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PARTIAL METRIC SPACES WITH NEGATIVE
DISTANCES AND FIXED POINT THEOREMS

SAMER ASSAF AND KOUSHIK PAL

Abstract. In this paper we consider partial metric spaces in the
sense of O’Neill. We introduce the notions of strong partial metric
spaces and Cauchy functions. We prove a fixed point theorem
for such spaces and functions that improves Matthews’ contraction
mapping theorem in two ways. First, the existence of fixed points
now holds for a wider class of functions and spaces. Second, our
theorem also allows for fixed points with nonzero self-distances.
We also prove fixed point theorems for orbitally r-contractive and
orbitally ϕr-contractive maps. We then apply our results to give
alternative proofs of some of the other known fixed point theorems
in the context of partial metric spaces.

1. Introduction

The notion of distance is fundamental in mathematics and variations
on distance have been much studied (see [5]). One such variation, the
partial metric, was introduced by Matthews (see [10, 11]). It differs from
a metric in that points are allowed to have nonzero “self-distances” (i.e.,
d(x, x) ≥ 0) and the triangle inequality is modified to account for positive
self-distance. The notion of a partial metric has been both fruitful and
well-studied (see http://www.dcs.warwick.ac.uk/pmetric/index.html).
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O’Neill [12] extended Matthews’ definition to allow partial metrics with
“negative distances”. In this paper, we study partial metrics in the sense
of O’Neill. If X is a nonempty set and R is the set of real numbers, then
a partial metric, in the sense of O’Neill, is a function p : X ×X → R
satisfying for all x, y, z ∈ X:
(sep) p(x, x) = p(x, y) = p(y, y) ⇐⇒ x = y,
(ssd) p(x, x) ≤ p(x, y),
(sym) p(x, y) = p(y, x),
(ptri) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
These four conditions are called the separation condition, the small self-
distance condition, the symmetry condition and the partial metric triangle
inequality condition, respectively.

The implications of Matthew’s (ssd) axiom was later studied by
Heckmann [7] in his work on weak partial metrics, where he, in fact,
drops that axiom. In this paper, we take a different route and strengthen
the (ssd) axiom and study its consequences. To that effect, we introduce
the following definition.
Definition 1.1. Let (X, p) be a partial metric space. We say (X, p) is
strong if conditions (sep) and (ssd) are replaced by the strictly small
self-distance condition
(sssd) p(x, x) < p(x, y) for all x, y ∈ X with x ̸= y.
And we say (X, p) is bounded below by r0, for some r0 ∈ R, if (X, p)
satisfies the lower bound condition
(lbd) p(x, y) ≥ r0 for all x, y ∈ X.

Three remarks follow this definition. First, the authors intend to ap-
proach this paper more from a mathematical perspective than a computer
science one. So the usual poset structure (X,⊑p) on a partial metric space
(X, p) defined by x ⊑p y : ⇐⇒ p(x, x) = p(x, y) is not relevant to the
current paper. But for the sake of completeness, we should mention that
a consequence of our axiom (sssd) is that the relation ⊑p is, in fact,
equality.

Second, it is easy to see that if (X, p) is a partial metric space bounded
below by r0, then (X, pr0) is a partial metric space bounded below by
zero, where pr0(x, y) := p(x, y) − r0. That is to say, a “bounded below
partial metric” can be linearly adjusted to obtain an equivalent partial
metric. So this definition might not seem terribly interesting at the first
sight. But the real power of this definition shows in the Theorems 1.7,
6.4 and 7.3, which are not mere linear adjustments of the corresponding
theorems known in the context of partial metric spaces.

Third, it should be noted that even though we don’t mention the “sep-
aration” condition (sep) explicitly for strong partial metric spaces, it
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follows from condition (sssd) : if x ̸= y, then p(x, x) < p(x, y); therefore,
p(x, x) = p(x, y) =⇒ x = y. So, strong partial metric spaces are indeed
partial metric spaces. Also, it is easy to see that a metric space is just a
strong partial metric space with all self-distances zero. In short,
{Metric Spaces} ⊆ {Strong Partial Metric Spaces} ⊆ {Partial Metric Spaces}.

In Section 3, we provide examples to show that these inclusions are strict,
cf. Remark 3.6.

One of our main goals in this paper is to prove fixed point theorems
for partial metric spaces. To do that, one usually needs to place some
conditions on the function and/or on the underlying space. To that end,
we use the following definitions given by Matthews [10, 11], although
in his case (unlike ours) the number r in the definition is necessarily
nonnegative.

Definition 1.2. Let (X, p) be a partial metric space. A sequence ⟨xn⟩n∈N
is called a Cauchy sequence in (X, p) if there is some r ∈ R such that

lim
m,n→∞

p(xm, xn) = r.

An element a ∈ X is called a limit of the sequence ⟨xn⟩n∈N if

lim
n→∞

p(a, xn) = p(a, a).

An element a ∈ X is called a special limit of the sequence ⟨xn⟩n∈N if

lim
m,n→∞

p(xm, xn) = lim
n→∞

p(a, xn) = p(a, a).

Finally, a partial metric space (X, p) is called complete if every Cauchy
sequence ⟨xn⟩n∈N in (X, p) converges to a special limit a ∈ X.

Although a limit of a sequence is not unique in general in a partial
metric space, we will show later that a special limit of a Cauchy sequence,
if it exists, is in fact unique, cf. Lemma 4.3. We also need some conditions
on the function as given by the following definition. A remark about the
notation: we write fx for f(x).

