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FIELD THEORIES, STABLE HOMOTOPY THEORY,
AND KHOVANOV HOMOLOGY

PO HU, DANIEL KRIZ, AND IGOR KRIZ

Abstract. In this paper, we discuss two topics: First, we show
how to convert 1+1-topological quantum field theories valued in
symmetric bimonoidal categories into stable homotopical data, us-
ing a machinery by A. D. Elmendorf and M. A. Mandell. Then we
discuss, in this framework, two recent results (independent of each
other) on refinements of Khovanov homology: our refinement into
a module over the connective k-theory spectrum and a stronger
result by Robert Lipshitz and Sucharit Sarkar refining Khovanov
homology into a stable homotopy type.

1. Introduction

The present paper has a somewhat peculiar history. Essentially, all the
work took place in Fall 2011 and Winter 2012. It was a conglomerate of
several mathematical projects. We put the outcome on the arXiv, but no
author had strong feelings about publication. Recently, however, interest
in these topics was rekindled (see for example [19]). We, therefore, decided
to revise the manuscript, and publish it in the present volume.

As for the ingredients of the project, Po Hu and Igor Kriz were long
interested in topological modular functors, i.e., 1+1-topological quantum
field theories (TQFTs) valued in finite-dimensional C-vector spaces, and
developing a “realization” construction which would convert such a struc-
ture into a 1 + 1-topological quantum field theory valued in k-modules,
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where k denotes the connective K-theory spectrum. Daniel Kriz, on the
other hand, studied Khovanov homology as a part of another project [16].
From joint discussion, there arose a project of writing down a realization
construction and applying it to constructing a k-module refinement of
Khovanov homology.

In this, we ultimately succeeded, and we learned quite a bit. The
realization into k-modules is an intuitively compelling idea, but technical
details are tricky due to the difficulty of multiplicative infinite loop space
theory. We decided to use the machinery of A. D. Elmendorf and M. A.
Mandell [7] which uses multicategories enriched in groupoids. We then
discovered that the multicategory language is quite a convenient tool for
axiomatizing modular functors as well. A multicategory has objects and
n-tuple morphisms

(1.1) X1, . . . , Xn → Y,

which compose in the same way as the elements of an operad. Multicat-
egories are also called colored operads or multi-sorted operads. In this
paper, by a ?-category, we mean a multicategory enriched in groupoids
where for every n-tuple X1, . . . , Xm, there is a universal morphism (1.1)
(in the 2-category sense). We denote Y = X1 ? · · · ? Xn. For detail, see
Definition 2.1. By a ?-functor, we mean a multifunctor which preserves
this structure. (Although we focused on the 2-category context, there are,
of course, similar concepts in ordinary multicategories and multicategories
enriched in topological spaces.) As examples of ?-categories, we have the
1+1-oriented cobordism multicategory A (and its many variants) and also
a certain ?-category C2 associated with any symmetric bimonoidal cate-
gory C (at least when its 2-morphisms form a groupoid). By a C-valued
modular functor on a ?-category Q, we then mean a ?-functor

Q → C2.

Our realization theorem is then the following result (see §2 for precise
definitions).

Theorem 1.1. A C-valued modular functor gives rise, in a canonical
way, to a multifunctor

(1.2) M : B2Q → kC-modules

where kC is the E∞-ring spectrum associated with C and B2Q denotes
the topological multicategory obtained by taking classifying spaces of the
1-morphism groupoids.

Furthermore, a universal multimorphism

X1, . . . , Xn → X1 ? · · · ? Xn,



FIELDS, STABLE HOMOTOPY, AND KHOVANOV HOMOLOGY 329

maps, under (1.2), into an equivalence

(1.3) MX1 ∧kC · · · ∧kC MXn →MX1q···qXn .

Comment 1.2. 1. By “in a canonical way,” we mean that we have
a specific construction in mind. It is given by the Elmendorf-Mandell
construction.

2. The second statement requires some explanation. What is relevant
here is that we work in the category of symmetric spectra where we have
a symmetric monoidal structure under which E∞-ring spectra are, by
definition, precisely commutative monoids. For an E∞-ring spectrum
E in this category, the multicategory of E-modules is then a ?-category
where ? = ∧E . The morphism (1.3) is then the morphism whose existence
is the defining property of the ?-structure.

In view of this, it would be interesting to know if one could devise a
construction where the map (1.3) would be an isomorphism instead of just
an equivalence, i.e., such that our construction would be a ?-functor. Our
construction does not give this, because the Elmendorf-Mandell machine
does not give a ?-functor. We suspect that such a ?-functor might not
exist.

The main application we had in mind was refining Khovanov (sl2)-
homology of links in S3 to a k-module invariant where k is connective
k-theory. We hoped to achieve this by refining Khovanov’s 1 + 1-TQFT
Λ[x] into a 1 + 1-modular functor valued in finite-dimensional C-vector
spaces on the oriented 1 + 1-cobordism category A. This turns out to be
impossible, but we succeeded in constructing a modular functor on the
?-category AAs of spin 1+1-cobordisms where the objects are antiperiodic
1-manifolds. (For a detailed definition of AAs , see Example 2.4. For an
explanation why AAs is needed instead of A, see §3.2.) It, therefore, came
as a surprise when the spin structure dropped out in the end and we
were able to use this construction to define a k-theory lift of Khovanov
homology on links without spin structure. We then thought that there
must be a geometric guiding principle which explains this simplification.

Soon afterwards, the paper [20] by Robert Lipshitz and Sucharit Sarkar
appeared on the arXiv. This paper contains a construction of a stable ho-
motopy refinement of Khovanov homology. The paper [20] uses a different
technique, namely Cohen-Jones-Segal flow categories arising from Morse
theory, but after some initial skepticism, we realized that Lipshitz and
Sarkar discovered the geometric principle we were looking for, while at the
same time rendering our k-theory refinement obsolete: In our language,
they realized that Khovanov’s construction takes place in the category en-
riched in groupoids AK of embedded cobordisms (in S2× [0, 1]—see §2 for
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precise definitions). They additionally observed what amounts to saying
that the Khovanov TQFT refines into a lax 2-functor into S2 where S is
the symmetric bimonoidal category of finite sets. The ?-functor structure
here is lost as AK is not a ?-category, but a ?-functor structure turns out
to be unnecessary because the target of the construction is the category
of symmetric spectra (instead of modules over another rigid ring spec-
trum), so the module structure does not have to be discussed (although
an analogue of (1.3) is relevant and an equivalence follows from more spe-
cial arguments). We, therefore, end up with an alternate proof of the
following result, without requiring the language of Morse theory and flow
categories.

Theorem 1.3 (Lipshitz-Sarkar [20]). There exists an explicitly defined
k-module symmetric spectrum M(L) assigned to an oriented link L such
that, for isotopic oriented links L ∼= L′, there exists an equivalence

M(L) 'M(L′)

and such that
M(L) ∧HZ

corresponds to the Khovanov chain complex under the equivalence of de-
rived categories of strict HZ-modules and chain complexes [6], where
S → HZ is the strictly commutative strict symmetric ring spectrum unit.
In other words, the homology of M(L) is the Khovanov homology of L.
In [20], M(L) is denoted by χKh(L).

The convention in [14] is that the Khovanov complex is written as a
cochain complex. However, in our treatment, we reverse this by reversing
the conventions for the 0-resolution and 1-resolution of link crossings (see
Figure 1, page 19). This has the effect of changing cohomology into
homology, which is more natural from our point of view.

