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DYNAMICS ON LOCALLY COMPACT
HAUSDORFF SPACES

M. ARCHANA, P. CHIRANJEEVI, AND V. KANNAN

Abstract. Given a metric space X, it is natural to ask, “Which
subsets of X arise as sets of periodic points of continuous self-maps
on X?” Since most of the metric spaces have to contain a copy of
ω2, the following results of this paper partially answer this question.
(1) A subset S of ω2 occurs as the set of periodic points for some

continuous self-map on ω2 if and only if S \S is either empty
or infinite.

(2) A subset S of ω2 occurs as the set of periodic points for
some self-homeomorphism on ω2 if and only if T

⋂
Sc is either

empty or infinite for any (minimal) subset T of ω2 which is
invariant under all those homeomorphisms under which S is
invariant.

(3) Every subset of N occurs as set of periods of periodic points
for some self-homeomorphism on ω2.

1. Introduction

There have been many papers characterizing the sets of periods of
periodic points for various classes of self-maps, such as (i) continuous self-
maps on the real line R (see [8]), (ii) polynomials on C (see [2]), (iii) toral
automorphisms (see [13]), (iv) totally transitive maps on I (see [3]), (v)
continuous self-maps of Rn (see [12]), (vi) additive cellular automata (see
[16]), (vii) linear operators (see [1]), and (viii) degree one maps on S1 (see
[18]). Also, there have been some results giving partial information about
the sets of periodic points for continuous self-maps on various sets (see
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[2], [4], [7], [11]) and a paper characterizing the sets of periodic points of
toral automorphisms (see [20]). Now we consider the problem of charac-
terizing the sets of periodic points of some dynamical systems, such as
self-homeomorphisms on ω2 and the continuous self-maps on ω2.

The following observation adds importance to the characterization of
the sets of periodic points of continuous self-maps on ω2: If S ⊂ Y ⊂ [0, 1],
where Y is homeomorphic to ω2 such that Y \ Y is finite and S cannot
occur as the set of periodic points for any continuous self-map on Y , then
it cannot occur as the set of periodic points for any continuous self-map
on [0, 1]. So the characterization of sets of periodic points of continuous
self-maps on ω2 gives some information for the characterization of sets of
periodic points of continuous self-maps on [0, 1].

Definitions and notation. A dynamical system is a pair (X, f)
where X is a topological space and f is a continuous self-map on X. A
point x ∈ X is called a periodic point if f n(x) = x for some n ∈ N and
the least such n is called the period of x. The set of all periodic points
of f is denoted by P (f) and the set of periods of periodic points of f is
denoted by Per(f). A point x ∈ X is called a fixed point if f(x) = x. The
set of all fixed points of f is denoted by Fix(f). A subset S of X is called
f-invariant if f(S) = S and is called forward f-invariant if f(S) ⊂ S.

2. Periodic Points of Continuous Self-Maps on
Locally Compact Hausdorff Spaces

Hereafter I denotes an interval in R, not necessarily compact.

Theorem 2.1 ([5]). If S = P (f) for some continuous self-map f on a
compact Hausdorff space X, then S \S has to be either empty or infinite.

Remark 2.2. The above theorem need not be true if X is not locally
compact. For example, take X = { 2m

2n+1 : 0 ≤ m ≤ n}
⋃
{1} and define

t : X −→ X by t(x) = 1− |1− 2x| for all x ∈ X. Then P (t) \P (t) = {1}.
(The continuous extension of this map t on [0, 1] is called the tent map.)

We prove later that the above result holds true even in the case of
ω2 which is a locally compact Hausdorff space but not compact. In this
particular case, we prove that the converse is also true. The truth of
the above result for the case of a general locally compact Hausdorff space
which is not compact is still open.

Theorem 2.3 ([5]). For any continuous self-map f on a Hausdorff space
X, the set P (f) has to be Fσ. Further, it has to be closed if Per(f) is
finite.

Theorem 2.4 ([5]). Let f be a continuous self-map on I. Then
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(1) Every connected component of P (f) is closed in I.
(2) Every element of P (f)c is a limit point of P (f)c.

Proposition 2.5. If f is a continuous self-map on I such that P (f) = I,
then f2 is the identity.

Proof. If P (f) = I, then f will be one-to-one and so it will be strictly
monotonic. Therefore, f2 will be strictly increasing for which every ele-
ment is periodic. This concludes the result. �

Proposition 2.6. Let S be a union of n pairwise disjoint closed subinter-
vals of [0, 1] and let k ∈ N. Then 2k−1 ≤ n < 2k+1−1 if and only if there
exists a continuous self-map f on [0, 1] such that 2k ∈ Per(f), P (f) = S
and 2k+1 /∈ Per(g) for any continuous self-map g on [0, 1] with P (g) = S.

Proof. Use Proposition 2.5 and Theorem 2.4(1). �

Proposition 2.7 ([17]). Any countable metric space without isolated
points is homeomorphic to Q.

Proposition 2.8. If S = P (f) for some continuous self-map f on I, then
Sc has to be either empty or uncountable.