Definition 1.3. Let (X, p) be a partial metric space and f : X → X be
a map. We say f is non-expansive if it satisfies

p(fx, fy) ≤ p(x, y) ∀x, y ∈ X.

If (X, p) is bounded below by zero, we say f is contractive if for some
0 ≤ c < 1 we have

p(fx, fy) ≤ c p(x, y) ∀x, y ∈ X.

Matthews proved the following contraction mapping theorem for par-
tial metric spaces.
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Theorem 1.4. [11, Theorem 5.3] For each complete partial metric space
(X, p) bounded below by zero, and for each contractive map f : X → X,
there exists a unique a ∈ X such that fa = a and, moreover, p(a, a) = 0.

In this paper, we improve on this theorem in two ways. First, we
weaken the condition on the function (cf. Theorem 1.7) and the under-
lying space (allowing negative distances) so that the existence of a fixed
point now holds for a wider class of functions and spaces, albeit we lose
uniqueness. Second, we allow a condition on the function general enough
to admit fixed points with nonzero self-distances.

Definition 1.5. Given a partial metric space (X, p), an element x0 ∈ X,
and a map f : X → X, we say f is Cauchy at x0 if the orbit ⟨fnx0⟩n∈N of
x0 under f is a Cauchy sequence in (X, p). We say f is Cauchy at x0 with
special limit a if f is Cauchy at x0 and a is a special limit of the Cauchy
sequence ⟨fnx0⟩n∈N. Finally, we say f is Cauchy if f is Cauchy at every
x ∈ X.

We will show later that if (X, p) is bounded below by zero and f is
contractive, then f is Cauchy, but not conversely. Thus, Cauchy maps
form a strictly wider class than contractive maps even for partial metric
spaces bounded below by zero. We also need the following definition.

Definition 1.6. Given a partial metric space (X, p), elements x0, z0 ∈ X,
and a map f : X → X, we say f is orbitally continuous at x0 for z0 if

z0 is a limit of ⟨fnx0⟩n∈N =⇒ fz0 is a limit of ⟨fnx0⟩n∈N

i.e.,

lim
n→∞

p(fnx0, z0) = p(z0, z0) =⇒ lim
n→∞

p(fnx0, fz0) = p(fz0, fz0).

We say f is orbitally continuous at x0 if f is orbitally continuous at x0

for every z ∈ X. And, we say f is orbitally continuous if it is orbitally
continuous at every x ∈ X.

The following are the main results of this paper.

Theorem 1.7 (Cauchy Mapping Theorem for Partial Metric Spaces). Let
(X, p) be a partial metric space, x0 ∈ X be an element, and f : X → X
be a map such that f is Cauchy at x0 with special limit a ∈ X. Further
assume at least one of the following conditions holds:

(1) f is non-expansive and orbitally continuous at x0 for a;
(2) f is orbitally continuous at x0 for a and (X, p) is bounded below

by p(fa, fa);
(3) f is non-expansive and (X, p) is bounded below by p(a, a).

Then a is a fixed point of f .
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As it turns out, things are much simpler for a strong partial metric
space as we need fewer conditions for a fixed point to exist.

Theorem 1.8 (Cauchy Mapping Theorem for Strong Partial Metric
Spaces). Let (X, p) be a strong partial metric space, x0 ∈ X be an el-
ement, and f : X → X be a map such that f is Cauchy at x0 with special
limit a ∈ X. Further assume at least one of the following conditions holds:

(1) f is non-expansive;
(2) f is orbitally continuous at x0 for a.

Then a is a fixed point of f .

The paper is organized as follows. In Section 2, we give a motivational
example for studying nonzero self-distances as well as condition (sssd).
In Section 3, we describe the natural topology on a partial metric space,
and show that it is T0 in general and T1 for a strong partial metric space.
Section 4 gives an equivalent condition for orbitally continuous maps. In
Section 5, we prove our two main results, which serve as the central tools
in proving other fixed point theorems in the context of (strong) partial
metric spaces. In Sections 6 and 7, we give examples of two classes of
functions, namely “orbitally r-contractive” and “orbitally ϕr-contractive”
functions, that satisfy the property of being Cauchy and thereby provide
more examples of fixed point theorems. Finally, in Section 8, we apply our
main results to give more streamlined and concise proofs of some other
known fixed point theorems from [9], though in the context of strong par-
tial metric spaces.

Acknowledgements. The authors would like to thank Franz-Viktor
Kuhlmann and Ed Tymchatyn for their careful proof-reading of this man-
uscript and for their numerous suggestions on corrections and improve-
ments. The first-named author would also like to thank Katarzyna
Kuhlmann for introducing him to generalized notions of metric spaces.

2. An example in biological setting

DNA, proteins, words are all examples of finite sequences generated
from a finite alphabet. And often a generic question is: given two finite
sequences x = ⟨x1, x2, . . . , xn⟩ and y = ⟨y1, y2, . . . , ym⟩, how similar are
these two sequences?

In the case of DNA, for example, and while studying mutation from x
to y, it becomes important to come up with a measure that can effectively
compare partial DNA strands. One such measure is the following com-
monly used scoring scheme [6]: one first aligns two given words so that
their lengths match (to do this one uses “—” as part of the alphabet),
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and then compares them letter-by-letter and assigns a score to each of the
four distinct possibilities, namely, a score of α if the two letters match,
a score of β if they don’t match, a score of γ if only one of the letters is
“—”, and a score of zero if both the letters are “—”. Then these scores
are summed up to assign a total score for that particular alignment of
the given pair of words. Finally all possible alignments are considered
between the two words and the highest possible score is assigned to the
pair, which is then used as a measure of the similarity or dissimilarity of
the two words. As an example, if α = +1, β = −1 and γ = −2, then
the total score of the pair (CGATC, CAGA) for the particular alignment
(x=CGA—TC, y=C—AGA—) is +1− 2 + 1− 2− 1− 2 = −5. It is not
hard to show that the best possible score for the same pair of words is −2
arising from the alignment (x=CGATC, y=C—AGA).

