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UNIFORMLY PATH CONNECTED
HOMOGENEOUS CONTINUA

JANUSZ R. PRAJS

Abstract. It is proven that every path connected homogeneous
continuum is uniformly path connected, which answers a question
of David P. Bellamy. From this result it follows that every path
connected homogeneous continuum is continuously equivalent ei-
ther to an arc, or to the Cantor fan.

Homogeneous path connected continua have been attracting attention
for several decades [2] [3] [10] [13] [14] [16]. The main focus has been on
finding additional structural properties of these continua, which would
define some “small” classes of spaces containing all such continua. In [10]
Krystyna Kuperberg asked whether every homogeneous path connected
continuum is locally connected. This question was answered in the nega-
tive by the author [13]. Interestingly, if a continuum X is path connected
and admits a topological group structure, then X is locally connected [8,
Theorem 9.68]. Also, if X is path connected and isometrically homoge-
neous, then it is locally connected [15]. In [14] the author has shown that
path connected homogeneous continua are weakly chainable, that is, they
are continuous images of the pseudo-arc.

In [2], David P. Bellamy asked whether every homogeneous path con-
nected continuum is uniformly path connected, and presented a substan-
tial partial result related to this question. In this paper we answer Bel-
lamy’s question in the affirmative.
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The uniform path connectedness of metric spaces is a geometric prop-
erty introduced by Włodzimierz Kuperberg in [11]. Among compact met-
ric spaces it becomes a topological property, which is invariant with re-
spect to continuous maps. Indeed, if X is compact, the uniform path
connectedness of X is equivalent to the existence of a compact collection
of paths in X (in the sup metric) connecting each two points of X. Show-
ing that every homogeneous path connected continuum is uniformly path
connected is the main result of this paper.

Two spaces X and Y are continuously equivalent if there exist continu-
ous surjections f : X → Y and g : Y → X. If an equivalence class of this
relation is composed of compact spaces, then either all of its members are
uniformly path connected or none are. In general, there are uncountably
many equivalence classes of path connected continua because path con-
nected continua have no common model [12, p. 51]. Nevertheless, from
the main result of this paper it follows that path connected homogeneous
continua can only be found in two of these classes: the one containing an
arc, and the one containing the Cantor fan. This is a major reduction,
which brings a new focus to the systematic study of homogeneous path
connected continua.

1. Preliminaries

In this paper, all spaces are metric and mappings are continuous. A
continuum is a non-empty, compact, connected metric space. The Cantor
fan is the cone over the Cantor set. A collection of maps fα : X → Y , α ∈
I, between metric spaces (X, dX) and (Y, dY ) is uniformly equicontinuous
provided that for every ε > 0, there is a δ > 0 such that for all α ∈ I
and x1, x2 ∈ X if dX(x1, x2) < δ, then dY (fα(x1), fα(x2)) < ε. A space
X is uniformly path connected provided there exists a uniformly equi-
continuous family of paths in X joining each point of X with each other
point. It is known that a continuum is uniformly path connected if and
only if it is a continuous image of the Cantor fan [11].

A space X is called homogeneous if, for all x, y ∈ X, there is a homeo-
morphism h : X → X such that h(x) = y. If X is a homogeneous compact
space, then for every ε > 0 there is a δ > 0 such that for all x, y ∈ X
with d(x, y) < δ, there is some homeomorphism h : X → X satisfying
h(x) = y and d(z, h(z)) < ε for each z ∈ X. This is called the Effros
theorem. It follows from the more general statement that for each x ∈ X,
the evaluation map, h 7→ h(x), from the self-homeomorphism group of X
onto X is open. The latter follows from [7, Theorem 2].

