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DESTRUCTION OF METRIZABILITY IN
GENERALIZED INVERSE LIMITS

STEVEN CLONTZ AND SCOTT VARAGONA

Abstract. If X is a compact Hausdorff space, an upper semi-
continuous bonding function f : X → 2X is said to be idempotent
if f2 = f . In this short paper, we prove that if f : [0, 1]→ C([0, 1])

is u.s.c., idempotent, and surjective, but f is not the identity, then
the inverse limit with the single bonding function f and with factor
spaces indexed by a nonzero ordinal κ contains a copy of κ+ 1. It
follows that such an inverse limit is only metric in the case where
the index set κ is countable.

1. Introduction

As various recent papers have shown (e.g., [2], [10], [11]), continuum
theorists have begun to broaden their study of generalized inverse limits
to the case where the factor spaces are indexed by sets other than the
positive integers. This more inclusive approach opens many new avenues
for research, and has already produced some interesting results. For ex-
ample, R. Patrick Vernon [11] showed that an inverse limit indexed by the
set of all integers with a single upper semi-continuous bonding function
can be homeomorphic to a 2-cell, whereas Van Nall [8] previously showed
this is impossible for such an inverse limit indexed by the positive integers
alone.

In another recent paper, Scott Varagona [10] generalized many previ-
ously known theorems (e.g., from [6] and [9]) to the case of u.s.c. inverse
limits indexed by arbitrary totally ordered sets. As he showed, in that
context, inverse limits with a single idempotent upper semi-continuous
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bonding function become especially important. Relatively little is known
about the kind of continua that may be produced by such inverse limits,
however.

This short paper focuses on the case of an inverse limit with a single
idempotent, surjective, upper semi-continuous, continuum-valued bond-
ing function on [0, 1], when the index set of the inverse limit is some
nonzero ordinal κ. In particular, we show that (so long as the bonding
function is not the identity) such an inverse limit is metric exactly when
κ is countable. The strategy, as will be seen, is to show that the inverse
limit must contain a copy of κ+ 1.

2. Background Definitions and Lemmas

We begin with some useful notation. Let X be a non-empty compact
Hausdorff space. Then we denote by 2X the set of all non-empty compact
subsets of X. We say a subset A of X is a continuum if A is non-empty,
compact, and connected. C(X) denotes the set of all elements of 2X that
are continua.

Suppose X and Y are non-empty compact Hausdorff spaces. Then
the set-valued function f : X → 2Y is said to be upper semi-continuous
(u.s.c.) at x ∈ X if, for every open set V in Y with f(x) ⊆ V , there
exists an open set U in X with x ∈ U and f(u) ⊆ V for each u ∈ U .
If f is u.s.c. at each x ∈ X, we simply say f is u.s.c. If f : X → 2Y

is a set-valued function, then the graph of f , denoted G(f), is given by
G(f) = {〈x, y〉 ∈ X × Y | y ∈ f(x)}. (Note that, to help distinguish
between ordered pairs and intervals on a linearly ordered space, we will use
pointed brackets to denote ordered pairs, e.g., 〈x, y〉, whereas intervals are
given in the traditional way with brackets or parentheses, e.g., (a, b), [c, d],
etc.) The set-valued function f : X → 2Y is said to be surjective if, for
every y ∈ Y , there exists x ∈ X with y ∈ f(x). If a u.s.c. function
f : X → 2Y has the property that f(x) is connected for each x ∈ X, then
f is continuum-valued, and we denote this by writing f : X → C(Y ). The
identity on X (also called the trivial function on X) is the u.s.c. function
ι given by ι(x) = {x} for all x ∈ X; we may simply say the identity (or,
more simply, ι) when the space X is understood from context.

The following characterization of u.s.c. functions (from [5]) is well
known and often more convenient to work with than the original defini-
tion.

Lemma 2.1. If X and Y are non-empty compact Hausdorff spaces, then
f : X → 2Y is u.s.c. if and only if G(f) is closed.