Fix α, β, γ ∈ R and let s(x, y) denote the scoring function as mentioned
above. We now show that for certain choices of α, β and γ, the scoring
function s(x, y) gives rise to a strong partial metric p(x, y).

Proposition 2.1. The function p(x, y) := −s(x, y) (where s is as defined
above) is a strong partial metric provided α > β, α > γ, β ≥ 2γ and
γ < 0.

Proof. It is easy to see that s(x, y) (and hence p(x, y)) is symmetric for
all nonempty words x and y. Also, notice that for any given word x,
the value s(x, x) is the highest possible value of s(x, y) for any word y as
α > β, α > γ and γ < 0. In particular, for any given words x and y with
x ̸= y, we have s(x, x) > s(x, y) (and hence p(x, x) < p(x, y)), since any
insertion or deletion or mismatch with x will irreparably reduce the value
of s(x, y) from the highest possible value of s(x, x).

So it suffices to demonstrate condition (ptri). To that end, let x =
⟨x1, . . . , xn⟩, y = ⟨y1, . . . , yn⟩ and z = ⟨z1, . . . , zn⟩ be three word sequences
of the same length such that x and z are optimally aligned. We can also
assume without loss of generality that y and z are optimally aligned by
aligning “—” with “—” if necessary. Since x and y need not be optimally
aligned, we denote the score for this alignment of x and y by h. In
particular, h(x, y) ≤ s(x, y). We now show that

h(x, y) ≥ s(x, z) + s(z, y)− s(z, z).(1)

We have to consider several cases. Fix 1 ≤ i ≤ n. Then one of the
following holds:

i. xi = yi, zi ̸= —
ii. xi = yi, zi = —
iii. xi ̸= yi, zi ̸= —
iv. xi ̸= yi, zi = —
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v. xi = —, yi = zi
vi. xi = —, yi ̸= zi
vii. xi = zi = —, yi ̸= —
viii. xi = yi = —, zi ̸= —
ix. xi = yi = zi = —

In the above list, when we say a = b or a ̸= b, we mean both a and b are
letters other than “—”. We leave it to the reader to verify that (1) holds
in all these 9 cases. As examples, we work out three of these cases here,
namely (i), (iv) and (viii):

i. In this situation, we have h(xi, yi) = α and s(zi, zi) = α. Also,
s(xi, zi) = s(zi, yi) = α (if zi = xi = yi) or s(xi, zi) = s(zi, yi) =
β (if zi ̸= xi = yi). In particular, s(xi, zi) = s(zi, yi) ≤ α. Since
α ≥ β, (1) follows.

iv. In this situation, we have h(xi, yi) = β, s(xi, zi) = γ, s(yi, zi) = γ
and s(zi, zi) = 0. Since β ≥ 2γ, (1) follows.

viii. In this situation, we have h(xi, yi) = 0, s(xi, zi) = γ, s(yi, zi) = γ
and s(zi, zi) = α. Since α ≥ 2γ, (1) follows.

Since (1) holds for the triplet (xi, yi, zi) for all 1 ≤ i ≤ n, it follows that

s(x, y) ≥ h(x, y) =
n∑

i=1

h(xi, yi) ≥
n∑

i=1

(
s(xi, zi) + s(zi, yi)− s(zi, zi)

)
=

n∑
i=1

s(xi, zi)+
n∑

i=1

s(zi, yi)−
n∑

i=1

s(zi, zi)

= s(x, z) + s(z, y)− s(z, z).

Hence, multiplying both sides by −1, we obtain that p(x, y) ≤ p(x, z) +
p(z, y)−p(z, z) for all words x, y and z. Thus, p is indeed a strong partial
metric. �

3. Topology

Let (X, p) be a partial metric space. Following [12], we define an open
ball as:

Bϵ(x) := {y | p(x, y)− p(x, x) < ϵ}
for x ∈ X and ϵ ∈ R>0. It is easy to see that these balls are nonempty for
ϵ > 0, and empty for ϵ ≤ 0. It is also easy to see that these balls form a
basis for a T0 topology on X, called the pmetric topology. We denote this
topology by τ [p]. Finally, since the set of positive rational numbers Q>0

is dense in R>0, it follows that every point x ∈ X has a countable local
base given by {Bq(x) | q ∈ Q>0}. Hence, (X, p) is first countable as well.

It is noteworthy that in Definition 1.2, the definition of a limit agrees
with the topological definition of a limit with respect to the topology τ [p],
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whereas the definition of completeness (and of special limits of Cauchy
sequences) is the usual definition of completeness in the corresponding
symmetrization metric topology τ [p∗] (cf. [3, 12]), i.e., (X, p) is complete
if and only if it is complete with respect to the metric topology τ [p∗].

We now prove the following improvement for a strong partial metric
space.

Theorem 3.1. For a strong partial metric space (X, p), the topology τ [p]
is T1.