In our main argument we use the concept of quasi-interior defined
below. This concept was also used in [2] in a similar context. A subset A of
a topologically complete metric spaceX is said to have the Baire property,
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if there is an open set U such that (A−U)∪ (U −A) is first category. A
set in a topological space is said to be analytic if it is a continuous image
of a Borel subset of a separable, complete metric space. It is known
that analytic sets have the Baire property. For a set A in a space X,
we define the quasi-interior of A as A∗ =

⋃
{U |U is open in X and U −

A is of the first category}. If A ⊂ B, then A∗ ⊂ B∗ (see [6, (3.3)]).
Let f : X → Y be a map between metric spaces and let x ∈ X. We say

that f is quasi-interior at x, if, for every open set U in X containing x,
the point f(x) is in the quasi-interior (f(U))∗ of f(U). The first part of
the following theorem has been shown in [14]. Here we prove the second
part.

Theorem 1.1. Let f : X → Y be a continuous surjection between
topologically complete separable metric spaces X and Y . Then the set
XQ = {x ∈ X | f is quasi-interior at x} is a Gδ subset of X, and the
quasi-interior (f(XQ))

∗ of the set f(XQ) equals Y .

Proof. In [14, Theorem 1.9] it has been shown that XQ is non-empty.
Since X is separable, for every natural number k there is a collection
{Bk1 , Bk2 , · · · } of open balls in X of radius 1/k that covers X. For all n
and k, the quasi-interior (f(Bkn))

∗ is an open set in Y , and thus the set
V kn = Bkn ∩ f−1((f(Bkn))

∗) is open in X. Hence,
⋃
n V

k
n is open for each

k, and XQ =
⋂
k(
⋃
n V

k
n ) is a Gδ subset of X.

Observe that for each analytic set A ⊂ Y , if A∗ is dense in Y , then
Y −A∗ is first category because Y is topologically complete. Consequently,
A∗ = Y . As a continuous image of a Gδ subset XQ of a topologically
complete space X, the set f(XQ) is analytic. Thus, to prove (f(XQ))

∗ =
Y , it suffices to show that (f(XQ))

∗ is dense in Y .
Suppose there is a non-empty open set U ⊂ Y such that U∩(f(XQ))

∗ =
∅. It follows U ∩ f(XQ) is first category, and thus U ∩ f(XQ) ⊂ F =⋃∞
n=1 Fn for some closed nowhere dense subsets Fn of U . By the Baire

category theorem, W = U − F is dense in U . The set W is topologically
complete as a Gδ subset of a topologically complete set U . Clearly, W
is also a Gδ subset of Y , and thus Z = f−1(W ) is a Gδ subset of X.
Consequently, Z is topologically complete. The map f |Z : Z → W is a
continuous surjection between topologically complete spaces Z and W .
Thus, there exists a z ∈ Z such that f |Z is quasi-interior at z. Let V be
an open neighborhood of z in X. Then V ∩Z is an open neighborhood of
z in Z, and thus f(z) is in the quasi-interior of (f |Z)(V ∩Z) = f(V ∩Z)
relative to W . Since F = U − W is first category, f(z) is also in the
quasi-interior of f(V ∩ Z) relative to U . Further, since U is open in Y ,
f(z) is in the quasi-interior of f(V ∩ Z) ⊂ f(V ) in Y . Hence, f(z) is
in the quasi-interior of f(V ) in Y ; that is, z ∈ XQ. On the other hand,
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z ∈ f−1(W ) = f−1(U − F ) ⊂ f−1(U − f(XQ)), and thus z /∈ XQ. This
contradiction completes the proof. �

Theorem 1.2. Let X, Y , and Z be topologically complete separable met-
ric spaces and let f : X → Z and g : Y → Z be continuous maps. Suppose
U is open in X and V is open in Y with (f(U))∗∩ (g(V ))∗ 6= ∅. Then for
some x0 ∈ U and y0 ∈ V with f(x0) = g(y0), the map f is quasi-interior
at x0 and the map g is quasi-interior at y0.