If X, Y , and Z are non-empty compact Hausdorff spaces and f : X →
2Y and g : Y → 2Z are u.s.c., then the composition g ◦ f : X → 2Z is the
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u.s.c. function given by (g ◦ f)(x) = {z ∈ Z | There exists y ∈ Y such
that y ∈ f(x) and z ∈ g(y)}. In the special case where f : X → 2X , we
denote f ◦ f by f2. If f2 = f , then we say f is idempotent.

Let κ be an ordinal. (We follow the convention of set theory in which
an ordinal is equal to the set of its predecessors. For more detailed back-
ground on ordinals, see, for example, [7].) Suppose that for each α ∈ κ,
Xα is a non-empty compact Hausdorff space and whenever α ≤ β ∈ κ,
the set-valued function fαβ : Xβ → 2Xα is u.s.c. (With this nota-
tion, fαα is always the identity ι on Xα.) Suppose further that, when-
ever α ≤ β ≤ η ∈ κ, we have fαβ ◦ fβη = fαη. Then the collection
f = {fαβ | α ≤ β ∈ κ} of u.s.c. functions is said to be exact. In this
case, we say {Xα, fαβ , κ} is an inverse limit system; the inverse limit,
lim←−{Xα, fαβ , κ}, of this system is {x ∈

∏
α∈κXα | xα ∈ fαβ(xβ) for all

α ≤ β ∈ κ}. (In keeping with tradition, a boldface x always denotes an el-
ement of

∏
α∈κXα; the αth coordinate of such an x will be denoted x(α).)

We call the u.s.c. functions fαβ the bonding functions of the inverse limit,
and each Xα is called a factor space of the inverse limit.

Because it can be difficult to check if a large collection of u.s.c. func-
tions is exact, a much more tractable case would be that of an inverse
limit system with a single idempotent bonding function f . That is, sup-
pose X is a non-empty compact Hausdorff space and f : X → 2X is an
idempotent u.s.c. function. If Xα = X for each α ∈ κ and fαβ = f for
each α < β ∈ κ, then {Xα, fαβ , κ} = {X, f, κ} is an inverse limit system
with the single bonding function f , and we denote the inverse limit of the
system as lim←−{X, f, κ}. (Of course, since f is idempotent, the collection f
of bonding functions is automatically exact.) We note that, although the
only continuous idempotent surjective function from a compact Hausdorff
space X to itself is the identity map, there are many nontrivial examples
of u.s.c. idempotent surjective functions on X; see Figure 1 for examples.

Figure 1. Examples of u.s.c. idempotent surjective
functions on [0,1].

A detailed study of inverse limits with a single idempotent surjective
u.s.c. bonding function was begun in [10]. The following is a lemma from
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that paper which will be used repeatedly (often without being referenced
explicitly) in the proofs to come.

Lemma 2.2. Let X be a compact Hausdorff space and let f : X → 2X be
u.s.c. Then f is idempotent if and only if, whenever f(x) = A for some
x ∈ X and A ⊆ X, f(A) = A.

By applying results by W. T. Ingram and William S. Mahavier [6] and
by Włodzimierz J. Charatonik and Robert R. Roe [2], Varagona stated
theorems ([10, 2.1 and 2.2]) that imply lim←−{[0, 1], f, κ} is a continuum
when f is u.s.c., idempotent, and continuum-valued (and κ > 0). On the
other hand, Sina Greenwood and Judy Kennedy [3] showed that there is
a non-continuum-valued u.s.c. surjective idempotent bonding function f
(with a connected graph) for which lim←−{[0, 1], f, ω} is disconnected.

3. Main Results

We now focus on the case of an inverse limit with a single idempotent,
surjective, u.s.c. bonding function f : [0, 1] → C([0, 1]). The main goal
of this paper is to prove that if such an f is not the identity and κ is a
nonzero ordinal, then the inverse limit lim←−{[0, 1], f, κ} is metric exactly
when the index set κ is countable.