Proof. Let x, y ∈ X, with x ̸= y. By condition (sssd), we have p(x, x) <
p(x, y). Consider the ball

Bp(x,y)−p(x,x)(x) := {z ∈ X | p(x, z)− p(x, x) < p(x, y)− p(x, x)}
= {z ∈ X | p(x, z) < p(x, y)}.

Since p(x, x) < p(x, y), we have x ∈ Bp(x,y)−p(x,x)(x). But clearly y ̸∈
Bp(x,y)−p(x,x)(x). Now, consider the ball Bp(y,x)−p(y,y)(y). Similarly as
above, one can show that y ∈ Bp(y,x)−p(y,y)(y), but x ̸∈ Bp(y,x)−p(y,y)(y).
Hence, the topology τ [p] is T1. �

We now give examples of a partial metric space that is not T1 and a
strong partial metric space that is not T2.

Example 3.2. Let X := R ·∪ {a}. Define a function p : X ×X → R as
follows:

p(a, a) = 0

p(a, x) = p(x, a) = |x| for all x ∈ R
p(x, y) = |x− y| − 1 for all x, y ∈ R.

We leave it to the reader to verify that (X, p) is a partial metric space.
Note, however, that (X, p) is not a strong partial metric space, since
p(a, a) = 0 = p(a, 0), but a ̸= 0. Also, for the same reason, 0 ∈ Bϵ(a) for
any ϵ ∈ R>0. Consequently, (X, p) is not T1.

Example 3.3. Let X := R>0. Define a function s : X × X → R as
follows:

s(x, x) = x for all x ∈ X

s(x, y) = x+ y for all x, y ∈ X with x ̸= y.

Again we leave it to the reader to verify that (X, s) is a strong partial
metric space, but not a metric space. We now prove that (X, s) is not T2

via the following two claims.

Claim 3.4. For all x ∈ X and ϵ ∈ R>0, there exists z ∈ X such that
z ̸= x and z ∈ Bϵ(x).
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Proof. Choose z := δ such that 0 < δ < ϵ and δ ̸= x. Then we have

s(x, z)− s(x, x) = x+ z − x = z = δ < ϵ,

and hence z ∈ Bϵ(x). �
Claim 3.5. Let x, y, z ∈ X with x ̸= z ̸= y. Then for all ϵ ≥ δ > 0, we
have

z ∈ Bδ(y) =⇒ z ∈ Bϵ(x).

Proof.
z ∈ Bδ(y) =⇒ s(y, z)− s(y, y) < δ =⇒ y + z − y < δ =⇒ z < δ =⇒ z < ϵ

=⇒ x+ z − x < ϵ =⇒ s(x, z)− s(x, x) < ϵ =⇒ z ∈ Bϵ(x). �

As an immediate consequence of these two claims, it follows that for
any x, y ∈ X with x ̸= y and ϵ, δ ∈ R>0, we have that Bϵ(x)∩Bδ(y) ̸= ∅.
Hence, (X, s) is not T2.
Remark 3.6. As promised in the Introduction, we have given examples
that show that
{Metric Spaces} ( {Strong Partial Metric Spaces} ( {Partial Metric Spaces}.

Examples 3.3 and 3.2 instantiate the first and the second proper inclusion,
respectively.

We end this section by giving an example of a Cauchy sequence ⟨xn⟩n∈N
in a partial metric space (X, p) such that it has more than one limit in
X, one of them being special.

Example 3.7. Let X := R ·∪ {a} and p : X × X → R be as defined in
Example 3.2.

Set xn := 1
2n for n ∈ N. Observe that for m > n, we have

−1 ≤ p(xm, xn) =
∣∣∣ 1

2m
− 1

2n

∣∣∣− 1 =
1

2n

∣∣∣ 1

2m−n
− 1

∣∣∣− 1 <
1

2n
− 1.

And hence, limm,n→∞ p(xm, xn) = −1. Thus, ⟨xn⟩n∈N is a Cauchy se-
quence in (X, p).

Now observe that p(0, xn) =
1
2n − 1 for all n ∈ N, and hence

lim
n→∞

p(0, xn) = lim
n→∞

1

2n
− 1 = −1 = p(0, 0) = lim

m,n→∞
p(xm, xn).

Thus, 0 is a special limit of the sequence ⟨xn⟩n∈N.
Also observe that p(a, xn) =

1
2n for all n ∈ N, and hence

lim
n→∞

p(a, xn) = lim
n→∞

1

2n
= 0 = p(a, a).

Thus, a is a limit of the sequence ⟨xn⟩n∈N. Since a ̸= 0, we thus obtain
non-unique limits.
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4. Orbital Continuity

Recall the definition of orbital continuity, cf. Definition 1.6. In this
section, we give an equivalent criterion for checking if the property holds
in a certain special situation. We start by proving the following lemma.

Lemma 4.1. For each partial metric space (X, p), and each Cauchy se-
quence ⟨xn⟩n∈N in (X, p) with a special limit a ∈ X, the following holds:
for every y ∈ X,

lim
n→∞

p(xn, y) = p(a, y).

Proof. Since the sequence ⟨xn⟩n∈N is Cauchy, and a is a special limit of
⟨xn⟩n∈N, we have by Definition 1.2,

lim
m,n→∞

p(xm, xn) = lim
n→∞

p(a, xn) = p(a, a).

Fix ϵ > 0 and y ∈ X. For any n ∈ N, we have

p(xn, y) ≤ p(xn, a) + p(a, y)− p(a, a).

Choose N1 large enough such that p(xn, a) − p(a, a) < ϵ for all n ≥ N1.
Then, for all n ≥ N1, we have

p(xn, y) < p(a, y) + ϵ.

