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THE SIZE OF MULTIPLE POINTS OF MAPS
BETWEEN MANIFOLDS

(with an Appendix by Stepan Orevkov)

DACIBERG L. GONÇALVES

Abstract. Let f : M → N be a map between two connected
manifolds of the same dimension. A point x ∈ M is called a dom-
inating point for f if f−1(f(x)) = {x}; otherwise, it is called a
non-dominating point. For M closed we give a criterion to decide if
a given homotopy class of maps has the property that for all maps
in the class the set of non-dominating points is dense. Also, we
show that when the criterion holds, then the set of non-dominating
points cannot be countable. The Appendix provides an example of
a map f : S2 → R2 such that the set of dominating points is dense
(or, equivalently, the set of non-dominating points doesn’t contain
an open set). Some facts about the size of the dominating points
are derived.

1. Introduction

In this work we will consider continuous maps between two manifolds
M and N of the same dimension where the domain M is assumed to be
closed and the target N can be arbitrary. Given a map f : M → N we
say that x ∈ M is a dominating point for the map f if f−1(f(x)) = {x};
otherwise, it is called a non-dominating point. Very rarely we have that
a map f is injective or, equivalently, the set of non-dominating points is
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empty. We would like to study the set of dominating and non-dominating
points. More precisely we discuss how big (in some sense) these sets are.

The study of dominating and non-dominating points is related to the
study of the so-called deficient and non-deficient points. One may be able
to profit from results about deficient and non-deficient points to obtain
some results about the set of dominating and non-dominating points.
Recall from [7] that for a map f : M → N between closed orientable
manifolds a point y ∈ N is called deficient if y belongs to the image of f
and #f−1(y) < |deg(f)|. Denote by ∆f the set of deficient points of f .
We will use the results of [7] in our study.

In our context, since the manifolds are not necessarily orientable, we
will need the equivalent notion of the classical deg(f), defined for maps
between closed and orientable manifolds of the same dimension, when the
manifolds are not necessarily orientable and closed. So we will use the
notion of absolute degree. For more details about the absolute degree, see
[5], [4], [2], [6].

It is worthwhile to mention the remarkable works by Heinz Hopf [4],
[5], where the concept of the absolute degree was established and many
properties of maps, related to the degree, were explored. Notoriously,
related to the present work, it follows from a result in [5] that for maps
between 2-manifolds, the set of deficient points is discrete. See Corollary
3.2(d). For dimension greater than two see [3] for related results.

We are interested in the following two questions.

Question 1.1. In terms of the absolute degree of a map f , what can we
say about the size of the non-dominating points of f?

Question 1.2. In terms of the absolute degree of a map f , how large can
the set of the dominating points for maps homotopic to f be?

Recall that M and N are manifolds of the same dimension with M
closed. The main results of this work, which are related to the questions
above, are found in the following.

Theorem 2.2. Let [f ] be the homotopy class of a map f : M → N .
(a) If the absolute degree of the map f is 1, then there is a map g ∈ [f ]

such that the set of non-dominating points is not dense in M .
(b) If the map f has absolute degree different from 1 then the set of

non-dominating points of any map g ∈ [f ] is dense.

Corollary 3.2. (a) For any pair of manifolds M and N of the same
dimension with M closed and a non-negative integer d 6= 1, the set of
dominating points of any map f : M → N of absolute degree d cannot
contain an open set.
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(b) For each non-negative integer d 6= 1, there are manifolds M and N
with dim(M) = dim(N) > 2 and a map f : M → N which has absolute
degree d such that the set of dominating points is dense.

(c) There are manifolds M and N with dim(M) = dim(N) = 2 and
a map f : M → N which has absolute degree 0 such that the set of
dominating points is dense.

(d) For any map g : M → N with dim(M) = dim(N) = 2 and absolute
degree of g > 1, the set of dominating points of g is never dense.

Example 1.3 (Appendix). There is a map f : S2 → R2 such that the
set of dominating points is dense but does not contain an open set.

Remark 1.4. (1) If dimM = dimN = 1, Corollary 3.2(b) for d > 1 does
not hold because in this case the set of dominating points is empty by
[7]. For d = 0 using elementary topology one can show that the set of
dominating points contains at most two points. So the result also does
not hold.