Proof. The set W = (f(U))∗ ∩ (g(V ))∗ is non-empty and open in Z, and
by assumption there are two sequences, Fn and Gn of subsets ofW , which
are nowhere dense and closed relative toW , such thatW −

⋃
n Fn ⊂ f(U)

and W −
⋃
nGn ⊂ g(V ). Let W0 = W −

⋃
n(Fn ∪ Gn). Note that

W0 ⊂ f(U)∩ g(V ) and W −W0 is first category. Since W0 is a Gδ subset
of W , and thus also of Z, it follows W0 is topologically complete. Let
U0 = U∩f−1(W0) and V0 = V ∩g−1(W0). Then U0 and V0 are Gδ subsets
ofX and Y , respectively. Thus, U0 and V0 are topologically complete. Let
f0 : U0 →W0 and g0 : V0 →W0 be the corresponding restrictions of f and
g. Note that f0 and g0 are surjective. Consequently, f0 and g0 satisfy the
conditions of Theorem 1.1. Let U0,Q = {x ∈ U0 | f0 in quasi-interior atx}
and V0,Q = {y ∈ V0 | g0 in quasi-interior at y}. By Theorem 1.1, the
quasi-interiors of f0(U0,Q) and g0(V0,Q) relative to W0 both equal W0.
Therefore, f0(U0,Q) ∩ g0(V0,Q) 6= ∅. Let z0 ∈ f0(U0,Q) ∩ g0(V0,Q), x0 ∈
U0,Q ⊂ U , and y0 ∈ V0,Q ⊂ V be such that f0(x0) = z0 = g0(y0).

Let N be an open neighborhood of x0 in X. Then N ∩ U0 is an open
neighborhood of x0 in U0, and thus f0(x0) = f(x0) is in the quasi-interior
of f0(N ∩U0) = f(N ∩U0) relative to W0. Since W −W0 is first category,
f(x0) is also in the quasi-interior of f(N ∩ U0) relative to W . The point
f(x0) is also in the quasi-interior of f(N ∩U0) relative to Y because W is
open in Y . Hence, f(x0) is in the quasi-interior of f(N) in Y . Therefore,
f is quasi-interior at x0. Similarly, we argue that g is quasi-interior at y0.
The proof is complete. �

In our argument we use the following classic theorem [4, p. 252].

Theorem 1.3. Let f : X → Y be an open surjective map such that X is
a topologically complete metric space and Y is compact. Then there is a
compact set Z in X such that f |Z : Z → Y is surjective.

2. The Main Result

In this section, X is a metric space. The following definitions apply
to any such X under consideration. Define the space F of all paths
p : [0, 1] → X in X with the sup metric. For p ∈ F the points p(0) and
p(1) are called the beginning and destination of p, respectively. If p ∈ F ,
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the inverse path of p(t) is defined by p−1(t) = p(1 − t). The notation
for inverse paths should not be confused with the notation for inverse
functions and pre-images of sets. For paths p, q ∈ F with p(1) = q(0),
we define the path product p ∗ q : [0, 1]→ X of p and q in the usual way;
that is, (p ∗ q)(t) = p(2t) for t ∈ [0, 1/2] and (p ∗ q)(t) = q(2t − 1) for
t ∈ [1/2, 1].

If x0 ∈ X, the set of all paths p ∈ F such that p(0) = x0 is denoted
by Fx0

. The map Fx0
: Fx0

→ X defined by Fx0
(p) = p(1) is called

the destination map (for the paths that begin at x0). Let FQx0
be the

collection of the members p of Fx0
such that the destination map Fx0

is
quasi-interior at p, and define FQ =

⋃
{FQx |x ∈ X}. If X is compact, the

space F of all paths in X is topologically complete and so are its closed
subspaces Fx. If, additionally, X is path connected, the destination map
is surjective. By Theorem 1.1 we have the following proposition, which
has also been used in [2].

Proposition 2.1. If X is compact and path connected and x0 ∈ X, then
for some path p ∈ Fx0 the destination map Fx0 : Fx0 → X is quasi-
interior at p. Moreover, the set FQx0

of all such paths p is a Gδ subset of
Fx0

.

Next we show that if X is compact and homogeneous, then FQ is a Gδ
subset of F (Theorem 2.3 below). For the proof we use some additional
notation and a lemma. For a set U ⊂ F define

W (U) = {p ∈ U | p(1) = Fp(0)(p) ∈ (Fp(0)(U ∩ Fp(0)))
∗}.