Conversely, for any n ∈ N, we also have

p(a, y) ≤ p(a, xn) + p(xn, y)− p(xn, xn).

Set ϵ′ := ϵ
2 , and choose N2 large enough such that p(a, xn) < p(a, a) + ϵ′

and p(xn, xn) > p(a, a)− ϵ′ for all n ≥ N2. Then, for all n ≥ N2, we have

p(a, y) < (p(a, a)+ϵ′)+p(xn, y)−(p(a, a)−ϵ′) = p(xn, y)+2ϵ′ = p(xn, y)+ϵ.

Setting N := max{N1, N2}, we obtain for all n ≥ N

p(a, y)− ϵ < p(xn, y) < p(a, y) + ϵ.

Since 0 < ϵ is arbitrary, it follows that limn→∞ p(xn, y) = p(a, y). �

As an immediate corollary, we get our promised criterion.

Lemma 4.2. For each partial metric space (X, p), element x0 ∈ X, and
map f : X → X such that f is Cauchy at x0 with special limit a ∈ X, the
following holds:

lim
n→∞

p(fnx0, fa) = p(a, fa).

Moreover, under the same hypothesis,

f is orbitally continuous at x0 for a ⇐⇒ p(fa, fa) = p(a, fa).
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Proof. Setting xn := fnx0 (n ∈ N) and y := fa in Lemma 4.1, we get our
first statement.

Now under the same hypothesis,

f is orbitally continuous at x0 for a

⇐⇒ lim
n→∞

p(fnx0, fa) = p(fa, fa)

⇐⇒ p(a, fa) = p(fa, fa).

The last line of the above if-and-only-if sequence follows from the first
statement. �

We also get the uniqueness of special limits as a corollary.

Lemma 4.3. For each partial metric space (X, p) and each Cauchy se-
quence ⟨xn⟩n∈N in (X, p), there is at most one special limit of ⟨xn⟩n∈N in
X.

Proof. Let a and b be two special limits of ⟨xn⟩n∈N in X. Then, by
Definition 1.2, we have

lim
m,n→∞

p(xm, xn) = lim
n→∞

p(a, xn) = p(a, a)

lim
m,n→∞

p(xm, xn) = lim
n→∞

p(b, xn) = p(b, b).

From this we obtain that p(a, a) = p(b, b). By Lemma 4.1, we also have

lim
n→∞

p(xn, a) = p(b, a).

Combining all of these, we get that p(a, a) = p(a, b) = p(b, b). By
condition (sep), it then follows that a = b. �

We end this section with the following obvious result. Since a con-
tinuous function f : X → X on a metric space (X, d) is sequentially
continuous, we obtain the following.

Lemma 4.4. A continuous map f : X → X on a metric space (X, d) is
orbitally continuous.

5. Cauchy Mapping Theorems

In this section, we state and prove Cauchy Mapping theorems (The-
orems 1.7 and 1.8) for partial and strong partial metric spaces. These
theorems serve as a basis for the proofs of various fixed point theorems in
the context of partial metric spaces. Many of the known fixed point the-
orems for partial metric spaces have a similar pattern and the following
theorems extract the essence of that pattern.
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Proof of Theorem 1.7

Proof. We deal with the three cases separately.
Case I: f is non-expansive and orbitally continuous at x0 for a.
Since f is orbitally continuous at x0 for a, it follows by Lemma 4.2 that

p(a, fa) = p(fa, fa).

Since f is non-expansive, we further obtain

p(a, fa) = p(fa, fa) ≤ p(a, a).

Combining this with condition (ssd), we have

p(a, a) = p(a, fa) = p(fa, fa).

Hence, by condition (sep), it follows that fa = a, i.e., a is a fixed point
of f .

Case II: f is orbitally continuous at x0 for a and (X, p) is bounded
below by p(fa, fa).
Since f is orbitally continuous at x0 for a, it follows by Lemma 4.2 that

p(a, fa) = p(fa, fa).

By condition (ssd), we have p(a, a) ≤ p(a, fa). Since (X, p) is bounded
below by p(fa, fa), it then follows that

p(fa, fa) ≤ p(a, a) ≤ p(a, fa) = p(fa, fa).

Consequently, by condition (sep), we have that fa = a, i.e., a is a fixed
point of f .

Case III: f is non-expansive and (X, p) is bounded below by p(a, a).
Since f is non-expansive, we have for every n ∈ N,

p(fn+1x0, fa) ≤ p(fnx0, a).

By taking the limit as n → ∞ and by applying Lemma 4.1, we obtain

p(a, fa) ≤ p(a, a).

Since (X, p) is bounded below by p(a, a), it follows by condition (ssd)
that

p(a, a) ≤ p(fa, fa) ≤ p(a, fa) ≤ p(a, a).

Hence, by condition (sep), we have fa = a, i.e., a is a fixed point of
f . �
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Proof of Theorem 1.8

Proof. We deal with the two cases separately.
Case I: f is non-expansive.
Since f is non-expansive, we have for every n ∈ N,

p(fn+1x0, fa) ≤ p(fnx0, a).

By taking the limit as n → ∞ and by applying Lemma 4.1, we obtain

p(a, fa) ≤ p(a, a).

Since (X, p) is strong, it then follows from condition (sssd) that fa = a.

Case II: f is orbitally continuous at x0 for a.
Since f is orbitally continuous at x0 for a, it follows by Lemma 4.2 that

p(a, fa) = p(fa, fa).