Proof. Since Sc has no isolated point, if it is nonempty countable, then
it will be homeomorphic to Q and so it will not be Gδ, which is a con-
tradiction to the fact that S is Fσ. Therefore, Sc is either empty or
uncountable. �

Corollary 2.9. If f is a continuous self-map on I such that I
⋂

Qc ⊂
P (f), then P (f) = I.

Proposition 2.10 ([5]). If S is either a nonempty closed subset of I or
a countable dense subset of I, then there exists a continuous self-map f
on I such that P (f) = S.

The following are some examples of subsets of [0, 1] which satisfy all
the necessary conditions we have stated but not occurring as P (f) for any
continuous self-map f on [0, 1]:
(1) { 1

m + 1
n : m,n ∈ N; 1 < m < n}

(follows from Proposition 3.13 that will be proved in the next section).
(2)
⋃
n∈N{x ∈ [n−1n , n

n+1 ] : (n+1)(nx−n+1)+1 ∈
⋃
i∈N[2− 1

2i , 2−
1

2i+1 ]}.
(We identify any two elements in the same connected component of⋃
n∈N{x ∈ [n−1n , n

n+1 ] : (n+ 1)(nx− n+ 1) + 1 ∈
⋃
i∈N[2− 1

2i , 2−
1

2i+1 ]}
and consider the quotient topology. Then we use Proposition 3.13.)
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(3) ([0, 12 )
⋂
Q)
⋃
{ 12 + 1

2n : n ∈ N}.
(If it occurs as P (f) for some continuous self-map f on [0, 1], then { 12+ 1

2n :

n ∈ N} has to be forward f -invariant and so 1
2 has to be periodic.)

The above examples motivate us to study the sets of periodic points of
continuous self-maps on zero-dimensional and scattered spaces.

3. Zero Dimensional and Scattered Spaces

Definition 3.1. A subset V of a topological space X is called clopen if
V is both closed and open in X.

Definition 3.2. A topological space is zero-dimensional if it has a base
consisting of clopen sets.

Definition 3.3. A subset A of a topological space X is called a retract
of X if there exists a continuous map f : X −→ A such that f(a) = a for
all a ∈ A.

Proposition 3.4. If A is a retract of X, then every continuous self-map
f on A can be extended as a continuous map g : X −→ A.

Proof. Take g = f ◦ f1 where f1 : X −→ A is a continuous map such that
f1(a) = a for all a ∈ A. �

Proposition 3.5 ([14, p. 35]). A separable metrizable space X is zero
dimensional if and only if every closed subset of X is a retract of X.

Corollary 3.6. For every closed subset S of I
⋂

Q, there exists a contin-
uous self-map f on I

⋂
Q such that P (f) = Fix(f) = S.

Definition 3.7. A topological space X is said to be scattered if every
nonempty subset of X has an isolated point. Note that every well-ordered
space is scattered.

Proposition 3.8 ([19]). Every compact scattered space is zero dimen-
sional.

Proposition 3.9 ([15]). Every countable compact Hausdorff space is well
ordered.

For a topological space X, we define recursively a transfinite sequence
of subsets of X as follows:
X0 = the set of isolated points of X.
Xα = the set of isolated points of X \

⋃
i<αXi for each nonzero ordinal

number α.
Given a scattered space X, the least ordinal α such that Xα = φ is

called the derived length of X and it is denoted by δ(X). For x ∈ X, we
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define the derived length of x in X as the unique ordinal number α such
that x ∈ Xα and it is denoted by δ(x,X).

Given a subset S of a scattered space X and ordinal numbers α1, α2,
. . . , αn, we define SX(α1, α2, . . . , αn) recursively as follows:
SX(α1) = Xα1

SX(α1, α2, . . . , αn) = (S
⋂
SX(α1, α2, . . . , αn−1))αn .

Proposition 3.10 ([9]). Let X be a compact scattered space and Y be a T1
space such that Y is a closed continuous image of X, then δ(Y ) ≤ δ(X).

Theorem 3.11. Let S be a dense subset of a compact scattered space
X which occurs as P (f) for some continuous self-map f on X such that
f−1(y) is finite for all y ∈ Y and α1, α2, . . . , αn are ordinals, then
SX(α1, α2, . . . , αn)

⋂
Sc is either empty or infinite.

Proof. Suppose that Xα

⋂
Sc is nonempty finite for some ordinal α. Then

there exists x ∈ Xα such that f(y) 6= x for any y ∈ Xα. Let V be
a clopen neighborhood of x such that V

⋂
Xα = {x}. Then f−1(V )

is a compact scattered subspace of X such that δ(f−1(V )) < δ(V ),
which is a contradiction to Proposition 3.10. Therefore, Xα

⋂
Sc is ei-

ther empty or infinite. Fix the ordinals α1, α2, . . . , αn−1, αn for some
n > 1. Then SX(α1, α2, . . . , αn−1)

⋂
S = P (f |

SX(α1,α2,...,αn−1)
⋂
S

), and
therefore SX(α1, α2, . . . , αn)

⋂
Sc is either empty or infinite. �

Proposition 3.12. For any continuous surjective self-map f on a com-
pact scattered space X, the set of highest derived length points is forward
invariant.