(2) Related to (b) when the absolute degree of f is 1, it is not clear if
it is possible to have a map g ∈ [f ] such that the set of non-dominating
points of g is dense.

The results of Theorem 2.2 and Corollary 3.2 lead us to the following
more intricate question.

Classification Question 1.5. Let M and N be two manifolds of the
same dimension and let d be a nonnegative integer. Classify all homotopy
classes of maps α ∈ [M,N ] where α has absolute degree d for which there
is a map f ∈ α such that the set of dominating points of f is dense.

A similar question can be asked replacing the set of dominating points
by non-dominating points. The degree very often does not classify the
homotopy class. For example, consider maps S2 → T from the orientable
surface of genus 2 into the torus.

This note was motivated by a very simple application of the classical
Borsuk-Ulam theorem for continuous maps from S2 to R2 and the antipo-
dal map A : S2 → S2. In more detail, let us consider the question, Does
there exist a continuous map f : S2 → R2 which is injective? As a result
of the Borsuk-Ulam theorem, given any continuous map f : S2 → R2 it
follows that there is a point x ∈ S2 such that f(x) = f(A(x)) = f(−x).
Therefore, the map f is never injective. Using the terminology introduced
above, we can say that f admits at least two non-dominating points. Fur-
thermore, because the Borsuk-Ulam theorem also holds for any free invo-
lution τ : S2 → S2 on S2, this new setting provides possibly another point
x1 ∈ S2 such that f(x1) = f(τ(x1)). This opens the possibility that the
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number of non-dominating points is larger than two. The results of this
work show that we know much more about the non-dominating points.

The manuscript is organized into two sections and an appendix (by
Stepan Orekov) besides the introduction. In §2, we study the non-domina-
ting points. The main result is Theorem 2.2. Also, we show that for
maps between certain spaces, the set of non-dominating points is always
uncountable. Section 3 is devoted to the set of dominating points. The
main result is Corollary 3.2. In the Appendix an example is constructed
where the set of dominating points is dense which is equivalent showing
that the set of non-dominating points does not contain an open set.

2. The Set of Non-Dominating Points

Let f : M → N be a map between two manifolds of the same dimension
with M closed. In this section we study the set of non-dominating points
of f . We make use of the concepts of the geometric degree (see Definition
2.1) and the absolute degree (see [5], [4], [2], [6]), where we follow more
closely the more modern presentation given in [2]. Then we state and
prove our main results and illustrate some applications of the result.

Definition 2.1. The geometric degree G(f) of f is defined as follows. If
there is no disk D in intN such that f−1(D) consists of a finite number
of disks, each mapped homeomorphically onto D, we define G(f) = ∞.
If such disks do exist, let G(f) be the smallest integer such that f−1(D)
has G(f) components, each mapped homeomorphically onto D.

Theorem 2.2. Let [f ] be the homotopy class of a map f : M → N .
(a) If the absolute degree of the map f is 1, then there is a map g ∈ [f ]

such that the set of non-dominating points is not dense in M .
(b) If the map f has absolute degree different from 1, then the set of

non-dominating points of any map g ∈ [f ] is dense.

Proof. For (a), let A(f) = 1. By [2, Theorem 4.1], we have a map g of
geometric degree 1 which is homotopic to f . But from the definition of the
geometric degree, it follows immediately that the set of non-dominating
points of g is not dense.

For (b) we argue by contradiction. Suppose that the set of non-
dominating points of f is not dense in M . This implies that there is
a dominating point x ∈ M of f and a closed neighborhood Ū of x such
that Ū does not contain non-dominating points. Let V ⊂ U be an Eu-
clidean neighborhood of x such that V̄ ⊂ U . Therefore, the geometric
degree of f is either 0 or 1. From [2, Theorem 4.1], it follows that it
has to be the same as the absolute degree, so it is zero. Let V ⊂ U be
a Euclidean neighborhood of x such that V̄ ⊂ U . Since M is a closed
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manifold we have isomorphisms

Hn(M,Z2)→ Hn(M,M − V,Z2)← Hn(V̄ , V̄ − U,Z2),

where the second homomorphism is the excision isomorphism. The map
f induces a commutative diagram

Hn(M,Z2)→ Hn(M,M − V,Z2)← Hn(V̄ , V̄ − V,Z2)
↓ ↓ ↓

Hn(N,Z2)→ Hn(N,N − V1, Z2)← Hn(V̄1, V̄1 − V1, Z2).