As already remarked, strictly speaking, the full strength of Theorem
1.1 is unnecessary for our proof of Theorem 1.3. However, our investi-
gation of stable homotopy realization of modular functors, including the
construction of the Khovanov topological modular functor on AAs , pro-
vides an excellent motivation for understanding our proof of Theorem
1.3, and thereby makes the argument easier to understand. Because of
this, we decided to report on both investigations in the same paper and
also to include a discussion of the spin-dependent modular functor.
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The present paper is organized as follows: In §2, we review the main
point of the Elmendorf-Mandell formalism, introduce the notion of a ?-
category and ?-functor, and also prove Theorem 1.1. In §3, we construct
our main example of the spin modular functor refinement of the Khovanov
1 + 1-dimensional TQFT Λ(x) and also the reinterpretation of Lipshitz-
Sarkar’s construction in terms of 2-functors. In §4, we construct the
refinements of the Khovanov functor. In §5, we construct the refined
invariant and state a more specific version of Theorem 1.3 (Theorem 5.3).
Section 6 is dedicated to proving link invariance (theorems 1.3 and 5.3),
refining, essentially, the proof of link invariance of Khovanov homology
[14] (see also [3]).

2. Multicategories and Topological Field Theories

Following [7], a multicategory C has a class of objects Obj(C) and classes
of morphisms Morn(C) where n = 0, 1, 2, . . . written as

φ : (x1, . . . , xn)→ y, x1, . . . , xn, y ∈Mor(C).

We also write
φ ∈ C(x1, . . . , xn; y).

There are composition, equivariance, and unit axioms analogous to the
definition of an operad. Details may be found in [7]. In this paper, we
will be dealing with multicategories enriched in groupoids. This means
that while Obj(C) is a class, C(x1, . . . , xn; y) are groupoids, and compo-
sitions and units are functors. Associativity, unitality, and equivariance
are satisfied up to natural isomorphisms, which, in turn, satisfy coher-
ence axioms modeled on cocycle conditions. Details of this context are
also fully discussed in [7].

Therefore, we are in a 2-categorical context. The objects of a morphism
groupoid will sometimes be referred to as 1-morphisms and morphisms of
a morphism groupoid as 2-morphisms. This is the standard language of
2-category theory. The reader should realize that a 2-category where the
2-morphisms are isomorphisms is the same thing as a category enriched
in groupoids.

The most fundamental examples discussed in [7] are the multicategory
Perm (enriched in groupoids) of (small) permutative categories and the
multicategory Sym (enriched in topological spaces) of symmetric spectra.
In the multicategory Sym, morphisms X1, . . . , Xn → Y are the same
thing as morphisms

X1 ∧ · · · ∧Xn → Y

where ∧ is the commutative, associative, and unital smash product of
symmetric spectra.
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In some sense, the main result of [7] is constructing a continuous mul-
tifunctor

B2Perm→ Sym

whereB2 means taking the classifying spaces of the 1-morphism groupoids,
thereby obtaining a topological multicategory. For a multicategory M
enriched in groupoids, let SymM denote the category of multifunctors
M → Sym. The other main result of [7] is Theorem 1.4, stating that forM
and M ′ multicategories enriched in groupoids, and f : M →M ′ a multi-
functor that is a weak equivalence, the induced functor SymM ′ → SymM

is a Quillen equivalence. In other words, the construction of [7] preserves
weak equivalences of multicategories.

Definition 2.1. A ?-category is a multicategory enriched in groupoids
such that for every x1, . . . , xn ∈ Obj(C) where n ≥ 0, there exists an
object x1 ? · · · ? xn and a 1-morphism

φ : (x1, . . . , xn)→ x1 ? · · · ? xn
(in the case of n = 0, one denotes the right-hand side as 1), such that for
every 1-morphism

ψ : (x1, . . . , xn)→ y,

there exists a 1-morphism

h : x1 ? · · · ? xn → y

and a 2-isomorphism

ι : ψ
∼= // h ◦ φ

and furthermore, for other such data

h′ : x1 ? · · · ? xn → y,

ι′ : ψ
∼= // h ◦ φ,

there exists a unique 2-isomorphism

λ : h
∼= // h′

such that
λ ◦ Idφ = ι′ ◦ ι−1.

Note that for two objects u and v satisfying the definition of x1 ? · · · ? xn,
there exist 1-morphisms u→ v and v → u (unique up to 2-isomorphism)
whose compositions are 2-isomorphic to the identity.

In the context of multicategories enriched in groupoids, one has a no-
tion of lax multifunctors, analogous to lax functors of 2-categories, where
the composition and identity axioms are satisfied up to 2-isomorphisms
satisfying the standard coherence diagrams.
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Definition 2.2. A ?-functor is a lax multifunctor F : C → D between
multicategories enriched in groupoids such that F (x1 ? · · ·?xn) is a choice
for F (x1) ? · · · ? F (xn).

Comment 2.3. There is a canonical ?-category which comes from a (lax)
symmetric monoidal category: If the symmetric monoidal structure is ⊗,
then morphisms

x1, . . . , xn → y

are, by definition, the morphisms

x1 ⊗ · · · ⊗ xn → y.

This is always a ?-category, with

x1 ? · · · ? xn = x1 ⊗ · · · ⊗ xn.

Not every ?-category, however, comes from a symmetric monoidal cate-
gory. As an example, consider the operad A where A(k) is the commuta-
tive monoid of non-negative integers (N0,+) and composition

A(k)×A(n1)× . . . A(nk)→ A(n1 + · · ·+ nk)

is
(x, y1, . . . , yk) 7→ x+ y1 + · · ·+ yk − k + 1.

The only 2-isomorphisms are, by definition, identities. The reader should
check that this operad (and hence multicategory) satisfies the ?-category
axioms but does not come from a symmetric monoidal category.

However, most of the ?-categories discussed in this paper, in fact,
come from (lax) symmetric monoidal categories. The reason we pre-
fer the ?-category language is that the conditions on both ?-categories
and ?-functors are much simpler to verify in comparison with symmet-
ric monoidal 2-categories and 2-functors since there is only a universal
property to check.

Example 2.4 (Cobordism Categories). (1) The “basic” cobordism cate-
gory A: The objects of A are oriented compact smooth 1-manifolds. The
1-morphisms

(X1, . . . , Xn)→ Y

are oriented cobordisms between X1q · · · qXn and Y . The 2-morphisms
are orientation preserving diffeomorphisms which are the identity on the
boundary. The ?-category structure is given by

X1 ? · · · ? Xn = X1 q · · · qXn

with the universal 1-morphism (X1, . . . , Xn) → X1 ? · · · ? Xn being the
identity. The unit object is ∅.
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(2) There are a number of variants of A. One example of interest is
As where Obj(As) is the class of oriented 1-manifolds with spin structure
and 1-morphisms are oriented spin cobordisms between X1q· · ·qXn and
Y . Recall that a spin structure on a 1-manifold M with tangent bundle
τM can be specified by giving a real bundle τ1/2 and an isomorphism of
real bundles

τ1/2 ⊗R τ
1/2 ∼= τ.