Since (X, p) is strong, it then follows from condition (sssd) that fa =
a. �

We now give an example of a function f on the complete metric space
(R, | · |) that is non-expansive on an interval and Cauchy on one orbit
in that interval, but is not contractive on the interval or even on that
particular orbit. This function has a fixed point in R by our theorem, but
it cannot be obtained by the Banach Contraction Mapping Theorem.
Example 5.1. Consider the following function f : R → R given by

fx =
ex sinx

eπ/2
+

π

2
− 1.

It is easy to check that f π
2 = π

2 , i.e. x = π
2 is a fixed point of f . We

first note that f is not contractive on any interval containing the point
π
2 , and so we cannot apply Banach’s Fixed Point Theorem to obtain this
fixed point. Observe that f is infinitely differentiable and the first three
derivatives of f are given by

f ′x =
ex(sinx+ cosx)

eπ/2
f ′′x =

2ex cosx

eπ/2
f ′′′x =

2ex(cosx− sinx)

eπ/2
.

Solving the second equation for a root, one then obtains the following:

f ′′π

2
= 0 f ′′′π

2
= −2 < 0.

It follows by elementary calculus that f ′ has a local maximum at the point
x = π

2 with a value of f ′ π
2 = 1. Since f ′ is continuous, f ′ π

2 = 1, and for
sufficiently small interval [a, b] around π

2 and for any x < y ∈ [a, b] there
exists ξ ∈ (x, y) such that

|fx− fy| = |f ′ξ||x− y|,
it follows that f is not a contractive function on any interval containing
π
2 .
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However, (R, | · |) is a metric space and hence a strong partial metric
space. The function f is continuous, and thus by Lemma 4.4, is orbitally
continuous. Also observe that

f ′ 3π

4
= 0 f ′x > 0 for x ∈

[
0,

3π

4

)
0 < f0 < f

3π

4
<

3π

4
.

In particular, f is increasing on the interval [0, 3π
4 ]. Set x0 := 0. Then we

have
x0 < fx0 < f

3π

4
<

3π

4
.

Since f is increasing on [0, 3π
4 ], it then follows by simple induction that

x0 < fx0 < f2x0 < f3x0 < . . . <
3π

4
.

Thus, we get a bounded increasing sequence ⟨fnx0⟩n∈N in R. By the
Monotone Convergence Theorem, this sequence is Cauchy and converges
to some x1 ∈ R such that x1 ∈ [0, 3π

4 ]. By Theorem 1.8, it follows that
x1 is a fixed point of f . A numerical simulation then shows that indeed
x1 = π

2 .

It should be noted that in the above example, f is a continuous func-
tion on the interval [0, 3π

4 ] with 0 < f0 and f 3π
4 < 3π

4 . Thus, the existence
of a fixed point of f in the interval [0, 3π

4 ] follows immediately from the
Intermediate Value Theorem applied to the function gx = fx− x. How-
ever, what Theorem 1.8 (specialized to the case of metric spaces) does
additionally is that it gives an iterative method for computing that fixed
point starting from a nearby point. Also it is easy to see that x = π

2 is the
unique maxima of f ′ in the interval [0, 3π

4 ], and thus f is non-expansive
on the interval [0, 3π

4 ].

We like to end this section with the following remark.

Remark 5.2. The assumptions of lower bounds of (X, p) in conditions (2)
and (3) of Theorem 1.7 look artificial and probably often untenable in the
grand scheme of things. But the reason we have listed them is to empha-
size their analogy with what is going on under the hood in partial metric
spaces bounded below by zero. In these situations, people often consider
a contractive map (or at the very least a non-expansive and orbitally con-
tractive map) which has the property that limm,n→∞ p(fmx0, f

nx0) = 0
(for some x0), where zero is incidentally the lower bound of the space,
and one ends up getting a fixed point for similar reasons as explained in
the proof of our theorem. The point we are trying to make here is that
the lower bound of zero is a subtle third condition in such theorems, and
that, in its absence, orbital continuity is probably the right alternative
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to fall back on. Even nicer is the fact that this whole point is moot if
we are in a strong partial metric space because then the existence or the
non-existence of a lower bound of the space has no effect on the existence
of a fixed point as Theorem 1.8 shows.

6. Orbitally r-contractive maps

Let (X, p) be a partial metric space. In the previous section, we showed
the existence of a fixed point for a function f : X → X under the assump-
tion that there is an element x0 ∈ X such that f is Cauchy at x0. In this
section, we give an example of a particular class of functions, which we call
“orbitally r-contractive”, that in fact satisfies this condition. Lemma 6.2
establishes this claim. These functions are our analogues of contractive
(rather, orbitally contractive) functions suitable to our context.

Definition 6.1. Take a partial metric space (X, p), an element x0 ∈ X, a
number r ∈ R, and a map f : X → X. We say f is orbitally r-contractive
at x0 if there exists a real number c with 0 ≤ c < 1 such that the following
two conditions hold for all n ∈ N:

• r ≤ p(fnx0, f
nx0)

• p(fn+2x0, f
n+1x0) ≤ r + cn+1 |p(fx0, x0)|.

And we say f is orbitally r-contractive if f is orbitally r-contractive at
every x ∈ X.

Observe that if (X, p) is bounded below by zero and f is contractive,
then f is orbitally 0-contractive, but not conversely. Thus, orbitally r-
contractive maps form a strictly wider class than contractive maps even
for partial metric spaces bounded below by zero.