The two horizontal homomorphisms on the top and the last two vertical
homomorphisms on the right are isomorphisms, so this implies that the
absolute degree of f is congruent to one, which is a contradiction, and
the result follows. �

If case N is not closed, then we easily state the following.

Corollary 2.3. Let f : M → N be an arbitrary map where M and N are
manifolds of the same dimension with M a closed manifold and N not a
closed manifold. Then the set of the non-dominating points of f is dense.

Proof. The proof follows promptly from the fact that the absolute degree
of f is 0 since N has top cohomology trivial. �

Here we provide a few examples which are either related to or illustrate
Theorem 2.2 above.

(1) For the identity map id : M →M the set of non-dominating points
is empty.

(2) Take the orientable surface Sh of genus h and the map from Sh to
the surface Sg of genus g, h ≥ g which pinches h− g handle of Sh. Then
the points of the complement of the handles of Sh are dominating points.
Therefore, the set of non-dominating points is not dense. That pinch map
has degree 1.

(3) Consider any map f from the orientable surface Sh (of genus h)
to the orientable surface Sk (of genus k). If h < k, then the set of non-
dominating points of f is dense. This follows because, from [6], all such
maps have degree zero.

(4) For some pair M and N of manifolds of the same dimension, the
problem of deciding which integers can be realized as the degree of some
map from M to N , has been studied extensively, in particular, when the
manifolds have dimension 3. By looking at those results we can provide
more examples of pairs where, for all maps, the set of non-dominating
points is dense. More specifically, there are pairs of lens spaces which do
not admit a map of degree one, for example, ifM = S3 (the 3-sphere) and
N = RP 3. Therefore, for any map S3 → RP 3, the set of non-dominating
points is dense.
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To have a better understanding of the set of non-dominating points in
case the degree of the map f is different from ±1, two natural questions
arise:

(I) Does the set of non-dominating points always contains an open
set?

(II) Can the set of non-dominating points be countable?
The answer to the first question is no and an example is given in the

Appendix. The answer to the second question, at least in the case of maps
from Sn into Rn, is also negative which we will show. The statement
generalizes for a few other similar cases, but we do not know the answer
in general.

Proposition 2.4. For every map f : Sn → Rn, the set of non-dominating
points is not countable.

Proof. If f is a constant map the result is certainly true. So let us assume
that f is not constant. So the projection of f(Sn) to one of the axes is
not a point. Call this axes x. Let p be a leftmost and q a rightmost point
of the projection of f(Sn) on the axis-x. Suppose that there is a hyper-
plane L perpendicular to the axis x which separates p and q such that all
points of X = f−1(L) are dominating. Otherwise, all hyperplanes L per-
pendicular to the axis x contain a non-dominating point and the result
follows since the cardinality of the vertical hyperplanes is uncountable.
Then X is homeomorphic to a closed subset f(X) ⊂ L = Rn−1 ⊂ Sn−1.
Using Poincaré duality (see [1, Ch. VIII, Proposition 7.2]), we have that
H̆n−1(f(X), Z) = H0(Sn−1, Sn−1 − f(X);Z) = 0 where the last equal-
ity follows because H0(Sn−1 − f(X)) → H0(Sn−1;Z) = Z is surjective,
and X separates the sphere. But we claim that this is impossible. To
see this, since X ⊂ Sn is a closed set, using Poincaré duality (see [1,
Ch. VIII, Proposition 7.2]), we have that H̆n−1(X,Z) is isomorphic to
H1(Sn, Sn −X,Z). The long exact sequence of the pair (Sn, Sn −X,Z)
provides the short exact sequence

0→ H1(Sn, Sn −X;Z)→ H0(Sn −X,Z)→ H0(Sn, Z)→ 0.