Let us say a subset S of [0, 1]2 satisfies condition Γ if, for some x, y ∈
[0, 1] with x 6= y, 〈x, x〉 ∈ S, 〈y, y〉 ∈ S, and either 〈x, y〉 or 〈y, x〉 ∈ S; see
Figure 2. Let ∆ = {〈a, a〉 | a ∈ [0, 1]}, and notice that [0, 1]2 \∆ is the
union of two disjoint open sets.

Figure 2. Idempotent u.s.c. functions with highlighted
points illustrating condition Γ.

Lemma 3.1. If f : [0, 1] → C([0, 1]) is u.s.c., then for some x ∈ [0, 1],
〈x, x〉 ∈ G(f).

Proof. Suppose that 〈x, x〉 6∈ S for all x ∈ [0, 1]. Then y > 0 for all
y ∈ f(0) and z < 1 for all z ∈ f(1). This means ([0, 1]2\∆)∩G(f) = G(f)
is the union of two non-empty disjoint open sets. However, since f was
continuum-valued and u.s.c., G(f) was connected (by [4, Theorem 2.5]),
yielding a contradiction. �
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Lemma 3.2. If f : [0, 1]→ C([0, 1]) is u.s.c., idempotent, and surjective,
then for some x, y ∈ [0, 1] with x 6= y, 〈x, x〉 ∈ G(f) and 〈y, y〉 ∈ G(f).

Proof. By Lemma 3.1, for some x ∈ [0, 1], 〈x, x〉 ∈ G(f). Suppose by way
of contradiction that, for all y ∈ [0, 1] with y 6= x, 〈y, y〉 6∈ G(f).

Case 1: x = 0. Since 〈1, 1〉 6∈ G(f), it follows that f(1) ⊆ [0, 1). It
follows then that f(z) ⊆ [0, z) for all z ∈ (0, 1], since f(z) is an interval
not containing z and the graph of f is connected. Therefore, as f is
surjective and 1 6∈ f(z) for all z ∈ (0, 1], 1 ∈ f(0). In fact, as f(0) is
connected and contains both 0 and 1, we know f(0) = [0, 1]. Then for
z ∈ (0, 1], f(f(z)) = f(z) ⊆ [0, z) 6= [0, 1], and thus 0 6∈ f(z), that is,
f(z) ⊆ (0, z).

Now consider f(1) = [a, b] ⊆ (0, 1), where a ≤ b. (If a = b, then
[a, b] = {a} and the following argument will still apply.) Then f(f(1)) =
f([a, b]) = [a, b] and, in particular, f(a) ⊆ [a, b]. However, since a ∈ (0, 1],
we also have f(a) ⊆ (0, a), a contradiction.

Case 2: x = 1. The proof is analogous to Case 1.

Case 3: x ∈ (0, 1). Since f(0) ⊆ (0, 1] and the graph of f is connected,
f(z) ⊆ (z, 1] for each z ∈ [0, x); thus, 0 6∈ f([0, x)). Likewise, since
f(1) ⊆ [0, 1), we have f(z) ⊆ [0, z) for each z ∈ (x, 1]; thus, 1 6∈ f((x, 1]).
Since f is surjective, 1 ∈ f(v) for some v ∈ [0, x] and 0 ∈ f(w) for some
w ∈ [x, 1]. If f(v) = {1}, then f(f(v)) = f({1}) = {1}, which is a
contradiction since 〈1, 1〉 6∈ G(f). So, let us say f(v) = [k, 1] for some
k < 1.

We note that, in fact, v = x. If v < x could hold, then f(v) = [k, 1] ⊆
(v, 1]. Then f(f(v)) = f([k, 1]) = [k, 1], which forces k ≤ x as 1 6∈
f((x, 1]). This results in a contradiction, as then f([x, 1]) ⊆ f([k, 1]) =
[k, 1] while 0 ∈ f(w) ⊆ f([x, 1]). So [x, 1] ⊆ f(x), and as 1 6∈ f(1), we
have that x 6∈ f(1) by the idempotence of f .

