angled Coxeter groups. The interested reader may consult [5] for a thorough account of the more general subject of Coxeter groups from the geometric group theory point of view.

Fix an arbitrary finite simple graph Γ with vertex set S and edge set E. The right-angled Coxeter group defined by Γ is the group $W=W_{\Gamma}$ generated by S, with relations declaring that the generators all have order 2 , and adjacent vertices commute with each other. The pair (W, S) is called a right-angled Coxeter system. As described in [5, Proposition 7.3.4], we construct a cube complex $X=X(W, S)$ inductively as follows:

- The set of vertices is indexed by W, say $X^{0}=\left\{v_{w} \mid w \in W\right\}$.
- To complete the construction of the one-skeleton X^{1}, we add edges of unit length so that vertices v_{u} and v_{w} are adjacent if and only if $u^{-1} w \in S$.
- For each $k \geqslant 2$, we construct the k-skeleton by gluing in Euclidean unit cubes of dimension k whenever X^{k-1} contains the $(k-1)$ skeleton of such a cube.

Remark 2.1. We note the following about this construction:

- The dimension of X equals the number of vertices in the largest clique in Γ.
- The barycentric subdivision of X is the well-known Davis complex $\Sigma=\Sigma(W, S)$. By a result of Gromov, Σ, hence also X, is a CAT(0) metric space (see [5, Theorem 12.3.3] for a generalization due to Moussong).

By construction, the geometry of X is determined entirely by its 1skeleton X^{1}. It follows that a permutation σ of the vertex set X^{0} determines an isometry of X if it respects the adjacency relation. In particular, for all $w \in W$, the map $v_{u} \mapsto v_{w u}$ extends to an isometry $\Phi_{w} \in \operatorname{Isom}(X)$. The map $w \mapsto \Phi_{w}$ is a faithful geometric action $W \circlearrowright X$ known as the left multiplication action.

From the graph Γ, we may infer the existence of certain finite-order automorphisms of W. For each vertex $a \in S$, we write $\operatorname{Lk}(a)$ for the set of vertices adjacent to a and $\operatorname{St}(a)$ for $\operatorname{Lk}(a) \cup\{a\}$.

- Each graph automorphism $f \in \operatorname{Aut}(\Gamma)$ restricts to a permutation of S which determines an automorphism $\phi_{f} \in \operatorname{Aut}(W)$.
- For each union of non-empty connected components D of $\Gamma \backslash \operatorname{St}(a)$, the map

$$
s \mapsto \begin{cases}a s a & s \in D, \\ s & s \in S \backslash D\end{cases}
$$

determines an automorphism of W called the partial conjugation with acting letter a and domain D.

- If $a, d \in S$ are such that $\operatorname{St}(d) \subseteq \operatorname{St}(a)$, then the rule

$$
s \mapsto s \text { for all } s \in S \backslash\{d\} \text { and } d \mapsto d a
$$

determines an automorphism of W called the transvection with acting letter a and domain d.
Together, the automorphisms induced by graph automorphisms, the partial conjugations, and the transvections comprise a generating set for $\operatorname{Aut}(W)$ [7]. We note that partial conjugations and transvections are involutions and graph automorphisms have finite order.

In what follows, $\phi \in \operatorname{Aut}(W)$ shall always denote a non-trivial automorphism of finite order m, and G shall denote the semi-direct product
$G=W \rtimes_{\phi} \mathbb{Z} / m \mathbb{Z}$. So G is presented by

$$
\begin{gathered}
P_{1}=\langle S \cup\{z\}| s^{2}=1 \text { for all } s \in S,[s, t]=1 \text { for all }\{s, t\} \in E, \\
\left.z^{m}=1, z s z^{-1}=\phi(s) \text { for all } s \in S\right\rangle
\end{gathered}
$$

3. When ϕ Is Induced by a Graph Automorphism

Suppose ϕ is induced by a graph automorphism $f \in \operatorname{Aut}(\Gamma)$. Then the map $v_{w} \mapsto v_{\phi(w)}$ preserves the adjacency relation in X^{1} and hence determines an isometry $\Phi \in \operatorname{Isom}(X)$. By simple computation, the reader may confirm that the relations in the presentation P_{1} are satisfied when each $s \in S$ is replaced by Φ_{s} and z is replaced by Φ. Hence, the rule

$$
s \mapsto \Phi_{s} \text { for all } s \in S \text { and } z \mapsto \Phi
$$

determines an action $G \circlearrowright X$. We leave the reader to confirm that the action is faithful and geometric, and hence Theorem 1.1 holds in the first of the three cases.