An oriented circle has two spin structures called periodic and antiperiodic,
depending on whether τ1/2 is trivial or is a Möbius strip. The antiperiodic
spin structure is cobordant to ∅, while the periodic one is not. The 2-
morphisms are orientation preserving diffeomorphisms which are Id on
the boundary including spin, which means also identity on τ1/2. One is
also interested in the ?-category AAs which is defined in the same way, but
one restricts to objects which are spin 1-manifolds with antiperiodic spin
structure on each connected component.

(3) Another variant of A is AK , the embedded 1 + 1-bordism category.
Objects are smooth compact 1-dimensional submanifolds of S2. The 1-
morphisms X1 → X2 are compact 2-submanifolds Y of S2 × [0, 1] whose
boundary is in S2 × {0, 1} (which Y meets transversally), and such that
Y ∩S2×{0} = X1 and Y ∩S2×{1} = X2. The 2-isomorphisms Y → Y ′ are
isotopy classes of diffeomorphisms φ : S2×[0, 1]→ S2×[0, 1] which are the
identity on the boundary and restrict to diffeomorphisms φ|Y : Y → Y ′

(the isotopies are required to restrict to isotopies of diffeomorphisms Y →
Y ′). Note, however, that this 2-category has no canonical multicategory
structure.

Example 2.5 (Target ?-Category). Let C be a symmetric bimonoidal
groupoid. The examples we are thinking of are

C = R, a commutative semiring R (con-
sidered as a discrete category, i.e.,
the only morphisms are identi-
ties), +, · ;

C = V, the category of finite-dimensional
C-vector spaces and isomor-
phisms, ⊕, ⊗;

C = S, the category of finite sets, q, ×.

The ?-category C2 has as objects the class of all finite sets. A 1-morphism
(S1, . . . , Sn)→ T is a T × (S1× . . . Sn)-matrix (thinking of T as the set of
rows and (S1× . . . Sn) as the set of columns) of objects of C. Composition



FIELDS, STABLE HOMOTOPY, AND KHOVANOV HOMOLOGY 335

is “matrix multiplication” with respect to the additive and multiplicative
operation of C. The 2-isomorphisms are matrices of C-isomorphisms.

Definition 2.6. Let Q be a ?-category and let C be a symmetric bi-
monoidal category. Then a ?-functor Q → C2 is called a C-valued modular
functor on Q. We are typically interested in examples such as Q = A,
Q = AAs , etc.

Comment 2.7. The idea of modular functors originates with Graeme
Segal [25], but the definition given in [25] was not rigorous (the coherence
isomorphisms were treated as equalities, thereby neglecting the question
of coherence diagrams). Thomas M. Fiore, Hu, and I. Kriz [8] developed
a formalism defining modular functors rigorously, but the formalism is
awkward from the point of view of infinite loop space theory, hence the
variant introduced in the present paper.

Remark 2.8. A ?-functor
AsA → V2

is the flavor of 2-vector-space valued 1 + 1-dimensional topological field
theory with spin structure we will use in this paper. Generally speaking,
one tends to call 2-vector-space valued 1 + 1-dimensional topological field
theories “topological modular functors.” When using that term, however,
one usually considers a larger source ?-category than A. In one variant,
one removes the spin structure; if there is spin structure, one usually
removes the restriction on the spin structure on objects being antiperiodic.
In the present paper, however, we are unable to work with these notions,
as the relevant examples either don’t exist or we are unable to construct
them; when constructing the K-theory version of Khovanov homology,
the source ?-category AsA is precisely what we need.

Lemma 2.9. Let C be a symmetric bimonoidal category. Then there is a
canonical lax multifunctor

Φ : C2 → Perm

where Perm is the lax multicategory of permutative categories (for Perm
see [7, Theorem 1.1 ]).

Proof. On objects, we set

X 7→
∏
X

C.

On 1-morphisms, a morphism f : X1 × · · · × Xn → Y in C2 is a Y ×
(X1 × · · · × Xn)-matrix whose entries are objects in C. For each y ×
(x1, . . . , xn) ∈ Y × X1 × · · · × Xn, denote the corresponding entry by
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M(y,x1,...,xn) ∈ Obj(C). Then

Φ(f) :
∏

X1×···×Xn

→
∏
Y

C

is given by matrix multiplication, using the ⊗ in C as the multiplication
of entries.

On 2-morphisms, a 2-morphism f ⇒ f ′ in C2 is a matrix of isomor-
phisms M(y,x1,...,xn) → M ′(y,x1,...,xn) where M(y,x1,...,xn) and M ′(y,x1,...,xn)

are the (y, x1, . . . , xn)th entries of f and f ′, respectively. The 2-isomor-
phism Φ(f)⇒ Φ(f ′) is induced by these isomorphisms. �

Construction 2.10. Let Q be a category enriched in groupoids. De-
note by QB the multicategory enriched in groupoids with objects {B} q
Obj(Q), where

QB(B, . . . , B︸ ︷︷ ︸
n

;B) = EΣn,

(recall from [7] that EΣn means the torsor over Σn) and for x, y ∈ Obj(Q),

QB(B, . . . , B︸ ︷︷ ︸
m

, x,B, . . . , B︸ ︷︷ ︸
n

; y) = EΣm+n ×Q(x, y).

Unspecified morphism sets are empty and composition rules are the ob-
vious ones. Then the machine of [7] converts a lax multifunctor

F : QB → Perm

into an E∞-symmetric spectrum R (obtained from F (B)) and an A∞-
functor (associative functor in [7])

B2Q → E∞ −R−modules.

Recall that B2Q for a category Q enriched in groupoids is the topological
category obtained by taking the classifying space on 2-morphisms. The-
orem 1.4 in [7] further enables us to make this strict; i.e., we obtain a
strictly commutative symmetric ring spectrum R and a strict functor

B2Q → R−modules.

Specifically, by [7, Theorem 1.4], an E∞-ring R in symmetric spectra is
naturally equivalent to a strictly commutative ring, and an E∞-module
over R is naturally equivalent to a strict R-module.

Construction 2.11. Now let

F : Q → D
be a lax functor of categories enriched in groupoids, and let D be a ?-
category. Note that then we obtain a canonical lax multifunctor

FB : QB → D
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given on objects by

FB(x) = F (x) for x ∈ Obj(Q),

FB(B) = 1.

The values of FB on 1-morphisms and 2-morphisms are determined by
universality. If we have, in addition, a multifunctor

Φ : D → Perm,

then, by Construction 2.10, we obtain a strictly commutative symmetric
ring spectrum R and a strict functor

B2Q → R−modules.

Proof of Theorem 1.1. Our proof is similar to the situation of construc-
tions 2.10 and 2.11 but with extra structure.

Q and C2 (which plays the role of D) are ?-categories and F is a ?-
functor. Accordingly, we replace CB by a construction which takes into
account the multiplication: Let us write, say,

QalgB (B, . . . , B︸ ︷︷ ︸
n

;B) = EΣn,

QalgB (B, . . . , B︸ ︷︷ ︸
n

, x1, . . . , xn, B, . . . , B︸ ︷︷ ︸
n

; y) = EΣm+n ×Q(x1, . . . , xn; y).

Reproducing Construction 2.11 verbatim in this context, we obtain a mul-
tifunctor

B2Q → R−modules,
as claimed (here R = kC). This is the first statement of Theorem 1.1.