Proof. Let x ∈ X be a point of highest derived length α such that
δ(f(x), X) < α and let n be the number of points of derived length
α. Consider a separation (W1,W2) of X such that x, f(x) ∈ W1 and
δ(y,X) < α for all y ∈ W1 \ {x}. Then the cardinality of {y ∈ f(W2) :
δ(y, f(W2)) = α} is at most n − 1. Therefore, δ(f(W1)) = α. Let
V be a clopen neighborhood of f(x) in X such that δ(V ) < α and
W3 = f−1(V )

⋂
W1. Then δ(W c

3

⋂
W1) < α and so δ(f(W c

3

⋂
W1)) < α

and also δ(f(W3)) < α, which implies that δ(f(W1)) < α, which is a
contradiction. Therefore, δ(f(x), X) = α. �

Proposition 3.13. For any continuous surjective self-map f on a compact
scattered space X, every point of highest derived length has to be periodic.

Proof. Let α = sup{δ(x,X) : x ∈ X} and let n be the number of points of
derived length α. We need to prove that every point of derived length α is
periodic. We proved the result for n = 1 and we will now prove for n = 2.
The proof for general n is similar. Let x, y ∈ X such that δ(x,X) =
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δ(y,X) = α and f(x) = f(y) = y. Let V be a clopen neighborhood of y
not containing x and W = f−1(V ). Then f(W ) will be homeomorphic to
X and so f(W c) has to be homeomorphic to X, which is a contradiction
to δ(W c) < α. �

Corollary 3.14. If S is an infinite discrete subspace of a compact Haus-
dorff space X that occurs as P (f) for some continuous self-map f on X,
then S has to be uncountable.

Now we indeed give an example of a continuous self-map on a compact
Hausdorff space for which the set of periodic points is a discrete space
whose closure is uncountable.

Let K denote the Cantor middle third set and let C be the set of
midpoints of connected components of I \ K where I = [0, 1]. Let 0̃ =
2, 2̃ = 0, and 1̃ = 1. Define f : C

⋃
K −→ C

⋃
K by f(

∑∞
i=1

ai
3i ) =∑∞

i=1
g(a1a2...an)

3i where
∑∞
i=1

ai
3i is in the Cantor ternary form with ai =

1⇒ ai+1 = 1 and g(a1a2 . . . an) is defined as follows:
g(a1) = ã1 and

g(a1a2...an) =

{
an if ai = 0 for some i < n
ãn otherwise.

Then f will be continuous with P (f) = C.

4. The Ordinal Space ω2

Now we characterize the sets of periods and periodic points of self-
homeomorphisms and continuous self-maps on ω2. Homeomorphisms are
considered in the first subsection and continuous maps in the next sub-
section.

4.1. Periodic points of self-homeomorphisms on ω2.

In this section, we characterize the following:
(1) sets of periodic points of self-homeomorphisms on ω2,
(2) sets of periods of periodic points of self-homeomorphisms on ω2,
(3) the pairs (S, T ) where S ⊂ ω2 and T ⊂ N such that S = P (h)

and T = Per(h) for some self-homeomorphism h on ω2.
Such a characterization of pairs has been given for the class of bounded
linear operators on a Hilbert space in [6].

Definition 4.1. Given n ∈ N, a subset {n1, n2, . . . , nr} of N is said
to be a partition set of n if there exist positive integers k1, k2, . . . , kr,
which need not be distinct such that n1k1 + n2k2 + . . . + nrkr = n. By
convention, we take the empty set to be the unique partition set of 0 and
any nonempty subset of N is taken as a partition set of ∞.
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Hereafter, X denotes a space which is homeomorphic to ω2 unless
specified. Given a subset S of X, we define the sets Ci,S for i ∈ {1, 2, ..., 8}
as follows:

(1) C1,S = S ∩X0

(2) C2,S = Sc ∩X0

(3) C3,S = (S ∩X0 \ Sc ∩X0) ∩ S ∩X1

(4) C4,S = S ∩X0 ∩ Sc ∩X0 ∩ S ∩X1

(5) C5,S = (Sc ∩X0 \ S ∩X0) ∩ S ∩X1

(6) C6,S = (S ∩X0 \ Sc ∩X0) ∩ Sc ∩X1

(7) C7,S = S ∩X0 ∩ Sc ∩X0 ∩ Sc ∩X1

(8) C8,S = (Sc ∩X0 \ S ∩X0) ∩ Sc ∩X1.
The nonempty sets in the above list give a partition of X. The signifi-

cance of these eight sets is more evident in [10]. Now we prove that four of
the above eight sets, viz., C2,S , C6,S , C7,S , C8,S , determine the existence
of a self-homeomorphism h on X such that P (h) = S, and two of them,
viz., C6,S , C7,S , determine the existence of a continuous self-map f on X
such that P (f) = S.

Proposition 4.2. If S is a subset of X, then for any self-homeomorphism
h on X, the above eight sets are h-invariant provided S is h-invariant.

Proof. For any self-homeomorphism h on X, since X0 and X1 are h-
invariant and since the set of all h-invariant subsets of X is closed under
closure, intersection, and set complementation, the above sets should be
h-invariant whenever S is h-invariant. �

Proposition 4.3. There exists a self-homeomorphism h on X such that
P (h) = φ.