Note that W (U) ⊂W (V ) whenever U ⊂ V . With every open set U in
F we associate a sequence Ũk of the sets Ũk = {x ∈ U |B(x, ε + 1/k) ⊂
U for some ε > 0}. Note that each Ũk is open and

⋃
k Ũ

k = U . Moreover,
for δ < 1

k −
1
k+1 , the δ-neighborhood of Ũk is contained in Ũk+1. For each

open U ⊂ F let

W 0(U) =

∞⋃
k=1

W (Ũk).

The sets W (Ũk) form an increasing nested sequence and all are con-
tained in W (U). Therefore, W 0(U) ⊂ W (U). It is not clear whether
W 0(U) always equals W (U).

Lemma 2.2. If X is compact and homogeneous, then W 0(U) is open in
F for each open set U ⊂ F .

Proof. Let U ⊂ F be open and p ∈ W 0(U). Fix a k such that p ∈
W (Ũk). To prove that p is in the interior of W 0(U), we show that for
each sequence {pn} ⊂ F with lim pn = p, some pn’s are in W 0(U). Let
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{pn} be such a sequence. Since p ∈ Ũk ⊂ U and Ũk is open, without
loss of generality assume pn ∈ Ũk for each n. To simplify notation, let
a = p(0) and an = pn(0) for each n. Also, given x ∈ X, let Ux = U ∩ Fx
and Wx(U) = {p ∈ Ux |Fx(p) ∈ (Fx(Ux))

∗}. Note that each Wx(U) is
open in Fx by the openness of Ux in Fx, the openness of (Fx(Ux))∗ in X,
and the continuity of Fx.

By the Effros theorem there are homeomorphisms hn : X → X con-
verging to the identity such that hn(an) = a. Let qn = hn ◦ pn and
note that lim qn = p and qn ∈ Ua for each n. Since p ∈ Ũk and Ũk

is open, qn ∈ Ũk for sufficiently large n. Moreover, letting h−1
n Ũk =

{h−1
n ◦ r | r ∈ Ũk}, for sufficiently large n, h−1

n Ũk ⊂ Ũk+1 because Ũk+1

contains some δ-neighborhood of Ũk and limh−1
n = IdX . Also, p is in

Wa(Ũ
k) which is open in Fa. Thus, for sufficiently large n, qn ∈Wa(Ũ

k)

because {qn} ⊂ Fa. Fix an n with h−1
n Ũk ⊂ Ũk+1 and qn ∈Wa(Ũ

k).
We have Fa(qn) ∈ (Fa(Ũ

k∩Fa))∗. Therefore, Fan(pn) ∈ (Fan(h
−1
n Ũk∩

Fan))∗ because pn = h−1
n ◦ hn ◦ pn = h−1

n ◦ qn, h−1
n (a) = an, and h−1

n

is a self-homeomorphism of X. Since h−1
n Ũk ⊂ Ũk+1, it follows that

Fan(pn) ∈ (Fan(Ũ
k+1∩Fan))∗, and thus pn ∈W (Ũk+1) ⊂W 0(U), which

completes the proof. �

Theorem 2.3. If X is compact and homogeneous, then FQ is a Gδ sub-
space of F .

Proof. Since F is separable, for every natural number k there is a collec-
tion {Bk1 , Bk2 , · · · } of open balls in F of radius 1/k that covers F . Observe
that a path p ∈ F is in FQ if and only if, for each k, p ∈ W 0(Bknk

) for
some nk. By Lemma 2.2 the sets W 0(Bkn) are open in F for all k and n
and so are the unions V k =

⋃∞
n=1W

0(Bkn). Hence, FQ =
⋂∞
k=1 V

k is a
Gδ subspace of F . �

Proposition 2.4. Let X be compact; a, b, c ∈ X; p ∈ Fa; q ∈ Fb; and
p(1) = b. If the destination map Fb : Fb → X is quasi-interior at q, then
the destination map Fa : Fa → X is quasi-interior at the path product
p ∗ q.