So, f(1) = [a, b] for some a ≤ b, where [a, b] ⊆ [0, x) or [a, b] ⊆ (x, 1).
If [a, b] ⊆ (x, 1), then since a > x, f(a) ⊆ [0, a) while f(a) ⊆ f([a, b]) =
f(f(1)) = f(1) = [a, b], a contradiction. On the other hand, if [a, b] ⊆
[0, x), then since b < x, f(b) ⊆ (b, 1] while f(b) ⊆ f([a, b]) = f(f(1)) =
f(1) = [a, b], another contradiction. Since each possible case results in a
contradiction, the proof is complete. �

Lemma 3.3. If f : [0, 1]→ C([0, 1]) is u.s.c., idempotent, and surjective,
but f 6= ι, then G(f) satisfies condition Γ.

Proof. If ∆ is a subset of G(f), then since f 6= ι, there must exist some
point 〈x, y〉 ∈ G(f) with x 6= y, and the result follows. So, suppose ∆ is
not a subset of G(f). The result follows in either of two possible cases.



294 S. CLONTZ AND S. VARAGONA

Case 1. G(f)∩∆ is not connected. Then there exist x < y in [0, 1] such
that 〈x, x〉 and 〈y, y〉 are elements of G(f) but for all p with x < p < y,
〈p, p〉 6∈ G(f).

Because f is continuum-valued, we may assume min(f(p)) > p for
all p ∈ (x, y). (The case max(f(p)) < p is similar.) If max(f(x)) <
y, then by the definition of u.s.c., there is some p ∈ (x, y) such that
f(p) = [a, b] where b < y. It then follows from idempotence of f that
f(b) ⊆ [a, b] ∩ (b, 1] = ∅, a contradiction. Thus, max(f(x)) ≥ y and
therefore, 〈x, y〉, 〈x, x〉, and 〈y, y〉 all belong to G(f).

Case 2. G(f) ∩∆ is connected. Then there exists [x, y] ( [0, 1] with
x < y and 〈p, p〉 ∈ G(f) exactly when p ∈ [x, y]. Since ∆ is not a subset of
G(f), this means either 0 6∈ [x, y] or 1 6∈ [x, y]. Let us suppose 0 6∈ [x, y].
(The case 1 6∈ [x, y] is similar.) Choose the minimal z ∈ [0, 1] satisfying
0 ∈ f(z). Because 0 6∈ f(0), we know f(0) ⊆ (0, 1], and thus (because
G(f) is connected) f(p) ⊆ (p, 1] for p ∈ [0, x). Thus, z ∈ [x, 1].

If z = x, then we claim that max(f(x)) > x. As justification, suppose
not. Then f(x) = [0, x] and f([0, x]) = [0, x]. Now if x ∈ f(0), then
[0, x] = f(x) ⊆ f(f(0)) = f(0), which would imply that 0 ∈ f(0), con-
tradicting the earlier statement that 0 6∈ f(0). So, f(0) = [a, b] ⊆ (0, x).
That means f([a, b]) = [a, b], so f(b) ⊆ [a, b]. However, f(b) ⊆ (b, 1] also;
this is also a contradiction. So indeed, max(f(x)) > x, and the result
follows.

If z ∈ (x, y], then the result follows immediately.
Finally, we demonstrate that z ∈ (y, 1] results in a contradiction. Let

f(z) = [0, d] ⊆ [0, z). Since [0, d] = f(z) = f(f(z)) = f([0, d]), there is
some z′ ∈ [0, d] ⊆ [0, z) satisfying 0 ∈ f(z′), even though z was chosen to
be minimal. �

Note that while we have assumed that f : [0, 1] → C([0, 1]) (which
also guarantees that the inverse limit is a continuum), it is an open ques-
tion whether Γ must also hold for any nontrivial surjective idempotent
u.s.c. f : [0, 1] → 2[0,1] (regardless of whether the inverse limit remains
connected).

Lemma 3.4. Let κ be a nonzero ordinal. If f : [0, 1]→ 2[0,1] is u.s.c. and
idempotent and G(f) satisfies condition Γ, then lim←−{[0, 1], f, κ} contains
a copy of κ+ 1.