In fact, a stronger result holds for similar reasons.
Lemma 3.1. If $\mathcal{H} \leqslant \operatorname{Aut}(\Gamma)$ is the group of graph automorphisms and H is the corresponding subgroup of Aut (W), then the natural action $W \circlearrowright X$ extends to a faithful geometric action $W \rtimes H \circlearrowright X$.

4. When ϕ Is a Partial Conjugation

Now suppose that ϕ is the partial conjugation with acting letter a and domain D. Recall that v_{w} denotes the vertex of X indexed by the group element $w \in W$. For any $d \in D, v_{1}$ and v_{d} are adjacent in X^{1}, but $v_{\phi(1)}$ and $v_{\phi(d)}$ are not. Since the map $v_{w} \mapsto v_{\phi(w)}$ does not respect adjacency in X^{1}, the left multiplication action $W \circlearrowright X$ does not naturally extend to an action $G \circlearrowright X$. However, G is itself a right-angled Coxeter group and hence also a $\operatorname{CAT}(0)$ group.

Lemma 4.1. If ϕ is a partial conjugation with acting letter a and domain D, then G is itself a right-angled Coxeter group.

We will omit the details of the proof, which may be found in [4]. In that paper, we engage more broadly with the problem of identifying a right-angled Coxeter presentation in a given group (or proving that no such presentation exists). We find various families of extensions of rightangled Coxeter groups which are again right-angled Coxeter, and these include Lemma 4.1 as a special case.

Here we will give a description of how to construct the defining graph Λ for G based on the original graph Γ. The procedure is as follows:
(1) Add a new vertex labeled x, which we connect to everything in $\Gamma \backslash D$.
(2) Replace the label of vertex a with the label $a x$ and add edges connecting $a x$ to each vertex in D.
An example is shown in Figure 1.

Figure 1. Λ is the defining graph of $W_{\Gamma} \rtimes\langle x\rangle$, where x has acting letter a_{5} and domain $\left\{a_{6}\right\}$.

5. When ϕ Is a Transvection

Finally, we suppose that ϕ is the transvection with acting letter a and domain d. Recall that this means that $\operatorname{St}(d) \subseteq \operatorname{St}(a)$ and ϕ is determined by the rule

$$
d \mapsto d a \text { and } s \mapsto s \text { for all } s \in S \backslash\{d\} .
$$

We note that v_{1} and v_{d} are adjacent in X^{1}, but $v_{\phi(1)}$ and $v_{\phi(d)}$ are not. Since the map $v_{w} \mapsto v_{\phi(w)}$ does not respect adjacency in X^{1}, the left multiplication action $W \circlearrowright X$ does not naturally extend to an action $G \circlearrowright X$. In fact, a stronger statement is true. It follows from [5, §13.2] that $\operatorname{Fix}(d)$ is a codimension 1 subspace of Σ and $\operatorname{Fix}(d a)$ is codimension 2. Hence, there is no isometry of X which can conjugate the isometry representing d to give the isometry representing $d a$, so the left multiplication action $W \circlearrowright X$ cannot be extended in any way to an action $G \circlearrowright X$.

We also note that G does not embed in a right-angled Coxeter group since G contains an element of order 4. Since $x d x=a d$, we have that $(x d)^{2}=a$ and $x d$ has order 4. In a right-angled Coxeter group, any non-trivial element of finite order is an involution.

It seems that to show that G is a $\operatorname{CAT}(0)$ group, we must identify a new $\operatorname{CAT}(0)$ space Y and describe a faithful geometric action $G \circlearrowright Y$. The key to our success in doing exactly this is the existence of a certain finite index subgroup of W which is itself a right-angled Coxeter group. Although the existence of such a subgroup is well known (see [2, Example
1.4], for example, where the analogous subgroup is used in the context of right-angled Artin groups), we provide the details here for completeness.