Proof. Let X1 = {xi : i ∈ Z}. We may assume that xi 6= xj for any
i, j ∈ Z with i 6= j. For each i ∈ Z, choose a sequence (xij)j∈N of distinct
points of X converging to xi such that {xij : i ∈ Z, j ∈ N} = X0. Then
the function h : X −→ X, defined by h(xi) = xi+1 and h(xij) = x(i+1)j

for all i ∈ N and j ∈ Z, is a homeomorphism such that P (h) = φ. �

Proposition 4.4. Given a subset T of N, there exists a self-homeomorphism
h on X such that P (h) = X0 and Per(h) = T if and only if T is infinite.

Proof. If there exists a self-homeomorphism h on X such that P (h) = X0

and Per(h) = T , then T has to be infinite since X0 is not closed. Con-
versely, suppose that T is infinite, say T = {n1, n2, n3, . . .} such that
ni < ni+1 for all i ∈ N. Let xi and xij be as in the proof of Proposition
4.3. For each j ∈ T , let Sj = {xij : i ∈ Z, |i| ≤ j

2 , i 6=
−j
2 } and define a

self-homeomorphism hj on Sj by
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hj(xij) =


x(i+1)j if x(i+1)j ∈ Sj
x−(i+1)j if x(i+1)j /∈ Sj and i = j

2

x−ij if x(i+1)j /∈ Sj and i 6= j
2 .

Let h′ be a self-homeomorphism on X0 \
⋃
j∈T Sj such that P (h′) =

X0 \
⋃
j∈T Sj and Per(h′) = T . Define h′′ : X1 −→ X1 by h′′(xi) = xi+1

for all i ∈ Z. Then the map h : X −→ X, defined by

h(x) =


hj(x) if x ∈ Sj
h′(x) if x ∈ X0 \

⋃
j∈T Sj

h′′(x) if x ∈ X1,
is a self-homeomorphism on X such that P (h) = X0 and Per(h) = T . �

Proposition 4.5. If K is a compact subset of X, then C2,K and C8,K

are infinite and C6,K and C7,K are empty. Moreover, C8,K is a cofinite
subset of X1.

Proof. If K is compact, then it is closed and so C6,K and C7,K are empty.
Therefore, C8,K = Kc

⋂
X1. If K

⋂
X1 is an infinite subset of the com-

pact space K, then it has a limit point, which is a contradiction. There-
fore, K

⋂
X1 is finite and so C8,K is a cofinite subset of X1. Finally, if

C2,K is finite, then C8,K is empty, which is a contradiction. So C2,K is
infinite. �

Proposition 4.6. If Y is either the same as X or a compact subspace
of X, then, for a subset T of N, there exists a self-homeomorphism h on
Y such that P (h) = Y1 and Per(h) = T if and only if T is a partition set
of |Y1|.

Proof. The necessity part is trivial and we will now prove the sufficiency
part. Suppose that T is a partition set of |Y1|. If T is a nonempty finite
set of cardinality k, let T = {n1, n2, ..., nk} with ni < nj for i < j, and if
T is infinite, let T = {n1, n2, n3, . . .} with ni < nj for i < j. Let I be the
empty set or {1, 2, 3, ..., n} or N such that |I| = |Y1|. Let Y1 = {yi : i ∈ I}.
For each i ∈ I, choose a sequence (yij)j∈N in Y0 converging to yi such
that yij = ykl if and only if i = k and j = l. We may assume that
Y0 \ {yij : i ∈ I, j ∈ N} is either empty or an infinite closed set.

Let h1 be a self-bijection on Y1 such that P (h1) = Y1 and Per(h) = T .
Define h01 : {yij : i ∈ I, j ∈ N} −→ {yij : i ∈ I, j ∈ N} by

h01(yij) =

 yk(j+2) if h1(yi) = yk, j is odd
yk(j−2) if h1(yi) = yk, j is even, j 6= 2
yk1 if h1(yi) = yk, j = 2.

If Y0 \{yij : i ∈ I, j ∈ N} is empty, let h0 = h01. If Y0 \{yij : i ∈ I, j ∈ N}
is infinite, let this set be {zn : n ∈ N} and define h02 : {zn : n ∈ N} −→
{zn : n ∈ N}, h0 : Y0 −→ Y0 as
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h02(zn) =

 zn+2 if n is odd
zn−2 if n is even, n 6= 2
z1 if n = 2

h0(x) =

{
h01(x) if x = yij for some i ∈ I and j ∈ N
h02(x) if x = zn for some n ∈ N.

Now the function h : Y −→ Y , defined by

h(x) =

{
h0(x) if x ∈ Y0
h1(x) if x ∈ Y1,

is a self-homeomorphism on Y such that P (h) = Y1 and Per(h) = T . �

Proposition 4.7. If Y is a compact subspace of X and Y0 = A
⋃
B such

that A and B are disjoint and, for each y ∈ Y1, there is a sequence of
distinct terms in A and a sequence of distinct terms in B both converging
to y, then, given a subset T of N, there exists a self-homeomorphism h on
Y such that P (h) = Y1

⋃
A and Per(h) = T if and only if T is a union

of two subsets T0 and T1 of T such that T1 is a partition set of |Y1| and
all but finitely many elements of T0 have divisors in T1.