To prove the second statement, recall that while the Elmendorf-Mandell
machine does not preserve ?-structure, we may compose the multifunctor
into R-modules with a functorial cofibrant resolution, in which case it
turns universal multiplications into equivalences

MX1
∧R · · · ∧RMXn

→MX1?···?Xn
,

as claimed. �

3. A Special Example: Refinements of the
Khovanov ?-functor L

In this section, we construct our main example, which is the interpreta-
tion of Khovanov’s construction [14], [3], as well as give an interpretation
of Lipshitz-Sarkar’s construction [20] in this language.
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3.1. Khovanov’s original functor.

Let us start with the “classical” example, i.e., with our interpretation
of Khovanov’s original construction [14], [3]. Assume that A is a commu-
tative Frobenius algebra over a commutative ring R, i.e., that there is an
augmentation R-module homomorphism

ε : A→ R

such that the pairing

(3.1) A⊗R A
prod // A

ε // R

is a non-degenerate bilinear pairing over R. It is well known that such
an A gives rise to a 1 + 1-dimensional TQFT where the field operators
corresponding to pairs of pants with two inbound and one outbound (two
outbound and one inbound, respectively) boundary components are given
by the product and coproduct, respectively. Here the coproduct is the
dual of the product with respect to the pairing (3.1). In our language,
at least when A is a free R-module on a given basis Λ, this specifies a
multifunctor

(3.2) L : A → R2.

The basis Λ becomes the value of the multifunctor on the object S1. The
example, interesting from the point of view of (SL2) Khovanov homology,
is A = ΛZ[x]. In this case, let Λ = {1, x} (so x2 = 0).

The reader should be reminded that in Khovanov’s construction [14],
[3], the special structure of A = ΛZ[x] plays a crucial role. Essentially,
one needs the sequence

0 // R
1 // A

ε // R // 0

to be exact. This is a property of A = ΛZ[x] which does not happen often
in Frobenius algebras. While analogues of Khovanov homology for other
Frobenius algebras have since been discovered [15], [27], the construction
is much more involved than a straightforward analogue of the original
construction [14], [3].

3.2. Some remarks on refining the Khovanov functor to a V2-
valued ?-functor: Why spin is needed.

We originally tried to refine the Khovanov ?-functor (3.2) to a ?-
functor from A to V2. We quickly realized, however, that this cannot
work: We cannot construct a topological modular functor in the sense en-
countered, say, in the context of rational conformal field theory (RCFT)
[2], [10], [8], [25]. One point is that in that setting, Λ(x) would be the
Verlinde ring of the modular functor L. This is generally not allowed, as
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the Verlinde conjecture [26] asserts that the Verlinde ring, when tensored
with C (i.e., the Verlinde algebra), is semisimple, which is certainly not
the case of Λ(x). This is, however, not a definitive argument: While there
are proofs of the Verlinde conjecture ([22], [11], [12]), these depend on
concrete axiom systems for RCFT, which build in semisimplicity by re-
quiring unitarity, so a generalization suitable for our purposes could still
exist.

On the other hand, one can see more directly why a topological modular
functor L in the naive sense cannot exist: The mapping class group of
a genus 1 oriented surface is SL2(Z) and is generated by Dehn twists.
However, Dehn twists are required to map to trivial 2-isomorphisms by
the L-functor because they can be realized on an annulus 1-morphism,
on which the value of L is isomorphic to the value of L on a unit disk,
which has a trivial mapping class group (since one can always attach a
cap to one end of the annulus). On the other hand, consider the gluing in
L corresponding to the coproduct in Λ(x) followed by the product, which
gives

(3.3) 1 7→ 1⊗ x+ x⊗ 1 7→ 2x.

Consider the non-trivial central element

z =

(
−1 0
0 −1

)
∈ SL2(Z),

which corresponds to switching the two components in the middle of the
gluing. Hence, the value of L on z must switch the two summands corre-
sponding to 1⊗ x and x⊗ 1 in (3.3), and hence cannot be trivial, which
is a contradiction. One clue was that it might actually help to replace A
by AAs . In the context of RCFT [22], modular functors are generally not
topological, as they carry an invariant called central charge. Depending
on the value of the central charge, however, the modular functors one en-
counters can sometimes be made topological by the following maneuver:
One could tensor with the inverse of modular functors which are invertible
with respect to the tensor product (i.e., 1-dimensional). What invertible
modular functors one encounters depends on the exact axiomatization; a
classification is given in [17]. Without adding any structure, the invertible
modular functor of the smallest positive central charge is Det⊗2 of central
charge 4. Therefore, a modular functor of central charge divisible by 4
can be made topological by tensoring with a power of Det⊗2. One has
Det of central charge 2 if one allows superstructure, i.e., Z/2-grading of
the modular functor. Superstructure would not be fatal to our applica-
tion, as the Z/2 corresponding to the grading is known to twist K-theory
(see [1]). In other words, one can replace the target category V by the
category of super vector spaces (see also [18]).
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However, even using Det, one can only rectify modular functors of
even integral central charge into topological ones. One can do better
if one introduces spin: There is an invertible supermodular functor of
central charge 1 which corresponds to the 2-dimensional chiral fermion
RCFT. There is not an invertible supermodular functor of central charge
1/2 which would correspond to the 1-dimensional chiral fermion, but a
part of the modular functor restricted to AAs (i.e., boundary components
with antiperiodic spin structure) does exist (see [17]) and, moreover, on
this restriction to AAs , the superstructure trivializes.

Of course, since we have not constructed an RCFT in any generalized
sense which would correspond to L, we do not know what its central
charge would be. However, we see that spin can help in making the
functor topological, as long as the central charge is a multiple of 1/2 and
as long as we restrict to A. We do not know if the restriction to AAs is
necessary when defining a V2-refinement of L, as constructing a modular
functor with spin including periodic boundary components is much harder
to do “by hand.”

3.3. A V2-refinement of the Khovanov ?-functor.

We will now construct “by hand” a certain lax ?-functor

(3.4) Ls : AsA → V2.

On objects, let C be a closed 1-manifold with spin structure such that
every connected component is antiperiodic. Denote the set of connected
components of C by π0(C). Then let

(3.5) Ls(C) =
∏

c∈π0(C)

{1, x}.

Before specifying the effect of L on 1-morphisms and 2-morphisms, we
introduce the following terminology for boundary components of a com-
pact oriented surface Σ with spin structure, whose boundary components
are labeled 1 or x: A true inbound boundary component is an inbound
boundary component labeled 1 or an outbound boundary component la-
beled x. A true outbound boundary component is an outbound boundary
component labeled 1 or an inbound boundary component labeled x.

Now, for a (2-dimensional) oriented spin cobordism Σ with antiperiodic
boundary components, define Ls(Σ) as follows. Let to(Σ) denote the
number of true outbound boundary components of Σ, and let g(Σ) denote
the genus of Σ.
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If Σ is connected, then

(3.6) Ls(Σ) =

 C if g(Σ) = 0 and to(Σ) = 1
C⊕ C if g(Σ) = 1 and to(Σ) = 0
0 else.

By definition of a ?-functor, we must, of course, for a general cobordism
Σ, have

Ls(Σ) =
⊗
Σ′

L(Σ′)

where Σ′ runs through the connected components of Σ.

Lemma 3.1. This defines a lax ?-functor:

Ls : AsA → V2.