Let $h_{a}: W \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ denote the homomorphism determined by the rule

$$
a \mapsto 1 \text { and } s \mapsto 0 \text { for all } s \in S \backslash\{a\} .
$$

Let U denote the kernel of h_{a} and let

$$
S^{\prime}=(S \backslash\{a\}) \cup\{a s a \mid s \in S \backslash \operatorname{St}(a)\}
$$

Lemma 5.1. The pair $\left(U, S^{\prime}\right)$ is a right-angled Coxeter system, and hence U is a right-angled Coxeter group. Further, conjugation by a in W restricts to an automorphism $\theta \in \operatorname{Aut}(U)$ induced by a permutation of S^{\prime}; this automorphism is trivial if and only if a is central in W.
Proof. If a is central in W, then $S^{\prime}=S \backslash\{a\}$, and the result is evident. In this case, conjugation by a restricts to the trivial automorphism of U and hence is the automorphism of U induced by the trivial permutation of S^{\prime}.

Suppose a is not central in W. An alternative presentation for W may be constructed from the standard Coxeter presentation for W by the following Tietze transformations:

- For each vertex $s \in S \backslash \operatorname{St}(a)$, introduce a new generator \hat{s}, the defining relation $a s a=\widehat{s}$, and redundant relations $a \widehat{s} a=s$ and $\hat{s}^{2}=1$.
- For each pair of adjacent vertices $s, t \in S \backslash \operatorname{St}(a)$, introduce the redundant relation $\widehat{s} \widehat{t}=\widehat{t} \widehat{s}$.
- For each pair of adjacent vertices $s \in S \backslash \operatorname{St}(a)$ and $t \in \operatorname{Lk}(a)$, introduce the redundant relation $\hat{s} t=t \widehat{s}$.
- For each vertex $x \in \operatorname{Lk}(a)$, we rewrite the relation $x a=a x$ as $a x a=x$.
The resulting presentation of W is

$$
\begin{aligned}
& P_{2}=\left\langle S^{\prime} \cup\{a\}\right| x^{2}=1 \text { for all } x \in S^{\prime}, \\
& {[s, t]=1 \text { for all }\{s, t\} \in E \text { such that } s, t \neq a,} \\
& {[\widehat{s}, \widehat{t}]=1 \text { for all }\{s, t\} \in E \text { such that } s, t \in S \backslash \operatorname{St}(a),} \\
& {[\widehat{s}, t]=1 \text { for all }\{s, t\} \in E \text { such that } s \in S \backslash \operatorname{St}(a) \text { and }} \\
& \quad t \in \operatorname{Lk}(a), \\
& a^{2}=1 \text { and } a s a=s \text { for all } s \in \operatorname{Lk}(a), \\
& a s a=\widehat{s} \text { and } a \widehat{s} a=s \text { for all } s \in S \backslash \operatorname{St}(a)\rangle .
\end{aligned}
$$

Evidently, this is the presentation of a semidirect product in which the non-normal factor is $\langle a\rangle$, the normal factor is a right-angled Coxeter group with generating set

$$
S^{\prime}=(S \backslash\{a\}) \cup\{\hat{x} \mid x \in S \backslash \operatorname{St}(a)\}
$$

and a acts on the normal factor as the automorphism θ induced by permuting the generators according to the rule

$$
x \mapsto \hat{x}, \widehat{x} \mapsto x \text { for all } x \in S \backslash \operatorname{St}(a), \text { and } y \mapsto y \text { for all } y \in \operatorname{Lk}(a)
$$

The action of a on U is non-trivial because $S \neq \operatorname{St}(a)$.
We now have the following refined decomposition of G :

$$
G=\left(U \rtimes_{\theta}\langle a\rangle\right) \rtimes_{\phi}\langle z\rangle .
$$

A presentation P_{3} for G is obtained from the presentation P_{2} for W by appending the generator z and relations

$$
z^{2}=1, z s z=s \text { for all } s \in S^{\prime} \backslash\{d\}, z d z=d a, \text { and } z a z=a
$$

It follows that for each $g \in G$, there exist unique choices $u_{g} \in U$ and $\epsilon_{g}, \delta_{g} \in\{0,1\}$, such that $g=u_{g} a^{\epsilon_{g}} z^{\delta_{g}}$. We shall write Y for the $\operatorname{CAT}(0)$ cube complex on which U acts geometrically and faithfully as defined in $\S 2$, and we write $p: G \rightarrow U$ for the projection map $g \mapsto u_{g}$. The projection map is not a homomorphism because, for $s \in S \backslash \operatorname{St}(a)$, we have $p(a) p(s) p(a)=s \neq s^{\prime}=p\left(s^{\prime}\right)$. Even so, it allows us to parlay the left multiplication action of G on itself into an action of $G \circlearrowright Y$.