Since H1(Sn, Sn−X;Z) = 0 and H0(Sn, Z) = Z, from the short exact se-
quence above, it follows that H0(Sn−X,Z) = Z, which is a contradiction
since Sn −X is not path-connected. So the result follows. �

3. The Set of Dominating Points

Here we show some results for maps between two manifolds relative to
the set of the dominating points, where we make use of the results from
[7] and from the previous section.
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We begin by recalling some results from [7] which are related to the
study of the dominating points. The study of dominating and non-
dominating points is related to the study of the so-called deficient and
non-deficient points. We will use some results about deficient and non-
deficient points to obtain some results about the set of dominating and
non-dominating points. Recall that for a map f : M → N between closed
orientable manifolds a point y ∈ N is called deficient if y belongs to the
image of f and #f−1(y) < |deg(f)|. Denote by ∆f the set of deficient
points of f . Clearly, if |deg(f)| ≤ 1, then ∆f is empty. In [7] an example
is constructed of a map f : Sq → Sq such that |deg(f)| = d, f−1(∆f ) is a
dense subset, and the restriction of f is a homeomorphism from f−1(∆f )
to ∆f for each pair of integers q ≥ 3 and d ≥ 2. In [7] for each pair of
integers q ≥ 3 and d ≥ 2 an example is constructed of a map f : Sq → Sq

such that |deg(f)| = d, f−1(∆f ) is a dense subset, and the restriction
of f is a homeomorphism from f−1(∆f ) to ∆f . Therefore, the exam-
ples above are examples where the set of dominating points is dense. For
deg(f) = ±1 let f be the identity and the map which changes the sign of
one coordinate, respectively. They are examples of maps where the set of
dominating points is dense. So it remains the question for deg(f) = 0.

Proposition 3.1. Let S1 and S2 be two surfaces with S1 a closed surface.
There is a map f : S1 → S2 of degree zero such that the set of dominating
points is dense.

Proof. Let us consider the natural projection p : S1 → S2 such that the
preimage of the north pole is the boundary of a polygon used to define
the surface S1. Now consider the map h : S2 → R2, constructed in
the Appendix, an embedding ι : R2 → S2, and finally the composite
ι◦h◦p : S1 → S2. The set of dominating points of h is dense since the set
of non-dominating points does not contain an open set. So the composite
shows the result. �

A related and more subtle question is to ask, If for given manifolds M
and N of the same dimension, for which the homotopy class of maps from
M to N of degree zero, can we find a map g in the class such that the set
of dominating points is dense? One may try to construct such a map g
using a variation of the example in the Appendix.

Now we come to the main result of the section.

Corollary 3.2. (a) For any pair of manifolds M and N of the same
dimension with M closed and a non-negative integer d 6= 1, the set of
dominating points of any map f : M → N of absolute degree d cannot
contain an open set.
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(b) For each non-negative integer d 6= 1, there are manifolds M and N
with dim(M) = dim(N) > 2 and a map f : M → N which has absolute
degree d such that the set of dominating points is dense.

(c) There are manifolds M and N with dim(M) = dim(N) = 2 and
a map f : M → N which has absolute degree 0 such that the set of
dominating points is dense.

(d) For any map g : M → N with dim(M) = dim(N) = 2 and absolute
degree of g > 1, the set of dominating points of g is never dense.

This corollary is an easy consequence of the Appendix, Theorem 2.2,
and known results in the literature.

Proof. Part (a) is a direct consequence of Theorem 2.2.
Part (b) follows immediately from the main result of [7].
Part (c) follows from Proposition 3.1.
Part (d) follows from [5]. �

Remark 3.3. Corollary 3.2 motivates the following question: For which
pairs of manifolds M and N does the conclusion of (b) hold?
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APPENDIX
by Stepan Orevkov

Example. There is a continuous mapping f : S2 → R2 whose set of
dominating points is dense in S2.

Using the Cantor function, we construct a continuous mapping f :
S2 → R2 such that {p ∈ S2 | f−1(f(p)) = {p}} – the set of dominating
points of f – is dense in S2. The image of f in our example is an infi-
nite binary tree. This construction answers a question posed to me by
Daciberg Gonçalves.