Proof. Check the axioms. �

Regarding 2-isomorphisms, any 2-isomorphism between spin cobor-
disms of genus 0 is sent to the identity. To go further, it is convenient to
introduce some terminology. By a reference curve in a genus 1, Kervaire
invariant 0 (2-dimensional) spin cobordism Σ with antiperiodic boundary
components only, we mean an isotopy class of non-separating antiperiodic
closed oriented curves in Σ. Let Σ̌ denote the surface obtained from Σ
by gluing disks to all boundary components. Without loss of generality,
a reference curve αΣ is chosen in each Kervaire invariant 0 genus 1 spin
cobordism Σ with antiperiodic boundary components.

Now let f : Σ → T be a 2-morphism where Σ and T are of genus 1,
Kervaire invariant 0. Let α ∈ H1(Ť ,Z) be the homology class represented
by αT . Let (α, β) be any ordered basis of H1(Ť ,Z) containing α. Let

f(αΣ) = kα+ `β ∈ H1(Ť ,Z).

Then

(3.7) Ls(f) =



(
1 0
0 1

)
if k ≡ 1 mod 4, ` ≡ 0 mod 2

(
0 1
1 0

)
if k ≡ −1 mod 4, ` ≡ 0 mod 2

(
1+i
2

1−i
2

1−i
2

1+i
2

)
if k ≡ 0 mod 2, ` ≡ 1 mod 4

(
1−i

2
1+i
2

1+i
2

1−i
2

)
if k ≡ 0 mod 2, ` ≡ −1 mod 4.
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It is easy to show that those are the only possibilities for k and `, and
that the definition does not depend on the choice of β.

Note that in all other (connected) cases of f : Σ→ T and Ls(f) : 0→
0, there is no choice.

This does not quite conclude the definition of Ls. Since Ls is a lax
multifunctor, we must specify a 2-morphism

Ls(f) ◦ (Ls(g1), . . . ,Ls(gn))→ Ls(f ◦ (g1, . . . , gn))

where applicable. As it turns out, the only non-trivial case occurs when
we are gluing genus 0 connected cobordisms Σ and Σ′ into a genus 1
connected cobordism. In this case, let

1 7→
(

1
0

)
if the true outbound boundary component c of Σ (or, equivalently, Σ′)
maps (with orientation) to α ∈ H1(T,Z).

It then follows from the structure that if

c 7→ kα+ `β ∈ H1(T,Z),

then

1 7→



(
1
0

)
if k ≡ 1 mod 4, ` ≡ 0 mod 2

(
0
1

)
if k ≡ −1 mod 4, ` ≡ 0 mod 2

(
1+i
2

1−i
2

)
if k ≡ 0 mod 2, ` ≡ 1 mod 4

(
1−i

2
1+i
2

)
if k ≡ 0 mod 2, ` ≡ −1 mod 4,

and no other possibility can arise.

Remark 3.2. It is possible to use the functor Ls to define a k-module re-
finement of Khovanov homology. When we did this in the original version
of this paper, however, we eventually observed that spin completely drops
out of the story (by a mechanism which we will briefly describe below).
This is the effect of a geometric principle which we will now discuss.

3.4. The Lipshitz-Sarkar refinement of the Khovanov functor.

What is, in fact, happening is that it suffices to construct a “field
theory” onAK , i.e., an “embedded field theory.” Indeed, reinterpreting the
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construction of Lipshitz and Sarkar [20], one can construct a lax functor

(3.8) LK : AK → S2

(see §2.5 for the definition of S2). Note again that AK is not a ?-category
so we lose the possibility of a ?-structure, but, on the other hand, com-
posing with the Elmendorf-Mandell machine (or, alternately, essentially
any infinite loop space machine which lands in symmetric spectra), we
obtain a functor

B2AK → Sym,

which is sufficient, since symmetric spectra are the same thing as modules
over the sphere spectrum in that category.

The construction of (3.8) is, in a way, similar to the construction of
(3.4). On objects, use the same definition as for Ls (see (3.5)). On
1-morphisms, we also adapt definition (3.6): For a connected 1 + 1-
cobordism Σ embedded in S2 × [0, 1] whose boundary is in S2 × {0, 1}
which Σ meets transversally, we set

(3.9) LK(Σ) =

 {1} if g(Σ) = 0 and to(Σ) = 1
{1, 2} if g(Σ) = 1 and to(Σ) = 0
∅ else.

In general, we set

LK(Σ) =
∏
Σ′

LK(Σ′)

where Σ′ runs through the connected components of Σ.
But how can we make consistent choices of LK on 2-morphisms when

the “square root” of the transposition map c : {1, 2} → {1, 2} cannot be a
map of sets and only exists as a morphism of C-vector spaces?

Remark 3.3. The answer is at the heart of the problem and was essen-
tially discovered by Lipshitz and Sarkar [20] in their concept of ladybug
matching. In the language of the present paper, the point is that embed-
ding into S2 × [0, 1] severely restricts modular transformations. In fact,
the embedded mapping class group of an unknotted torus T embedded
in S2 × [0, 1] is Z/2. For if we choose the reference curves α and β to
be fundamental cycles representing the inside and outside of T , then α
and β must be preserved up to orientation, and their orientations must
be either both preserved or both reversed to preserve the orientation of
T .

If σ is the generator of this Z/2, we define

(3.10) LK(σ) = τ.
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Finally, we must define the composition isomorphism when gluing two
genus 0 embedded connected cobordisms Σ and Σ′ into a genus 1 con-
nected cobordism. In this case, let

1 7→ 1

if the true outbound boundary component c of Σ (or, equivalently, of Σ′)
maps, with orientation, to α or β, and

1 7→ 2

if c maps to −α or −β. This definition depends on the choice of orienta-
tions of the generators α and β which indicates four possible choices, but
we also have the possibility of simultaneously reversing the orientations
of α and β (i.e., applying the modular transformation σ), which equates
two and two of the choices. Therefore, there are two intrinsically different
choices to make, which correspond to the left and right ladybug matchings
of [20]. (Also see [19] for another description.)

4. The Khovanov Cube Functor

In this section, we construct our refinement of Khovanov’s cube functor
construction.

4.1. Lax categories.

Let C be a small category. We define a category C′ enriched in groupoids
where

Obj(C′) = Obj(C) and

Mor1(C′) = ΓC
where Γ denotes the free category on a directed graph (a directed graph
is a pair of maps S and T from a set of morphisms to a set of objects).
Here, we regard C as a graph by forgetting that compositions exist.

There is a canonical functor

θ : ΓC → C
(the monad structure). There is a single 2-isomorphism in C′ between any
two morphisms whose images under θ coincide.
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4.2. Links and link cobordisms.

Let L be a link with spin structure, and let D be a non-degenerate
projection of L, i.e., an immersion into S2 with only at most transverse
double points (i.e., where crossings occur at angles 6= 0, π). Label the
crossings of D by 1, 2, . . . , n. For the ith crossing, select a disk Di which is
a neighborhood of the crossing, such that D1, . . . , Dn are disjoint. Recall
that for ε = 0, 1, the ε-resolution is obtained by replacing a chosen crossing
by a non-crossing according to Figure 1.

Figure 1. A crossing, the 0-resolution, the 1-resolution

Recall from [14] that the link cobordism ΣD is obtained by taking

(4.1)

(
D r

(
n⋃
i=1

Di ∩ D

))
× I

and, for each crossing, gluing in an ε-resolution of the crossing at (Di ∩
D)×{ε} for ε = 0, 1 and a saddle between the two crossings in (Di∩D)×I.