Proof. Suppose that P (h) = Y1
⋃
A and Per(h) = T for some self-homeo-

morphism h on X. Let T0 = Per(h|Y0
) and T1 = Per(h|Y1

) so that
T = T0

⋃
T1. Then it is trivial that T1 is a partition set of |Y1|. Let

Y1 = {y1, y2, ..., yn} for some n ∈ N and, for every i with 1 ≤ i ≤ n, let
(yij)j∈N be a sequence in A converging to yi such that {yij : 1 ≤ i ≤
n, j ∈ N} = A. Since f is continuous, the set A′ = {yij : 1 ≤ i ≤ n, j ∈
N, f(yij) 6= ykl for any 1 ≤ k ≤ n, l ∈ N where f(yi) = yk} is finite and
the period of every element of A whose orbit is disjoint with A′ has a
divisor in T1. This concludes the necessity part.

Now, conversely, suppose that T is a union of two subsets T0 and T1
of T such that T1 is a partition set of |Y1| and all but finitely many
elements of T0 have divisors in T1. Since Y1

⋃
B is homeomorphic to

Y , by Proposition 4.6, there exists a self-homeomorphism h1 on Y1
⋃
B

such that P (h1) = Y1 and Per(h1) = T1. Let Y1 = {y1, y2, ..., yn} for
some n ∈ N. For each i ∈ {1, 2, . . . , n}, choose a sequence (yij)j∈N
in A converging to yi such that yij = ykl if and only if i = j and
k = l. We may assume that A \ {yij : 1 ≤ i ≤ n, j ∈ N} is either
empty or an infinite closed set. Let h21 be a self-homeomorphism on
{yij : 1 ≤ i ≤ n, j ∈ N} defined by h21(yij) = ykj where k is a unique
element of {1, 2, ..., n} such that h1(yi) = yk for all i ∈ {1, 2, 3, . . . , n}
and j ∈ N. If A \ {yij : 1 ≤ i ≤ n, j ∈ N} is empty, let h1 = h21. If
A \ {yij : 1 ≤ i ≤ n, j ∈ N} is infinite, define a self-bijection h22 on this
set such that P (h22) ⊂ T and define h2 : A −→ A by
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h2(x) =

{
h21(x) if x = yij for some i ∈ {1, 2, 3, . . . , n}, j ∈ N
h22(x) if x 6= yij for any i ∈ {1, 2, 3, . . . , n}, j ∈ N.

Now the function h : Y −→ Y , defined by

h(x) =

{
h1(x) if x ∈ Y1

⋃
B

h2(x) if x ∈ A,
is a self-homeomorphism on Y such that P (h) = Y1

⋃
A and Per(h) =

T . �

Proposition 4.8. If X0 = A
⋃
B such that A and B are disjoint and for

each x ∈ X1 there is a sequence of distinct terms in A and a sequence
of distinct terms in B both converging to x, then, given a subset T of
N, there exists a self-homeomorphism h on X such that P (h) = A and
Per(h) = T if and only if T is infinite.

Proof. If there exists a self-homeomorphism h on X such that P (h) = A
and Per(h) = T , then, since A is not closed, T has to be infinite. Con-
versely, suppose that T is infinite. Since X1

⋃
A and X1

⋃
B are homeo-

morphic to ω2, from the proofs of Proposition 4.4 and Proposition 4.3, we
can define two self-homeomorphisms h1 and h2 on X1

⋃
A and X1

⋃
B,

respectively, which coincide on X1 such that P (h1) = A, Per(h1) = T ,
and P (h2) = φ. Now the function h : X −→ X, defined by

h(x) =

{
h1(x) if x ∈ X1

⋃
A

h2(x) if x ∈ X1

⋃
B,

is a self-homeomorphism on X such that P (h) = A and Per(h) = T . �

Proposition 4.9. If f is a continuous bijective self-map on a topological
space Y , then for any f-invariant subset S of Y , S

⋂
P (f)c is either empty

or infinite.

Proof. Since f is a continuous bijection, y ∈ Y is periodic if and only if
f(y) is periodic, i.e., P (f)c is f -invariant. Further, if S is an f -invariant
subset of Y , S

⋂
P (f)c is also f -invariant. Now if S

⋂
P (f)c is a nonempty

finite set, then it has a periodic point, which is a contradiction. Therefore,
S
⋂
P (f)c is either empty or infinite. �

Proposition 4.10. If Y is a topological space and a subset S of Y occurs
as P (f) for some continuous bijective self-map f on Y , then Sc should be
either empty or infinite.

Proof. The proof follows directly from Proposition 4.9. �

The following theorem gives a characterization of sets of periods of
periodic points of self-homeomorphisms on X.