1. Preliminaries

Let B = {0, 1}∞ be the set of all binary sequences (b(1), b(2), . . . ) where
b(i) ∈ {0, 1}, i = 1, 2, . . . and only finite numbers of b(i) are nonzero. For
b ∈ B, we define its length as len(b) = max{n | b(n) = 1 } and we set
Bn = { b ∈ B | len(b) = n }. If b = (b(1), b(2), . . . ) is a binary sequence
of length n, we shall represent it by a word (without any delimiters)
b(1) . . . b(n), i.e., we shall write just 0101 instead of (0, 1, 0, 1, 0, 0, . . . ).
Thus, we have B0 = ∅,
B1 = {1}, B2 = {01, 11}, B3 = {001, 011, 101, 111}, etc., and we have

B =
⋃∞

n=1Bn.
For b ∈ Bn, let y(b) be the binary number

y(b) = 0 . b(1)b(2) · · · =
∑
k≥1

b(k)/2k

and let t(b) be the ternary number

t(b) = 2× 0 . b(1)b(2) · · · =
∑
k≥1

2b(k)/3k.

Let F : [0, 1]→ [0, 1] be a Cantor function, i.e., the monotone function
uniquely determined by the condition that

F (t(b)) = F (t(b)− 3−n) = y(b) for b ∈ Bn

(see Figure 1). For b ∈ Bn, let Ib be the closed interval

Ib = F−1(y(b)) = [t(b)− 3−n , t(b)]

(see Figure 1). Let B =
⋃∞

m=1 Bm where Bm = {(b1, . . . , bm) | bi ∈ B }.
We shall identify B1 with B and len(~b) = len(b1) + · · · + len(bm). For
~b = (b1, . . . , bm) ∈ Bm, we denote ~b′ = (b1, . . . , bm−1) ∈ Bm−1. We
write ~b1 ≺ ~b2 if ~b1 is an initial segment of ~b2, i.e., ~b1 = (b1, . . . , bm1

) and
~b2 = (b1, . . . , bm1

, bm1+1, . . . , bm2
).
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I1I I01 11

I001 I011 I101 I111

Figure 1

2. Construction of Annuli

Let D be the closed unit disk in C. For b ∈ B, let us denote the
annulus {z ∈ D : |z| ∈ Ib} = {z ∈ D : F (|z|) = y(b)} by Ab. Let U =
{U1, U2, . . . } be some countable base of the standard topology in D. For
any ~b = (b1, . . . , bm) ∈ B, we define an annulus A~b, a distinguished point
p~b in it, and a mapping ϕ~b : D → A~b. We shall define them inductively,
first, for ~b with len(~b) = 1, then for all ~b with len(~b) = 2, then for all ~b
with len(~b) = 3, etc.

If ~b = (b1) ∈ B1, then we set A~b = Ab1 .
If A~b is already defined, then we choose p~b as any point in IntA~b ∩ Uk

where k is the minimal number such that IntA~b ∩ Uk is non-empty and
Uk was not used on previous steps.

If p~b is already defined, then we define ϕ~b : D → A~b as a continuous
map such that

• ϕ~b(0) = p~b,
• ϕ~b(D) = A~b,
• ϕ~b maps IntD homeomorphically onto a dense open subset of A~b.

If ϕ~b′ is already defined, then we set A~b = ϕ~b′(Abm). We have depicted
some of the annuli A~b in Figure 2.
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A1

A1,1

A1,11

A111
A1,01

A1,1,1

A11
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A011
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A1,1,01

Figure 2

Let us set Am =
⋃

~b∈Bm
IntA~b, A =

⋂∞
m=1Am, and P = {p~b |~b ∈ B }.

Remark 2.1. Using conformal mappings, we can choose ϕ~b in a canonical
way. Namely, we can set ϕ = ϕ−11 ◦ϕ2 where ϕ1 is the conformal mapping
of IntA~b onto Ar = { z : r < |z| < 1} such that ϕ1(p~b) ∈ [r, 1] (r is
uniquely determined by A~b) and ϕ2 is a conformal mapping of IntD onto
Ar \ [−1,−r] such that ϕ2(0) = ϕ1(p~b).

Lemma 2.2. A and P are dense in D.