Observe that ΣD can be obtained by taking a ribbon along L which
takes a half-twist at each crossing (thus creating a horizontal square) and
is vertical elsewhere, and identifying the two horizontal squares over each
crossing. Note that the ribbon always has an even number of half-twists
since there are two per crossing. Hence, the ribbon may be identified with
τL ⊗R C.

Comment 4.1. To avoid confusion, note that in the present paper, by a
link cobordism we mean the surface (1 + 1-embedded cobordism) associ-
ated with a link projection, not a cobordism of links.

Now let us observe that complete resolutions of a link projection are,
by definition, objects of AK , and the cobordisms ΣL are 1-morphisms on
AK . Let us also make another observation: Let D be a non-degenerate
link projection; label its crossings D1, . . . , Dn. Let D′ be the projection
obtained by taking 0-resolutions of D1, . . . , Dk and let D′′ be the projec-
tion obtained by taking 1-resolutions of Dk+1, . . . , Dn. Then there is a
canonical 2-isomorphism in AK

(4.2) ΣD′′ ◦ ΣD′
∼= // ΣD.

We call these 2-isomorphisms gluing isomorphisms.
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4.3. Definition of the lax cube functor.

Now let I be the category with two objects 0 and 1 and a single
morphism 0→ 1 (and no morphism 1→ 0). Now let D be an admissible
link projection with n crossings. Then D determines a lax functor

C : (In)′ → AK
as follows. (The category (In)′ is defined in §4.1.)

To define C on objects,

(ε1, . . . , εn) where εi ∈ {0, 1},

maps to the complete resolution of D obtained by taking the εi-resolution
at the ith crossing.

On 1-morphisms, consider the In-morphism

(ε1, . . . , εn)→ (ε′1, . . . , ε
′
n).

Let J ⊆ {1, . . . , n} be the subset such that ε′i = εi+1 for i ∈ J and ε′i = εi
for i /∈ J . Then this In-morphism is sent to

ΣD′

where D′ is the projection obtained from D by taking the εi-resolution at
the ith crossing for all i /∈ J .

The 2-morphisms of (In)′ are sent to gluing isomorphisms of the sur-
faces ΣD′ for different D′, by their shared boundary component.

4.4. The spin data.

In this subsection, we will discuss directly spin structures on link pro-
jections. While this gives additional geometric insight into the k-theory
refinement of Khovanov homology, this material is not strictly necessary
to follow the progression of the paper, and the reader interested only in
the proof of Theorem 1.3 may skip it.

By a link with spin structure, we mean a real bundle τ1/2
L together with

an isomorphism
τ

1/2
L ⊗R τ

1/2
L → τL

where τL is the tangent bundle of L. Note that this specifies an orientation
on τL where we call a tangent vector positive if it has a square root in
τ

1/2
L .
By a projection with spin, we mean a non-degenerate projection D of L

together with a spin of the self-identification of the ribbon τL ⊗R C along
each crossing square, namely an automorphism of the bundle τ1/2

L ⊗R C
which covers the identity on τL ⊗R C. By gluing of bundles, this data,
given in a projection with spin, specifies a spin structure on ΣD.
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Recall that for a complex 1-manifold Σ with spin (i.e., a complex line
bundle τ1/2

Σ and an isomorphism τ
1/2
Σ ⊗C τ

1/2
Σ
∼= τΣ) and an oriented curve

c in Σ, we have a determined spin structure on c where (τ
1/2
c )x is spanned

by the (τ
1/2
Σ )x-square roots of a positive tangent vector to c at x.

We call a projection D with spin of L admissible if the induced spin
structure on every non-self-intersecting circuit in D is antiperiodic. (Re-
call Example 2.4(2)) It suffices to verify this condition for faces.

Now there is an obvious way (by sliding) to give spin structure to R2-
and R3-moves. R1-moves require a more detailed discussion, as they do
interfere with spin. When making an R1-move, we create a new face which
borders the edge created by the R1-move only. Since we will be primarily
interested in admissible projections with spin, we will be interested in
only R1-moves where the new face has an antiperiodic spin structure.
Given this condition, there are two possible ways of introducing a spin
structure on the projection after the R1-move: One does not change the
spin structure on the link L, but changes the spin structure on the two
faces previously adjacent to the arc on which we performed the R1-move;
we will call this an R1L-move. Taking an R1L-move and changing the
spin structure of the resulting projection by reversing the gluing of the
spin structure on the new crossing and also in the middle of the new arc
created by the move, we obtain a move which does not change the spin
structures of any of the faces of the old projection, but reverses the spin
structure of the connected component of L on which we performed the
move. We will call this an R1A-move.

Note that two R1L-moves on the same arc of a projection with spin is
the same as a pair of R1A-moves on the same arc: The resulting move
changes neither the spin structures of any of the faces of the old projection
nor the spin structure of the link. We will call such a pair a pair of adjacent
R1A-moves.

Lemma 4.2. An admissible projection with spin of a link L with spin
always exists.

Proof. Start with any projection with spin. Making {A,P} into a group
by making A the neutral element, the spin structure of the infinite face
is the product of the spin structures of the finite faces, and hence there
are an even number of P -faces, including the infinite face. This specifies
a Z/2-valued 0-cycle ζ on the CW-decomposition of S2 dual to D, such
that the augmentation of ζ is 0, and hence ζ is a boundary and ζ = dc for
some Z/2-valued 1-chain c. The 1-chains of D and its dual are the same;
perform an R1L-move on each arc of D on which c has coefficient 1. �

In fact, we have a stronger statement.
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Lemma 4.3. Consider a non-degenerate projection D (without spin) of
a link L. Then an admissible spin structure on D always exists and any
two admissible spin structures on D (for any spin structure on L) are
isomorphic. In particular, the spin structure on L is determined.

Proof. Consider the link cobordism ΣD associated with D. Then ΣD is
an oriented surface, so the embedding ΣD ⊂ R3 extends to an embedding
ΣD × I → R3, and the spin structure extends, of course, uniquely to
ΣD× I. Smooth out ΣD× I into a manifold with boundary Σ̃D × I. Now
since the spin structure on ΣD is admissible, we may attach a disk Df to
each face f of D in ΣD and extend the spin structure. Hence, we may
attach a copy of Df×I to Σ̃D × I (and again smooth) for each face f of D
and extend the spin structure to the resulting manifold Γ with boundary.

The manifold Γ, however, is diffeomorphic to D3 and, hence, has a
unique spin structure (up to isomorphism). This means that any two
admissible spin structures on ΣD are isomorphic.

Conversely, the same construction also implies that an admissible spin
structure always exists. �

Proposition 4.4. Two admissible projections with spin D and D′ repre-
sent isomorphic links with spin if and only if they are related by R2-moves,
R3-moves, and pairs of adjacent R1-moves. Two admissible projections
with spin D and D′ represent isomorphic links without spin if and only if
they are related by R2-moves, R3-moves, and R1A-moves.

Proof. Consider first the second statement. Sufficiency is obvious as the
Reidemeister moves do not change the isomorphism class of the link (with-
out spin). To prove necessity, suppose D and D′ are admissible projec-
tions which represent isomorphic links (without spin). As is well known,
disregarding spin, D can be converted to D′ by a sequence of R1-moves,
R2-moves, and R3-moves. Now we may give spin to the moves (preserving
admissibility) by interpreting the R1-moves as R1A-moves. By Lemma
4.3, the admissible spin structure on D′ obtained by the moves is the same
as the admissible spin structure originally given.