Theorem 4.11. Every subset of N occurs as Per(h) for some self-
homeomorphism h on X.
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Proof. Let T ⊂ N. Take a subset S of X0 such that it is closed in X
and T is a partition set of |S|. Define a homeomorphism h1 on S such
that Per(h1) = T . Observe that X \ S is homeomorphic to X. So by
Proposition 4.3, there exists a homeomorphism h2 on X \ S such that
Per(h2) = φ. Now the function h : X −→ X, defined by

h(x) =

{
h1(x) if x ∈ S
h2(x) if x ∈ X \ S,

is a self-homeomorphism on X such that Per(h) = T . �

Proposition 4.12. If X0 = A
⋃
B such that A and B are disjoint and,

for each x ∈ X1, there is a sequence of distinct terms in A and a sequence
of distinct terms in B both converging to x, then, for every subset T of
N, there exists a self-homeomorphism h on X such that P (h) = X1

⋃
A

and Per(h) = T .

Proof. The proof is similar to the proof of Proposition 4.6. �

The characterization of the pairs (S, T ) such that S = P (h) and T =
Per(h) for some self-homeomorphism h is the following.

Theorem 4.13. Given a subset S of X and a subset T of N, there exists
a self-homeomorphism h on X such that P (h) = S and Per(h) = T if
and only if the following conditions hold.

(1) C2,S , C6,S , C7,S , andC8,S are either empty or infinite.
(2) For each i ∈ {1, 3, 4, 5}, there exists a subset Ti of T which is a

partition set of |Ci,S | such that
⋃
i∈{1,3,4,5} Ti = T , and if S is

compact, then all but finitely many elements of T1 have divisors
in T3

⋃
T4.

(3) If T is finite, then S is closed.

Proof. Suppose that S = P (h) and T = Per(h) for some self-homeo-
morphism h on X. Suppose S = P (h) for some self-homeomorphism
h on X. Since the sets C2,S , C6,S , C7,S , and C8,S are h-invariant by
Proposition 4.9, they should be either empty or infinite and so (1) follows.
For each i ∈ {1, 3, 4, 5}, let Ti = Per(h|Ci,S) ⊂ T . Then the sets T1, T3,
T4, and T5 satisfy the first part of (2). The proof of the second part of
(2) is similar to the proof of Proposition 4.7. Condition (3) follows from
Theorem 2.3.

Conversely, suppose that (1)–(3) hold true. We may assume that
X = {m+ 1

n : m,n ∈ N}.
Let W3 = C3

⋃
{x+ 1

n ∈ S : x ∈ C3

⋃
C5

⋃
C8, n ∈ N}

W4 = C4

⋃
{x+ 1

n : x ∈ C4, n ∈ N \ {1}}
W5 = C5

⋃
{x+ 1

n ∈ S
c : x ∈ C5, n ∈ N \ {1}}

W6 = C6

⋃
{x+ 1

n ∈ S : x ∈ C6, n ∈ N \ {1}}
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W7 = C7

⋃
{x+ 1

n : x ∈ C7, n ∈ N \ {1}}
W8 = C8

⋃
{x+ 1

n ∈ S
c : x ∈ C8, n ∈ N \ {1}}.

If {x + 1
n ∈ S

c : x ∈ C3,S

⋃
C6,S} is finite, we replace some Wi which

is not disjoint with C2,S by Wi

⋃
{x + 1

n ∈ S
c : x ∈ C3,S

⋃
C6,S} and we

take W9 to be the empty set. Otherwise, we take W9 = {x + 1
n ∈ S

c :
x ∈ C3,S

⋃
C6,S}. We can observe that each Wi is a clopen set in X and

{Wi : 3 ≤ i ≤ 9, Wi 6= φ} is a partition of X. We can also observe that
Wi is either empty or homeomorphic to ω2 for all i ∈ {6, 7, 8} and W9

is either empty or infinite and does not contain any limit point. Also,
Wi

⋂
X1 is infinite for some i ∈ {3, 4, . . . , 8}, say W3

⋂
X1 is infinite.

Take h3 to be any self-homeomorphism on W3 such that P (h3) = W3 and
Per(h3) = T . Since, for each x ∈ W4, there is a sequence in W4

⋂
S

and a sequence in W4

⋂
Sc, both converging to x by Proposition 4.7,

there exists a self-homeomorphism h4 on W4 such that P (h4) = W4

⋂
S

and Per(h4) = T4. If W5 is nonempty, then by Proposition 4.6, there
exists a self-homeomorphism h5 on W5 such that P (h5) = W5

⋂
S and

Per(h5) = T5. If W6 is nonempty, then by Proposition 4.4, there ex-
ists a self-homeomorphism h6 on W6 such that P (h6) = W6

⋂
S and

Per(h6) = T . Since, for each x ∈ W7, there is a sequence in W7

⋂
S

and a sequence in W7

⋂
Sc, both converging to x by Proposition 4.8,

there exists a self-homeomorphism h7 on W7 such that P (h7) = W7

⋂
S

and Per(h7) = T. If W8 is nonempty, then by Proposition 4.3, there ex-
ists a self-homeomorphism h8 on W8 such that P (h8) = φ. Let h9 be a
self-bijection on W9 such that P (h9) = φ. Now the function h : X −→ X,
defined by h(x) = hi(x) if x ∈ Wi for 3 ≤ i ≤ 9, is a homeomorphism
such that P (h) = S and Per(h) = T . �

The following theorem gives the characterization of the sets of periodic
points of self-homeomorphisms on X.

Theorem 4.14. A subset S of X occurs as the set of periodic points for
some self-homeomorphism on X if and only if the sets C2,S, C6,S, C7,S,
and C8,S are either empty or infinite.