Proof. The fact that A is dense in D is an immediate consequence from
Baire’s theorem.

Let us prove by induction that each Uk contains a point of P . Suppose
we know already that this is true for U1, . . . , Uk−1.

Since A is dense, there exists a point z in A ∩ Uk. It belongs to each
Am; hence, for any m = 1, 2, . . . , there is ~bm ∈ Bm such that z ∈ IntA~bm

.
Let m be the minimal number such that p~bm was not yet defined at the
moment when all of U1, . . . , Uk−1 had been used. Then p~bm must be
chosen in IntA~bm

∩ Uk because it is non-empty (it contains z). �

3. Construction of a Fractal Tree

Let us define an infinite tree T embedded into R2 as follows. Let I =
[0, 1] and let λ0 : I → R2 be a non-constant linear mapping, say, λ0(t) =
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(t, 0). For any ~b ∈ B, we shall define a linear mapping λ~b inductively as
follows. If m = 0 (i.e., ~b is empty), we set λ~b = λ0. If ~b = (b1, . . . , bm)
and λ~b′ is already defined, then we set λ~b(t) = (1 − t)e~b + ta~b where
a~b = λ~b′(y(bm)), the segment λ~b(I) = [a~b, e~b] is orthogonal to the segment
λ~b′(I) (the direction is not so important, we can choose it, for instance,
as in Figure 3), and the length of the segment λ~b(I) is 3− len(~b) (recall
that len(~b) = len(b1) + · · · + len(bm)). Let T =

⋃
~b∈B λ~b(I) (see Figure

3). We shall call the points a~b and e~b the nodes and the ends of T ,
respectively. Let us denote the branch at a~b by T~b, i.e., T~b =

⋃
~b≺~b1 λ~b1(I).

By construction, T~b ⊂ ∆~b where ∆~b is the triangle with vertices a~b, e~b,
and e~b,1. In Figure 3, we depict the triangles ∆1 and ∆1,11, i.e., the
triangles ∆~b for ~b = (1) ∈ B1 and for ~b = (1, 11) ∈ B2.
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Figure 3

One can check that ∆~b1
⊃ ∆~b2

if ~b1 ≺ ~b2 and ∆~b1
∩∆~b2

= ∅ otherwise.
This implies that the segments of T meet each other only at nodes (in
particular, the ends cannot lie on other segments).

4. Construction of the Mapping

Let us define f : D → T as f = limm→∞ fm where the mappings fm
are inductively constructed as follows.

Let f0(z) = λ0(F (|z|)), where λ0 has been defined in the previous
subsection. Then f0 is continuous and it contracts each annulus Ab into
the node ab. Suppose that fm−1 is already constructed. Then we set

fm(z) =

{
λ~b
(
F
(
|ϕ−1~b

(z)|
))

if z ∈ IntA~b for ~b ∈ Bm

fm−1(z) otherwise.
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It is clear that if ~b ∈ Bm, then fm maps A~b onto the segment λ~b(I) =
[a~b, e~b] so that ∂A~b is mapped to the node a~b, the distinguished point p~b
is mapped to the end e~b, and each annulus A~b,b is contracted to the node
a~b,b.

Using the fact that fm(∂A~b) = fm−1(∂A~b) = a~b for ~b ∈ Bm, it is easy
to prove by induction that each fm is continuous.

Let us show that f is continuous. Indeed, when we pass from fm1 to
fm2

, we modify fm1
on each A~b, where ~b ∈ Bm1

, replacing the value a~b by
values lying in T~b ⊂ ∆~b and the diameter of ∆~b tends to zero as m→∞.
Thus, {fm} is a Cauchy sequence in the metric of uniform convergence.

In fact, f can be characterized as the continuous mapping D → R2

uniquely defined either by the condition f(∂A~b) = a~b for any ~b ∈ B or by
the condition that f(A~b) = T~b for any ~b ∈ B.

Since f is constant on ∂D, it can be considered as a continuous mapping
of the sphere obtained from D by contracting the boundary. Let E be the
set of ends of T , i.e., E = { e~b |~b ∈ B }. It is clear that each point of E
has only one preimage and f−1(E) = P is dense in the sphere.
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