Now consider the first statement (on links with spin structure). Again,
sufficiency is obvious as R2-moves, R3-moves, and pairs of adjacent R1-
moves do not change the spin structure of the underlying link. To prove
necessity, suppose D and D′ represent the same link with spin structure.
Proceed in the same way as in the part of the statement on links without
spin. Note, in particular, that the argument there does not depend on the
order of the Reidemeister moves chosen. By Alexander Coward [5, Theo-
rem 1], we may choose the moves in such a way that all the R1 moves come
first, followed by R2-moves, R3-moves, and reversed R2-moves. Now since
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we interpret the R1-moves as R1A-moves when considering spin, there
must be an even number of such moves on each connected component of
the link in order for the spin structures on the links corresponding to D
and D′ to be the same. However, note that a pair of R1A-moves on the
same connected component of a link L can always be obtained as a pair
of adjacent R1-moves, followed by R3 and R2 (and possibly reversed R2)
moves. �

Analogously to §4.3, an admissible link projection with spin with n
crossings now directly determines a lax functor

Cs : (In)′ → AAs .
Note that for D and D′ as above, we have a unique, up to isotopy, inclusion

ΣD′ ⊆ ΣD

commuting with the projection to R2, so there is a canonical spin structure
on ΣD′ induced from the spin structure on ΣD.

Note that Lemma 4.3 also implies that there is a canonical lax functor

(4.3) AK → AAs ,
so we could simply obtain Ls as a composition of (4.3) with LK . This
way, however, we lose the ?-structure since AK is not a ?-category and
(4.3) is not a ?-functor.

5. Stable Homotopy Realization and Link Invariance

Now let D be an admissible projection of a link L. (Note: Spin struc-
ture is not used in this section.) In §4.3, we constructed a lax functor

C : (In)′ → AK .
In §3, we constructed a lax functor

LK : AK → S2.

In Lemma 2.9, we further constructed a lax multifunctor

Φ : S2 → Perm.

Then by the remark at the end of §2.10, the composition ΦLKC is canon-
ically converted into a strict functor

(5.1) ∆D : In → Sym.

Remark 5.1. We may, of course, smash the functor (5.1) with k in the
category of symmetric spectra. Alternately, we may directly consider the
composition

(5.2) (In)′ → AK → AAs .
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By Construction 2.11, the ?-functor

Ls : AAs → V2

determines a lax functor

(In)′B
// V2

Φ // Perm

which, by Construction 2.10, gives a strict functor

In → R−modules

where R is the strictly commutative symmetric ring spectrum arising
by the Elmendorf-Mandell machine [7] from the bipermutative category
Φ(1). However, Φ(1) is the category V of finite-dimensional complex vec-
tor spaces and isomorphisms with its usual bipermutative category struc-
ture, so R is k, the connective k-theory strictly commutative symmetric
ring spectrum. We have, therefore, constructed a strict functor

(5.3) ∆D,s : In → k −modules.

While this direct construction contributes nothing to Theorem 1.3 as
stated, it is interesting to note that it shows that the k-theory realization
“remembers less data” about the structure of the link, since it depends on
only the composition (5.2) and not the embedded link cobordism.

5.1. The higher cofiber.

The higher cofiber is a functor Cn from the category of diagrams

Γ : In → R−modules

to the category of R-modules where R is a strictly commutative symmetric
ring spectrum. Functors of such form are used extensively, for example,
in Goodwillie calculus. (See, for example, [13] for an overview of such
functors.)

One description of the higher fiber proceeds as follows. Consider
the category I whose objects are functions φ : J → {0, 1} where J ⊆
{1, . . . , n} and there is a unique morphism φ → ψ if and only if φ is a
restriction of ψ. In other words, I can be thought of as

(0← · → 1)n.

Then Γ specifies a functor

Γ̃ : I → R−modules

where

Γ̃(φ) =

{
∗ if 0 ∈ Im(φ)
Γ(1− χJ) else
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where χJ(x) = 1 if x ∈ J and χJ(x) = 0 if x /∈ J . The value of Γ̃ on
morphisms is given by the corresponding morphism values of Γ when the
target is not ∗ and by the trivial map else.

One defines
CnΓ = hocolimΓ̃.

(The right-hand side is well defined using the simplicial realization in
R-modules.)

The advantage of the above description is that it is obviously sym-
metrical in the coordinates. There is an alternate elementary inductive
description which is not symmetrical in coordinates, but symmetry is
readily proved by equivalence with the above description.

We define C0Γ = Γ. Assuming we have already defined Cn−1, define

Γε : In−1 → R−modules where ε = 0, 1

by
Γε = Γ(?, . . . , ?, ε).

Then Γ gives a natural transformation

ι : Γ0 → Γ1.

Inductively, we get a natural transformation

Cn−1ι : Cn−1Γ0 → Cn−1Γ1.

Let CnΓ be the homotopy cofiber of Cn−1ι.
In fact, the symmetric description of the higher cofiber immediately

gives the following fact, which will be useful to us.

Lemma 5.2. Let Γ : In → R − modules be a functor, and let f :
{1, . . . , k} → {1, . . . , n} and g : {1, . . . ,m} → {1, . . . , n} be maps such
that fqg is a bijection (so, in particular, n = k+m). For φ : {1, . . . , k} →
{0, 1}, define a functor Γφ : Im → R−modules by Γφ(ψ) = Γ(φqψ)(fqg)−1

for ψ : {1, . . . ,m} → {0, 1}. Then CmΓ? : Ik → R−modules is a functor
in the obvious way. We have

Ck(CmΓ?) = CnΓ.

From now on, we shall work only with the Lipshitz-Sarkar realization,
i.e., in the category Sym of symmetric spectra. Analogous results in k-
modules follow by applying ?∧k or, alternately, using analogous reasoning
directly for the k-module realization.

Now, recalling (5.3), we can assign a k-module Cn∆D to an admissible
projection D of a link L.
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Theorem 5.3. If D and D′ are nondegenerate projections of a link L,
then there exists an equivalence of symmetric spectra

Σ−n−(D)Cn∆D ' Σ−n−(D′)Cn∆D′

where n−(D) denotes the number of negative crossings of the projection
D (a number which does not depend on spin).

6. Proof of the Main Theorem

The proof of Theorem 5.3 basically mimics Khovanov’s proof of the
invariance of Khovanov homology (see [14], [3]). Of course, we cannot
refer to elements and take chain differentials; we must phrase everything in
the language of categories. We begin with two lemmas on higher cofibers.

Lemma 6.1. Consider a diagram M of symmetric spectra

(6.1)

M10
γ // M11

M00

β

OO

α
// M01

δ

OO

and suppose there exists a map of R-modules s : M11 →M10 such that

γs = Id,

β ∨ s : M00 ∨M11 →M10 is an equivalence.

Then
C2M ' ΣM01.

Proof. The commutative diagram

(6.2)

M00 ∨M11

γ◦(β∨s)// M11

M00

ι0

OO

α
// M01

δ

OO

maps into (6.1) by the map β∨s in the upper left corner and identity else-
where and, hence, has an equivalent 2-cofiber since β∨s is an equivalence.
Now since γs = Id, diagram (6.2) maps into

(6.3)

M00
// 0

M00

Id

OO

α
// M01

OO
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with cofiber
M11

Id // M11

0

OO

// 0

OO

so the 2-cofiber of (6.3) is equivalent to the 2-cofiber of (6.2). But (6.3),
in turn, maps into

M00
// 0

M00

Id

OO

// 0

OO

with fiber

(6.4)

0 // 0

0

OO

// M01.