Proof. Let U be a neighborhood of p∗q in Fa and let V be a neighborhood
of q in Fb such that {p ∗ r | r ∈ V } ⊂ U . Then Fb(V ) ⊂ Fa(U). Hence,
Fa(p ∗ q) = Fb(q) ∈ (Fb(V ))∗ ⊂ (Fa(U))∗, as needed. �

From now on let X be a homogeneous path connected continuum. We
fix x0 ∈ X. Let FΛ

x0
be the set of all path products p ∗ q−1 such that
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p(0) = x0, p(1) = q(1), Fx0 is quasi-interior at p, and Fq(0) is quasi-
interior at q. Let FΛ

x0
: FΛ

x0
→ X be the destination map Fx0

restricted
to FΛ

x0
.

Proposition 2.5. For a path connected homogeneous continuum X with
x0 ∈ X, the set FΛ

x0
is topologically complete and the destination map for

this set, FΛ
x0

: FΛ
x0
→ X, is surjective.

Proof. The set FQx0
= {p ∈ Fx0

|Fx0
is quasi-interior at p} is a Gδ sub-

set of a topologically complete set Fx0 by Proposition 2.1. Thus, FQx0
is

topologically complete. Similarly, FQ =
⋃
{FQx |x ∈ X} is a Gδ subset

of the topologically complete space F by Theorem 2.3, and thus FQ is
topologically complete. Consequently, the product FQx0

× FQ is topolog-
ically complete. Let H = {(p, q) ∈ FQx0

× FQ | p(1) = q(1)} and note
that H is closed in FQx0

× FQ. Therefore, H is topologically complete.
For (p, q) ∈ H, let H(p, q) = p ∗ q−1 and note that H : H → FΛ

x0
is a

homeomorphism. Hence, FΛ
x0

is topologically complete.
Let x ∈ X. By Proposition 2.1 there is a path p ∈ Fx0 such that

Fx0
: Fx0

→ X is quasi-interior at p. Let r be a path from x to x0.
By Proposition 2.4 the destination map Fx : Fx → X is quasi-interior
at q = r ∗ p, and p(1) = q(1). Thus, p ∗ q−1 is a member of FΛ

x0
and

FΛ
x0
(p ∗ q−1) = x. Hence, FΛ

x0
: FΛ

x0
→ X is surjective. �

Proposition 2.6. For a path connected homogeneous continuum X with
x0 ∈ X, the destination map FΛ

x0
: FΛ

x0
→ X is open.

Proof. Suppose the map FΛ
x0

: FΛ
x0
→ X is not open. Then for some path

s = p ∗ q−1 ∈ FΛ
x0

with p ∈ FQx0
, q ∈ FQq(0), and p(1) = q(1), and for some

ε > 0, there exists a sequence {cn} in X converging to c = s(1) = q(0)
such that for every member s′ of FΛ

x0
with destination FΛ

x0
(s′) = s′(1) = cn

for some n, the paths s and s′ are of the distance greater than ε in the
sup metric.

Let U be the open (ε/2)-neighborhood of p in Fx0 . By the Effros
theorem there are homeomorphisms hn : X → X converging to the iden-
tity such that hn(c) = cn. Since Fx0

is quasi-interior at p, the set W =
(Fx0

(U))∗ is an open neighborhood of p(1). The paths rn = hn◦q converge
to q, and thus the sup distance from rn to q is less than ε/2 and rn(1) ∈W
for almost all n. Fix such an n. Let V be the open (ε/2)-neighborhood of
rn in Fcn . Since q ∈ FQc and hn is a self-homeomorphism of X, it follows
that rn = hn ◦ q is a member of FQcn . Therefore, (Fcn(V ))∗ is a neighbor-
hood of rn(1) = Fcn(rn). We have rn(1) ∈ (Fx0

(U))∗ ∩ (Fcn(V ))∗ 6= ∅.
By Theorem 1.2 applied to the destination maps Fx0

: Fx0
→ X and

Fcn : Fcn → X, there exist paths p0 ∈ FQx0
and q0 ∈ FQcn such that



306 J. R. PRAJS

p0(1) = q0(1). Thus, s0 = p0 ∗ q−1
0 is a path from x0 to cn, and s0 is a

member of FΛ
x0
. The distance from p to p0 is less than ε/2 and from q to

q0 less than ε/2 + ε/2. Hence, the distance from s to s0 is less than ε.
This contradiction completes the proof. �

Theorem 2.7 (Main Result). Each path connected homogeneous con-
tinuum is uniformly path connected.