Lemma 6.2. For each partial metric space (X, p), element x0 ∈ X,
real number r ∈ R, and map f : X → X orbitally r-contractive at x0,
the orbit ⟨fnx0⟩n∈N of x0 under f is a Cauchy sequence in (X, p) with
limm,n→∞ p(fmx0, f

nx0) = r.

Proof. Since f is orbitally r-contractive at x0, there is 0 ≤ c < 1 such
that for all n ∈ N

r ≤ p(fnx0, f
nx0)

p(fn+2x0, f
n+1x0) ≤ r + cn+1 |p(fx0, x0)|.
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Let m > n ≥ 0 be arbitrary. Write m = n+ k + 1 for some k ≥ 0. Then
we have

p(fn+k+1x0, f
nx0)≤p(fn+k+1x0, f

n+kx0)+p(fn+kx0, f
nx0)−p(fn+kx0, f

n+kx0)

≤r + cn+k |p(fx0, x0)|+ p(fn+kx0, f
nx0)− r

≤cn+k |p(fx0, x0)|+ p(fn+kx0, f
nx0)

≤· · ·
≤(cn+k + · · ·+ cn+1) |p(fx0, x0)|+ p(fn+1x0, f

nx0)

≤(cn+k + · · ·+ cn+1) |p(fx0, x0)|+ r + cn|p(fx0, x0)|
≤(cn+k + · · ·+ cn+1 + cn) |p(fx0, x0)|+ r

≤r + cn
1− ck+1

1− c
|p(fx0, x0)|

≤r + cn
1

1− c
|p(fx0, x0)|.

Taking the limit as n → ∞, the right hand side of the above inequality
goes to r, since 0≤c< 1. Since also r≤p(fnx0, f

nx0)≤p(fn+k+1x0, f
nx0)

for all k, n ∈ N, we have

lim
m,n→∞

p(fmx0, f
nx0) = r,

and hence ⟨fnx0⟩n∈N is Cauchy. �

It thus follows that an orbitally r-contractive map is Cauchy for every
r ∈ R. In particular, if (X, p) is bounded below by zero and f : X →
X is contractive, then f is Cauchy (since f is orbitally 0-contractive).
Because of this property, the orbitally r-contractive functions provide
more examples of fixed point theorems. But for that we need the existence
of special limits. The following weakening of completeness suffices for our
fixed point theorems to work.

Definition 6.3. Given a partial metric space (X, p) and a map f : X →
X, the space (X, p) is called orbitally complete for f if every Cauchy
sequence in (X, p) of the form ⟨fnx0⟩n∈N, for x0 ∈ X, has a special limit
a ∈ X.

Combining this with the results of the previous section, we obtain the
following.

Theorem 6.4. Let (X, p) be a partial metric space, r ∈ R, x0 ∈ X and
f : X → X be a map such that f is orbitally r-contractive at x0 and (X, p)
is orbitally complete for f . Further assume that one of the following holds:

(1) f is non-expansive and orbitally continuous at x0;
(2) f is non-expansive and (X, p) is bounded below by r.
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Then there exists a ∈ X such that fa = a and p(a, a) = r. Furthermore,
if (X, p) is bounded below by zero and f is contractive, then the fixed point
is unique.
Proof. By Lemma 6.2, the orbit ⟨fnx0⟩n∈N of x0 under f is a Cauchy
sequence with limm,n→∞ p(fmx0, f

nx0) = r. Since (X, p) is orbitally
complete for f , there is an element a ∈ X such that a is a special limit of
⟨fnx0⟩n∈N. By Definition 1.2, we have

p(a, a) = lim
m,n→∞

p(fmx0, f
nx0) = r.

Finally, by Theorem 1.7, we have fa = a, i.e., a is a fixed point of f .
Now suppose (X, p) is bounded below by zero and f is contractive.

Suppose a, b ∈ X are two fixed points of f . Then

p(a, b) = p(fa, fb) ≤ c p(a, b),

where c is a real number such that 0 ≤ c < 1. If c = 0, then it implies
p(a, b) = 0. If 0 < c < 1, then p(a, b) ̸= 0 implies

p(a, b) < p(a, b),

which is absurd. Hence, in all cases, we have p(a, b) = 0, which implies
a = b. �

An analogous proof using Theorem 1.8 instead of Theorem 1.7 then
gives the following.
Theorem 6.5. Let (X, p) be a strong partial metric space, r ∈ R, x0 ∈ X
and f : X → X be a map such that f is orbitally r-contractive at x0 and
(X, p) is orbitally complete for f . Further assume that one of the following
holds:

(1) f is non-expansive;
(2) f is orbitally continuous at x0.

Then there exists a ∈ X such that fa = a and p(a, a) = r.
We end this section with the following comment. Note the three main

differences between Theorem 6.4 and Theorem 1.4: first, we have achieved
p(a, a) = r instead of p(a, a) = 0; second, we have lost the uniqueness of
a fixed point; and third, and most importantly, we have got rid of the
“bounded below by zero” condition. In other words, our theorem works
for partial metric spaces with negative distances.

7. Orbitally ϕr-contractive maps

In this section, we define another class of functions, which we call “or-
bitally ϕr-contractive”, that also satisfies the property of being Cauchy
and for which we get similar fixed point theorems. Lemma 7.2 establishes
this claim. Analogous functions have been studied by several authors.
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Boyd and Wong [2] introduced the notion of “Φ-contraction” on a metric
space (X, d) as a map f : X → X for which there exists an upper semi-
continuous function Φ : [0,∞) → [0,∞) such that

d(fx, fy) ≤ Φ(d(x, y)) for all x, y ∈ X.