OO

So the 2-cofiber of (6.4) is equivalent to the 2-cofiber of (6.1). �

Lemma 6.2. Consider a diagram N of the form

(6.5)

N101
γ // N111

N001

β
;;wwwwwwww
α

// N011

δ

;;wwwwwwwww

N100

ε

OO

µ // N110

π

OO

N000

ζ

OO

η
;;wwwwwwww
ν

// N010.

κ

OO

λ

;;wwwwwwwww

Assume there exists a map s : N111 → N101 such that

γs = Id and

β ∨ s : N001 ∨N111 → N101 is an equivalence,
and assume further that there exists a map

t : N100 → N001

such that
βt = ε and ζ = ηt.
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Then

C3N ' ΣC2M

where M is the diagram

(6.6)

N100
µΠαt // N110ΠN011

N000

η

OO

ν
// N010.

λΠκ

OO

Proof. Into (6.5), there are maps

(6.7)

N001 ∨N111

γ◦(β∨s) // N111

N001

ι1

88rrrrrrrrrr
α

// N011

δ

;;wwwwwwww

N100

ι1t

OO

µ // N110

π

OO

N000

ζ

OO

η
88rrrrrrrrrr
ν

// N010

κ

OO

λ

;;wwwwwwww

where the map on the 101-corner is the equivalence

β ∨ s : N001 ∨N111 → N101.

As in Lemma 6.1, (6.7) maps into

(6.8)

N001
// 0

N001

Id

;;wwwwwwww
α

// N011

;;wwwwwwwww

N100

t

OO

µ // N110

OO

N000

ζ

OO

η
;;wwwwwwww
ν

// N010

κ

OO

λ

;;wwwwwwww
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with fiber
N111

Id // N111

0

=={{{{{{{{ // 0

==zzzzzzzz

0

OO

// 0

OO

0

OO

==zzzzzzzzz // 0.

OO

<<yyyyyyyyy

By a standard construction in homotopy theory, a diagram of the form
(6.8) can be “folded” into the suspension of the diagram

(6.9)

(N100ΠN001)′
φ // N110ΠN011ΠÑ001

(N000)′

(ηΠs)′

OO

ν
// N010

λΠκΠ0

OO

where (?)′ denotes cofibrant replacement and (̃?) denotes fibrant replace-
ment, and φ is the product of

N100ΠN001
µp1 // N110

N100ΠN001
αp2 // N011

(N100ΠN001)′
t−Id // Ñ001.

Diagram (6.9) commutes up to homotopy, but can be converted into a
strict diagram by standard techniques (for example, by [7, Theorem 1.4]).
(Note: These complications are, of course, caused by the fact that the
canonical map (Id ∨ 0)Π(0 ∨ Id) : A ∨ B → AΠB is an equivalence but
not an isomorphism in the category of R-modules.)

Now into (6.9), there are maps

(N001)′
Id // (N001)′

0

OO

// 0

OO

where the upper left corner maps by 0ΠId and the upper right corner by
0ΠαΠId (omitting fibrant and cofibrant replacements from the notation).
The cofiber is equivalent to (6.6). �
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Proof of Theorem 5.3. As usual, it suffices to prove invariance under
R1-moves, R2-moves, and R3-moves.

Invariance under the R1 move: After performing an R1-move,
consider the restrictions of the lax functor LKC to the subcategory (en-
riched over groupoids) where there is a 0-resolution (1-resolution, respec-
tively) of the new crossing created by the move. The cobordism from the
0-resolution to the 1-resolution will give a lax natural transformation η
between these functors. Denote these restrictions by LKCε where ε = 0, 1.
Depending on the sign of the move (which is, by definition, the sign of the
new crossing), one of the resolutions will have an extra boundary compo-
nent (the 0-resolution in case of a negative move and the 1-resolution in
case of a positive move). The new boundary component can be labeled 1
or x, and this makes this functor LKCε laxly isomorphic to two copies of
the functor LKC1−ε. Further, we can laxly split η by choosing this label
to be 1 (in case of a negative move) and by forgetting the label (in case
of a positive move). In either case, after applying the Elmendorf-Mandell
machine, the cofiber of the realization of η becomes isomorphic to the
realization of the other factor of LKCε, its suspension, respectively, i.e.,
the invariant before the move, its suspension, respectively, depending on
whether the move was negative or positive.

Invariance under the R2 move: We use the “Khovanov bracket”
notation of Dror Bar-Natan [3, Figure 2], omitting the suspensions.

����
s

Figure 2

We give this picture, however, a modified interpretation: Each bracket
denotes a lax functor (In)′ → S2 corresponding to the indicated partial
resolution of the projection after the R2-move. The arrows in Figure 2 are
lax natural transformations. With the notation of Lemma 6.1, the functor
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s multiplies objects by the label 1 on the additional connected boundary
component. On 1-morphisms, the functor s tensors a morphism with
C and 2-isomorphisms with Id. Upon applying the Elmendorf-Mandell
machine, including [7, Theorem 1.4], we can obtain a strict functor

· // ·
EDGF

s

��

·

OO

// ·

OO × In → S −modules

which, up to equivalence, has the form

MΠM
p2

// M
EDGF

IdΠ0

��

M

0ΠId

OO

// ?,

OO

which implies the assumptions of Lemma 6.1. Here, M is as in Lemma
6.1, and the ? in the lower right corner is the argument of the functor.

Invariance under the R3 move: We again follow [3], adapting the
proof to categories enriched in groupoids. In Figure 3, with the notation
of Lemma 6.2, the construction of the s-map in the ??1-square in (6.5) is
precisely the same as in the above treatment of the R2-move. Regarding
the map t, note that the lax functors (In)′ → AK at the 001 and 100
corners are canonically isomorphic (as are the partial resolutions drawn);
let t be the canonical lax isomorphism. From this point on, apply the
Elmendorf-Mandell machine and use Lemma 6.2. �

Proof of Theorem 1.3. All that remains to show is that applying ?∧kHZ
to our construction produces an HZ-module which, using the equivalence
[6, Chapter IV, section 2] produces a chain complex whose homology is
Khovanov homology.

To prove this, we note that the strict symmetric ring spectrum unit

S → HZ

is realized, on the level of bipermutative categories, by the functor

S2 → Z

which assigns its cardinality to a finite set. We conclude that applying
? ∧HZ to our invariant is realized by taking the Khovanov cube functor
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s

t

Figure 3

as mentioned in [3], and then applying to it the Elmendorf-Mandell ma-
chinery instead of the totalization described in [3]. (Smashing with HZ
commutes with the Elmendorf-Mandell machine and with the iterated
homotopy cofiber, since it is a left adjoint.)

One must, therefore, show that Elmendorf-Mandell machinery [7] to
a diagram D of abelian groups (=Z-modules) produces an HZ-module
corresponding, under the machinery of [6, Chapter IV, section 2], to the
chain complex obtained as the homotopy colimit of the diagram D in
the category of chain complexes. This follows from the fact that the
equivalence [6, Chapter IV, section 2] commutes, up to equivalence, with
simplicial realization. �
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