Lemma 5.2. For all $g \in S^{\prime} \cup\{a, z\}$, the rule

$$
v_{u} \mapsto v_{p(g u)} \text { for all } u \in U
$$

respects adjacency in Y^{1} and hence determines an isometry $\Phi_{g} \in \operatorname{Isom}(Y)$.
Proof. Let $u \in U, s \in S^{\prime}$, and $g \in S^{\prime} \cup\{a, z\}$. To prove the result we must establish that $v_{p(g u)}$ and $v_{p(g u s)}$ are adjacent. For this it suffices to show that $(p(g u))^{-1} p(g u s) \in S^{\prime}$.

If $g \in S^{\prime}$, then

$$
(p(g u))^{-1} p(g u s)=(g u)^{-1} g u s=s \in S^{\prime} .
$$

If $g=a$, then

$$
\begin{aligned}
(p(a u))^{-1} p(a u s) & =(p(\theta(u) a))^{-1} p(\theta(u s) a) \\
& =(\theta(u))^{-1} \theta(u s) \\
& =\theta(s) \in S^{\prime} .
\end{aligned}
$$

Finally, we consider the case $g=z$. We note that if d occurs an even number of times in any word for u, then a occurs an even number of times in any word for $\phi(u)$, and $p(z u)=\phi(u)$. If, on the other hand, d occurs an odd number of times in any word for u, then a occurs an odd number of times in any word for $\phi(u)$, and $p(z u)=\phi(u) a$. The parity of d in a
group element $u \in U$ is identified by the homomorphism $h_{d}: U \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ determined by the rule

$$
d \mapsto 1 \text { and } s \mapsto 0 \text { for all } s \in S^{\prime} \backslash\{d\} .
$$

Therefore, we consider cases based on the value of $h_{d}(u)$ and whether or not $s=d$.

If $h_{d}(u)=0$ and $s \neq d$, then

$$
(p(z u))^{-1} p(z u s)=(\phi(u))^{-1} \phi(u s)=s \in S^{\prime}
$$

If $h_{d}(u)=0$ and $s=d$, then

$$
(p(z u))^{-1} p(z u d)=(\phi(u))^{-1} \phi(u d) a=\phi(d) a=d \in S^{\prime} .
$$

If $h_{d}(u)=1$ and $s \neq d$, then

$$
(p(z u))^{-1} p(z u s)=(\phi(u) a)^{-1} \phi(u s) a=a \phi(u)^{-1} \phi(u) s a=a s a=\theta(s) \in S^{\prime} .
$$

If $h_{d}(u)=1$ and $s=d$, then

$$
(p(z u))^{-1} p(z u d)=(\phi(u) a)^{-1} \phi(u d)=a \phi(u)^{-1} \phi(u) d a=a d a=d \in S^{\prime}
$$

Adjacency is respected in all cases, so the result holds in the case that $g=z$ and thus, Φ_{g} is an isometry of Y as required.