Proof. If S is closed, take T = {1}. Otherwise, take T = N. Then the
proof follows from Theorem 4.13. �

Proposition 4.15 ([10]). Let S be a subset of X and let T be a minimal
subset T of X which is invariant under all those homeomorphisms under
which S is invariant. Then T = Ci,S for some 1 ≤ i ≤ 8.

Corollary 4.16. A subset S of X occurs as the set of periodic points
for some self-homeomorphism on X if and only if T

⋂
Sc is either empty
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or infinite for any (minimal) subset T of X which is invariant under all
those homeomorphisms under which S is invariant.

Proof. The proof follows from Theorem 4.14 and Proposition 4.15. �

Corollary 4.17. If S is a subset of X such that S = P (h) for some
self-homeomorphism h on X, then for any compact subset K of X which
is disjoint from S, there exists a self-homeomorphism h′ on X such that
P (h′) = S

⋃
K.

Proof. Suppose S = P (h) for some self-homeomorphism h on X and
K is a compact subset of X. Note that C2,S

⋃
K = (S

⋃
K)c

⋂
X0 =

(Sc
⋂
X0)

⋂
(Kc

⋂
X0) = C2,S

⋂
C2,K . So if C2,S is empty, then C2,S

⋃
K

is empty, and, since S and K are disjoint, if C2,S is infinite, then C2,S
⋃
K

is infinite. Now observe that K has only finitely many limit points, all
of which are in K, and Ci,S⋃

K ⊂ Ci,K and Ci,K \ Ci,S⋃
K ⊂ K for all

i ∈ {6, 7, 8}. Thus, if Ci,S is empty, then Ci,S
⋃
K is empty and if Ci,S

is infinite, then Ci,S
⋃
K is infinite. So by Theorem 4.14, there exists a

self-homeomorphism h′ on X such that P (h′) = S
⋃
K. �

Remark 4.18. The above result may not be true if S and K are not
disjoint.

Example 4.19. LetX = {m+ 1
n : m,n ∈ N}, S = X\{1+ 1

n : n is even},
and K = {1 + 1

n : n ∈ N \ {1, 2}}; then we observe that C2,S = {1 +
1
n : n is even} and C6,S , C7,S , and C8,S are empty. Also, we can ob-
serve that K is compact, but S

⋃
K cannot occur as P (h) for any self-

homeomorphism h on X because C2,S
⋃
K = {1 + 1

2}.
Remark 4.20. If S = P (h) for some self-homeomorphism h on X and
K is a compact subset of X, then S \K may not occur as P (h′) for any
self-homeomorphism h′ on X.

Corollary 4.21. Every compact subset of X arises as P (h) for some
self-homeomorphism h on X.

Proof. The result follows directly from Proposition 4.5 and Theorem 4.14.
The result also follows from Proposition 4.3 and Corollary 4.17. �

Corollary 4.22. If K is a nonempty compact subset of X, then Kc

cannot occur as P (h) for any self-homeomorphism h on X.

Proof. Suppose Kc = P (h) for any self-homeomorphism h on X. Since
K is nonempty by Proposition 4.9, K should be infinite. Since K is
compact, K

⋂
X1 is a nonempty finite subset of X. So at least one of

C6,Kc , C7,Kc , and C8,Kc should be a nonempty finite subset of X, which is
a contradiction. So Kc cannot occur as P (h) for any self-homeomorphism
h on X. �
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4.2. Periodic points of continuous self-maps on ω2.

In this section, we characterize the following:
(1) sets of periodic points of continuous self-maps on ω2,
(2) the pairs (S, T ) where S ⊂ ω2 and T ⊂ N such that S = P (f)

and T = Per(f) for some continuous self-map f on ω2.

Proposition 4.23. If f is a continuous self-map on X such that P (f) =
S, then C3,S

⋃
C4,S and C1,S

⋃
C5,S are forward f-invariant.

Proof. Let x ∈ C3,S

⋃
C4,S and let (xn)n∈N be a sequence in C1,S converg-

ing to x. If f(x) does not belong to C3,S

⋃
C4,S , then it should belong

to C1,S . Therefore, f(xn) = f(x) for all but finitely many n ∈ N and
so all but finitely many elements of the sequence (xn) are nonperiodic,
which is a contradiction. Therefore, f(C3,S

⋃
C4,S) ⊂ C3,S

⋃
C4,S . Since

f(S) = S and f(C3,S

⋃
C4,S) ⊂ C3,S

⋃
C4,S , we have C1,S

⋃
C5,S is also

forward f -invariant. �

Proposition 4.24. Every continuous self-map f on a closed subset S of X
can be extended as a continuous self-map g on X such that P (g) = P (f).

Proof. The proof follows from Proposition 3.5. �

The following theorem gives the characterization of the sets of periodic
points of continuous self-maps on X.

Theorem 4.25. Given a subset S of X, there exists a continuous self-
map f on X such that P (f) = S if and only if S \ S is either empty or
infinite.