Proof. As G(f) satisfies Γ, let us say, without loss of generality, that
〈x, x〉, 〈y, y〉, and 〈x, y〉 are elements of G(f). lim←−{[0, 1], f, κ} contains the
points xα for α ≤ κ, defined by xα(β) = y for β < α and xα(β) = x
otherwise. It is easy to see that {xα : α ≤ κ} is a copy of κ+ 1. �
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Theorem 3.5. Let κ be a nonzero ordinal. If f : [0, 1] → C([0, 1]) is
u.s.c., idempotent, and surjective, but f 6= ι, then lim←−{[0, 1], f, κ} contains
a copy of κ+ 1.

Proof. The result follows immediately from Lemma 3.3 and Lemma 3.4.
�

Note that when κ ≥ ω1, ω1 ∈ κ+ 1 is a point of non-first-countability;
therefore, any space containing κ+ 1 as a subspace is nonmetrizable.

The presence of κ+ 1 prevents more than just metrizability, however.
Let ΣRκ ⊆ Rκ denote the Sigma-product of κ copies of R: the subspace
for which each sequence has only countably many coordinates of nonzero
value. A Corson compact space is a compact space which embeds in ΣRκ
for some κ (see [1]).

All compact metric spaces are embeddable in Rω = ΣRω and therefore
Corson compact. In addition, every closed subspace of a Corson compact
space is Corson compact. While ΣRκ is not first-countable for κ ≥ ω1,
any subspace of ΣRκ has the weaker property of being Fréchet-Urysohn:
Each limit point of a set is converged to by a countable sequence in the
set. However, ω1 + 1 is not Fréchet-Urysohn, as every countable sequence
of ordinals less than ω1 is bounded above and therefore cannot converge
to ω1 itself. Therefore, any space containing κ+ 1 for κ ≥ ω1 cannot even
be Corson compact.

Corollary 3.6. An inverse limit with a single u.s.c., idempotent, sur-
jective bonding function f : [0, 1] → C([0, 1]) and index set κ, a nonzero
ordinal, is only metric (in fact, Corson compact) in the case that κ is
countable or the bonding map is trivial.

Proof. If f = ι, then of course the inverse limit is homeomorphic to [0, 1].
So, suppose f 6= ι. If κ is countable, then because the inverse limit is a
subspace of [0, 1]κ, it is metrizable. However, if κ is uncountable, then
by Theorem 3.5, the inverse limit contains a copy of κ + 1, preventing
metrizability and Corson compactness. �

4. Examples

The following example helped inspire the main theorem of this paper.

Example 4.1. Let κ be a nonzero ordinal, and let f : [0, 1]→ C([0, 1]) be
given by f(0) = [0, 1] and f(x) = {1} for each x 6= 0. Then lim←−{[0, 1], f, κ}
is metric exactly when κ is countable.

Proof. f is u.s.c. because G(f) is closed, and obviously f is continuum-
valued and surjective. Since f([0, 1]) = [0, 1] and f({1}) = {1}, by Lemma
2.2, f is idempotent. Thus, Corollary 3.6 applies. (Note that one could
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also verify directly that G(f) satisfies condition Γ because G(f) contains
the ordered pairs 〈0, 0〉, 〈1, 1〉, 〈0, 1〉.) �

The discussion of this example in [10] implies that this inverse limit is
homeomorphic to Y = (κ× [0, 1))∪{〈κ, 0〉} (with the lexicographic order
topology) whenever κ is a nonzero limit ordinal. If 0 < κ < ω1, Y is a
metric arc. However, when κ = ω1, Y is the compactified long line, a
non-metric space.

We give one more simple example to show that the surjectivity of the
bonding function f is necessary.

Example 4.2. Let f : [0, 1] → C([0, 1]) be given by f(x) = {x} for
0 ≤ x < 1/2 and f(x) = {1/2} for x ≥ 1/2.

Clearly, f is u.s.c. and idempotent and f 6= ι; however, G(f) does not
satisfy condition Γ. Indeed, lim←−{[0, 1], f, κ} is homeomorphic to a metric
arc for all κ > 0.
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