Proof. Let X be a homogeneous path connected continuum. We prove
that X is a continuous image of the Cantor fan. This last condition is
equivalent to the uniform path connectedness for continua [11].

In propositions 2.5 and 2.6 we have shown there is a topologically
complete collection, FΛ

x0
, of paths in X with a fixed beginning at x0

and with the destination map FΛ
x0

: FΛ
x0
→ X surjective and open. By

Theorem 1.3 there is a compact set Z ⊂ FΛ
x0

such that the restricted
map FΛ

x0
|Z : Z → X is surjective. Let C be the Cantor set. Since each

compact metric space is a continuous image of C, there is a surjective
map M : C → Z. For x ∈ C and t ∈ [0, 1], let G(x, t) = (M(x))(t), which
defines a continuous surjection G : C × [0, 1]→ X. Since G(x, 0) = x0 for
each x ∈ C, the map G can be factored by the quotient map from C× [0, 1]
to an intermediate quotient space, K = (C × [0, 1])/(C × {0}). Thus, X
is a continuous image of K. This last space, K, is homeomorphic to the
Cantor fan. The proof is complete. �

3. Consequences

By Theorem 2.7 each path connected homogeneous continuum is a con-
tinuous image of the Cantor fan. It is known and easy to prove that non-
locally connected homogeneous continua have open sets with uncountably
many components. Thus, they admit maps onto the Cantor fan K by
Bellamy’s characterization of continuous pre-images of K [1]. Therefore,
non-locally connected homogeneous path connected continua are contin-
uously equivalent to the Cantor fan. A non-degenerate locally connected
continuum is continuously equivalent to an arc by the Hahn-Mazurkiewicz
theorem and the Urysohn lemma. Thus, we have the following.

Corollary 3.1. Each non-degenerate homogeneous path connected con-
tinuum is either continuously equivalent to an arc or continuously equiv-
alent to the Cantor fan.

Corollary 3.2. Each two non-degenerate homogeneous path connected
continua are continuously equivalent if and only if either they both are
locally connected or they both are non-locally connected.

Two spaces X and Y are continuously comparable if there exists a
continuous surjection either from X to Y or from Y to X.
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Corollary 3.3. Suppose X and Y are non-degenerate homogeneous path
connected continua. There exists a continuous surjection from X to Y if
and only if either X is non-locally connected or Y is locally connected.
Each two homogeneous path connected continua are continuously compa-
rable.

Let K be a class of spaces. We say that a spaceX is a common model for
K provided X ∈ K and, for each Y ∈ K, there is a continuous surjection
from X to Y .

Corollary 3.4. The continuum P defined in [13] is a common model for
all path connected homogeneous continua.

A continuum X is g-contractible provided it admits a null-homotopic
surjection f : X → X. This concept was introduced in [1] by Bellamy.
Every g-contractible continuum is uniformly path connected, but the con-
verse does not always hold [9]. If two continua are continuously equivalent,
then either both are g-contractible, or neither [9, p. 157]. Since an arc
and the Cantor fan are contractible, they are g-contractible, and so are
all continua continuously equivalent to either of them. Thus, Corollary
3.1 implies the following.

Corollary 3.5. Each homogeneous path connected continuum is g-con-
tractible.

A continuum X has the arc approximation property provided every
subcontinuum of X is the limit, in the sense of the Hausdorff distance, of
path connected subcontinua of X. In homogeneous continua this property
leads to a stronger property of being arc Kelley, which is useful in proofs
and new constructions [5]. In [15] it has been shown that all isometrically
homogeneous continua are arc Kelley.

Question 1. Does every homogeneous path connected continuum have
the arc approximation property?
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