Proof. Let S = P (f) for some continuous self-map on X and let x ∈ S\S.
By continuity of f, we know that f(x) ∈ S. Now suppose that f(x) ∈ S.
Take a sequence (yn) in S converging to f(x) such that f(xm) 6= yn for
any m,n ∈ N and any sequence of distinct elements in S converging to
f(x) contains infinitely many elements of the sequence (zn) where (zn) is
a sequence defined by

zn =

{
f(xn+1

2
) if n is odd

yn
2

if n is even.

If the period of f(x) is k1, then under the map f k1 , except for finitely
many, the image of every element in the sequence (zn) will be in the
sequence (zn). Let F = {zn : f k1(zn) 6= zm for any m ∈ N}. Since
{fn(x) : x ∈ F , n ∈ N

⋃
{0}} is finite under the map f k1+k2 , except for

finitely many, the image of every element in the sequence (zn) will be in
the sequence (zn) for every k2 ∈ N. Then all but finitely many elements of
the sequence (xn) are non-periodic, which is a contradiction. So f(x) /∈ S.
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Therefore, S \ S is forward f -invariant. Now if S \ S is nonempty finite,
then it contains a periodic point, which is a contradiction to P (f) = S.
So S \ S is either empty or infinite.

Now suppose that S \ S is either empty or infinite. We may assume
that X = {m+ 1

n : m,n ∈ N}. Then, by Proposition 4.4, there exists a
continuous self-map g1 on {m+ 1

n ∈ S : m ∈ S \ S, n ∈ N \ {1}} such that
P (g1) = {m+ 1

n ∈ S : m ∈ S \S, n ∈ N \ {1}}. Now the map g : S −→ S,
defined by

g(x) =

{
g1(x) if x ∈ {m+ 1

n ∈ S : m ∈ S \ S, n ∈ N \ {1}}
x if x /∈ {m+ 1

n ∈ S : m ∈ S \ S, n ∈ N \ {1}},
is a continuous self-map on S̄ such that P (g) = S. So, by Proposition
4.24, there exists a continuous self-map f on X such that P (f) = S. �

The characterization of the pairs (S, T ) such that S = P (f) and T =
Per(f) for some continuous self-map f is the following theorem.

Theorem 4.26. Given a subset S of X and a subset T of N there exists
a continuous self-map f on X such that P (f) = S and Per(f) = T if and
only if the following conditions hold:

(1) S \ S is either empty or infinite.
(2) There exist two subsets T1 and T2 (which need not be distinct) of

T which are the partition sets of |C3,S

⋃
C4,S | and |C1,S

⋃
C5,S |,

respectively, such that T1
⋃
T2 = T , and, if S is compact, then all

but finitely many elements of T2 have divisors in T1.
(3) If T is finite, then S is closed.

Proof. Suppose that P (f) = S and Per(f) = T for some continuous
self-map f on X. (1) has been proved in Theorem 4.25. Let T1 =
Per(f |C3,S

⋃
C4,S

) and T2 = Per(f |C1,S

⋃
C5,S

). Then T1 and T2 are the
partition sets of |C3,S

⋃
C4,S | and |C1,S

⋃
C5,S |, respectively, such that

T1
⋃
T2 = T . The second part of (2) is trivial if S is finite. Let S be

an infinite compact subset of X. Then S
⋂
X1 is nonempty finite, say

{x1, x2, . . . , xn} for some n ∈ N with xi 6= xj for i 6= j. For every i
with 1 ≤ i ≤ n, let (xij)j∈N be a sequence in S

⋂
X0 converging to xi

such that {xij : 1 ≤ i ≤ n, j ∈ N} = S
⋂
X0. Since f is continuous, the

set A = {fm(xij) : 1 ≤ i ≤ n, j,m ∈ N, f(yij) = ykl for any 1 ≤ k ≤
n, l ∈ N wheref(yi) = yk} is finite and the period of every element of
(S
⋂
X0) \ A has a divisor in T1, which proves the second part of (2).

Condition (3) has been proved for a general Hausdorff space.
Conversely, suppose that (1)–(3) hold true. By Proposition 4.24, it is

enough to prove that there exists a continuous self-map f on S such that
P (f) = S and Per(S) = T . The result is trivial if S is closed. If S
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is not closed, then S will be homeomorphic to X. Let V and W be two
closed disjoint subsets of S such that S = V

⋃
W , S

⋂
X1 = V

⋂
X1, and

Sc
⋂
X1 = W

⋂
X1. Then it can be observed that W is homeomorphic to

X. Let h1 and h2 be the self-homeomorphisms on S1 and S2, respectively,
such that P (h1) = V

⋂
S, Per(h1) ⊂ T, P (h2) = W

⋂
S, and Per(h2) =

T . Then the map h : S −→ S, defined by

h(x) =

{
h1(x) if x ∈ V
h2(x) if x ∈W,

is a self-homeomorphism on S such that P (h) = S and Per(h) = T . �

5. Some Open Problems

Question 5.1. Can P (f) \P (f) be nonempty finite for some continuous
self-map f on a locally compact Hausdorff space?

Question 5.2. Can P (f) \ P (f) be nonempty countable for some con-
tinuous self-map f on [0, 1]?

Question 5.3. Can an infinite discrete subset of [0, 1] occur as P (f) for
some continuous self-map f on [0, 1]?
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