In summary, we have that G is presented by

$$
\begin{aligned}
& P_{3}=\left\langle S^{\prime} \cup\{a, z\}\right| x^{2}=1 \text { for all } x \in S^{\prime}, \\
& \\
& {[s, t]=1 \text { for all }\{s, t\} \in E \text { such that } s, t \neq a,} \\
& {[\hat{s}, \hat{t}]=1 \text { for all }\{s, t\} \in E \text { such that } s, t \in S \backslash \operatorname{St}(a),} \\
& {[\widehat{s}, t]=1 \text { for all }\{s, t\} \in E \text { such that } s \in S \backslash \operatorname{St}(a) \text { and }} \\
& \quad t \in \operatorname{Lk}(a), \\
& a^{2}=1 \text { and } a s a=s \text { for all } s \in \operatorname{Lk}(a), \\
& a s a=\widehat{s} \text { and } a \widehat{s} a=s \text { for all } s \in S \backslash \operatorname{St}(a), \\
& \left.z^{2}=1 \text { and } z s z=s \text { for all } s \in S^{\prime} \backslash\{d\}, z d z=d a, z a z=a\right\rangle ;
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi_{s}\left(v_{u}\right)=v_{s u} \text { for all } s \in S^{\prime} \\
& \Phi_{a}\left(v_{u}\right)=v_{\theta(u)} \\
& \Phi_{z}\left(v_{u}\right)=v_{\phi(u)} \text { if } h_{d}(u)=0 \\
& \Phi_{z}\left(v_{u}\right)=v_{\phi(u) a} \text { if } h_{d}(u)=1
\end{aligned}
$$

Lemma 5.3. The map

$$
g \mapsto \Phi_{g} \text { for all } g \in S^{\prime} \cup\{a, z\}
$$

determines a geometric action $G \circlearrowright Y$ which extends the left multiplication action $U \circlearrowright Y$. If a is not central in W, the action is faithful. If a is central in W, the kernel is the subgroup generated by $\{a, z\}$.

Proof. To prove that the map determines an isometric group action, we must prove that the relations in the presentation P_{3} for G hold when each $g \in S^{\prime} \cup\{a, z\}$ is replaced by Φ_{g}. It is clear that those relations not involving either a or z remain true when each $g \in S^{\prime}$ is replaced by Φ_{g}. We leave the reader to verify that the following relations hold (using the rules listed immediately before the statement of the lemma).

$$
\begin{aligned}
& \Phi_{a}^{2}=1 \\
& \Phi_{a} \Phi_{s} \Phi_{a}=\Phi_{s} \text { for all } s \in \operatorname{Lk}(a) \\
& \Phi_{a} \Phi_{s} \Phi_{a}=\Phi_{\widehat{s}} \text { for all } s \in S \backslash \operatorname{St}(a), \\
& \Phi_{a} \Phi_{\hat{s}} \Phi_{a}=\Phi_{s} \text { for all } s \in S \backslash \operatorname{St}(a), \\
& \Phi_{z}^{2}=1 \\
& \Phi_{z} \Phi_{s} \Phi_{z}=\Phi_{s} \text { for all } s \in S^{\prime} \backslash\{d\} \\
& \Phi_{z} \Phi_{d} \Phi_{z}=\Phi_{d} \Phi_{a} \\
& \Phi_{z} \Phi_{a} \Phi_{z}=\Phi_{a}
\end{aligned}
$$

We note that, because $v_{1} \mapsto v_{p(g)}$, the stabilizer of v_{1} is a subgroup of the finite abelian group $\langle a, z\rangle$. If a is not central in W, there exists $s \in S \backslash \operatorname{St}(a)$. Computation shows that Φ_{a} and $\Phi_{a z}$ do not fix v_{s}, and Φ_{z} does not fix $v_{d s}$. Our claims about the kernel of the action follow immediately.

If a is central in W, then there is no obvious way in which a should act non-trivially on Y. We can, however, extend Y to a new space Y^{+} by appending two unit length edges in a V shape at each vertex, thereby providing pieces on which a and ϕ can act non-trivially. More formally, to construct Y^{+}from Y, we write v_{u}^{0} for v_{u}, and we append new vertices

$$
\left\{v_{u}^{i} \mid \text { for all } u \in U \text { and } i \in\{-1,1\}\right\}
$$

and new unit length edges

$$
\left\{\left\{v_{u}^{0}, v_{u}^{-1}\right\},\left\{v_{u}^{0}, v_{u}^{1}\right\} \mid \text { for all } u \in U\right\} .
$$

It is evident that appending such V shapes at each vertex does not cause the $\mathrm{CAT}(0)$ property to fail; hence, Y^{+}is a $\mathrm{CAT}(0)$ cube complex.

Proposition 5.4. If a is central in W, then G acts faithfully and geometrically on Y^{+}.

Proof. Suppose that a is central in W, i.e., that $\operatorname{St}(a)=\Gamma$. Then $\left(U, S^{\prime}\right)$ is a right-angled Coxeter system, and $W=U \times\langle a\rangle$.

We now define a homomorphism $\Phi: G \rightarrow \operatorname{Isom}\left(Y^{+}\right)$. For each $s \in S^{\prime}$, we declare $\Phi(s)$ to be the isometry determined by the rule

$$
v_{u}^{i} \mapsto v_{s u}^{i} \text { for all } u \in U \text { and } i \in\{-1,0,1\}
$$

We declare $\Phi(a)$ to be the isometry determined by the rule

$$
v_{u}^{i} \mapsto v_{u}^{-i} \text { for all } u \in U \text { and } i \in\{-1,0,1\}
$$

We declare $\Phi(z)$ to be the isometry determined by the rule

$$
v_{u}^{i} \mapsto \begin{cases}v_{u}^{i} & \text { if } h_{d}(u)=0 \\ v_{u}^{-i} & \text { if } h_{d}(u)=1\end{cases}
$$

for all $u \in U$ and $i \in\{-1,0,1\}$. The maps can be described informally: Each $s \in S^{\prime}$ acts on Y^{+}in the way which most naturally extends the left multiplication action $U \circlearrowright Y$; a flips the V attached to every vertex, while z flips only half the V shapes, because it flips the V attached to a vertex v_{u} if and only if d has an odd parity in u.

It is evident that the maps described above preserve adjacency in the one-skeleton of Y^{+}and hence determine isometries of Y^{+}. Simple computations confirm that these definitions respect the relations in the presentation P_{3} of G (some of the relations listed are vacuous). Therefore, these definitions do indeed determine an isometric action $G \circlearrowright Y^{+}$. That the action is geometric follows easily from the fact that the left multiplication action $U \circlearrowright Y$ is geometric.

Acknowledgment. We thank the anonymous referee for his/her constructive suggestions which helped improve the clarity of our exposition.

References

[1] Juan M. Alonso and Martin R. Bridson Semihyperbolic groups, Proc. London Math. Soc. (3) 70 (1995), no. 1, 56-114.
[2] Mladen Bestvina, Bruce Kleiner, and Michah Sageev, The asymptotic geometry of right-angled Artin groups. I, Geom. Topol. 12 (2008), no. 3, 1653-1699.
[3] Martin R. Bridson and André Haefliger, Metric Spaces of Non-Positive Curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319. Berlin: Springer-Verlag, 1999.
[4] Charles Cunningham, Andy Eisenberg, Adam Piggott, and Kim Ruane, Recognizing right-angled Coxeter groups using involutions. Preprint. Available at arXiv:1410.4589v1 [math.GR].
[5] Michael W. Davis, The Geometry and Topology of Coxeter Groups. London Mathematical Society Monographs Series, 32. Princeton, NJ: Princeton University Press, 2008.
[6] M. Kapovich and B. Leeb, 3-manifold groups and nonpositive curvature, Geom. Funct. Anal. 8 (1998), no. 5, 841-852.
[7] Michael R. Laurence, Automorphisms of graph products of groups. Ph.D. Thesis, University of London, 1992.
[8] Adam Piggott, Kim Ruane, and Genevieve S. Walsh, The automorphism group of the free group of rank 2 is a CAT(0) group, Michigan Math. J. 59 (2010), no. 2, 297-302.
(Cunningham) Department of Mathematics; Bowdoin College; Brunswick, Maine 04011

E-mail address: charles.cunningham@tufts.edu
(Eisenberg) Department of Mathematics; Oklahoma State University; Stillwater, OK 74078

E-mail address: andy.eisenberg@okstate.com
(Piggott) Department of Mathematics; Bucknell University; Lewisburg, Pennsylvania 17837

E-mail address: adam.piggott@bucknell.edu
(Ruane) Department of Mathematics; Tufts University; Medford, Massachusetts 02155

E-mail address: kim.ruane@tufts.edu

[^0]: 2010 Mathematics Subject Classification. Primary 20F65, 20 F55.
 Key words and phrases. automorphisms, CAT(0) extensions, CAT(0) groups, Coxeter groups.

 This work was partially supported by a grant from the Simons Foundation (\#317466 to Adam Piggott).
 © 2015 Topology Proceedings.