Alber and Guerre-Delabriere [1] generalized the notion of Φ-contraction
by defining the notion of “weak ϕ-contraction” for an Hilbert space (X, d)
as a map f : X → X for which there exists a strictly increasing map
ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that

d(fx, fy) ≤ d(x, y)− ϕ(d(x, y)) for all x, y ∈ X.

Karapinar [8] extended this definition to partial metric spaces bounded
below by zero. In this paper, we generalize this further to all partial
metric spaces.

Definition 7.1. Take a partial metric space (X, p), an element x0 ∈
X, a number r ∈ R, and a map f : X → X. We say f is orbitally
ϕr−contractive at x0 if there exists a continuous non-decreasing function
ϕ : [r,∞) → [0,∞) with ϕ(r) = 0 and ϕ(t) > 0 for all t > r such that the
following two conditions hold for all m,n ∈ N:

• r ≤ p(fnx0, f
nx0)

• p(fm+1x0, f
n+1x0) ≤ p(fmx0, f

nx0)− ϕ(p(fmx0, f
nx0)).

We say f is orbitally ϕr−contractive if it is orbitally ϕr−contractive at
every x ∈ X.

It is clear from the above definition that, in the context of a partial met-
ric space bounded below by zero, a weak ϕ-contraction map in the sense
of [8] is an orbitally ϕ0-contractive map in our sense (but not conversely).

Lemma 7.2. For each partial metric space (X, p), element x0 ∈ X, real
number r ∈ R, and map f : X → X orbitally ϕr-contractive at x0,
the orbit ⟨fnx0⟩n∈N of x0 under f is a Cauchy sequence in (X, p) with
limm,n→∞ p(fmx0, f

nx0) = r.

Proof. Set xn+1 := fxn for n ∈ N.
Let ϕ : [r,∞) → [0,∞) witness the fact that f is orbitally ϕr−contractive
at x0. In particular, ϕ is a continuous non-decreasing function with ϕ(r) =
0 and ϕ(t) > 0 for all t > r. It follows that

r ≤ p(xn+2, xn+1) = p(fxn+1, fxn) ≤ p(xn+1, xn)− ϕ(p(xn+1, xn)).

Set tn := p(xn+1, xn). Then one obtains

r ≤ tn+1 ≤ tn − ϕ(tn) ≤ tn.(2)

This implies that ⟨tn⟩n∈N is a non-increasing sequence of real numbers
bounded below by r, and hence converges to some L ≥ r. We claim
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that L = r : otherwise L > r, and hence ϕ(L) > 0. Since ϕ is non-
decreasing, we get ϕ(L) ≤ ϕ(tn) for all n ∈ N. Due to (2), we have
tn+1 ≤ tn − ϕ(tn) ≤ tn − ϕ(L), and so

tn+2 ≤ tn+1 − ϕ(tn+1) ≤ tn − ϕ(tn)− ϕ(tn+1) ≤ tn − 2ϕ(L).

Inductively we obtain tn+k ≤ tn−kϕ(L), which is a contradiction for large
enough k ∈ N. Thus, we have ϕ(L) = 0, and hence L = r. Consequently,
limn→∞ p(xn+1, xn) = r.

Now we show that ⟨xn⟩n∈N is a Cauchy sequence in (X, p) with
limm,n→∞ p(xm, xn) = r. Suppose it is not the case. Then there ex-
ists ϵ0 > r and two sequences of integers ⟨n(k)⟩k∈N and ⟨m(k)⟩k∈N such
that m(k) > n(k) ≥ k and

sk := p(xm(k), xn(k)) ≥ ϵ0(3)

for all k ∈ N. We also assume, for each k, that m(k) is the smallest number
exceeding n(k) for which (3) holds. In particular, p(xm(k)−1, xn(k)) < ϵ0
for k ∈ N. Thus, we have

ϵ0 ≤ sk = p(xm(k), xn(k))

≤ p(xm(k), xm(k)−1) + p(xm(k)−1, xn(k))− p(xm(k)−1, xm(k)−1)

≤ tm(k)−1 + ϵ0 − r

≤ tk + ϵ0 − r.

Since limk→∞ tk = r, we have limk→∞(tk + ϵ0 − r) = r + ϵ0 − r = ϵ0.
Consequently,

lim
k→∞

sk = ϵ0.

On the other hand,
sk = p(xm(k), xn(k))

≤ p(xm(k), xm(k)+1) + p(xm(k)+1, xn(k))− p(xm(k)+1, xm(k)+1)

≤ tm(k) − r + p(xm(k)+1, xn(k))

≤ tm(k)−r+p(xm(k)+1, xn(k)+1)+p(xn(k)+1, xn(k))−p(xn(k)+1, xn(k)+1)

≤ tm(k) − r + tn(k) − r + p(xm(k)+1, xn(k)+1)

≤ 2tk − 2r + p(xm(k)+1, xn(k)+1)

≤ 2tk − 2r + p(xm(k), xn(k))− ϕ(p(xm(k), xn(k)))

≤ 2tk − 2r + sk − ϕ(sk)

=⇒ ϕ(sk) ≤ 2tk − 2r

Again, since limk→∞ tk = r, we have limk→∞(2tk − 2r) = 2r − 2r =
0. Since ϕ(sk) ≥ 0 for all k ∈ N (by the definition of ϕ), we get that
limk→∞ ϕ(sk) = 0. Since ϕ is continuous, it then follows that

0 = lim
k→∞

ϕ(sk) = ϕ
(

lim
k→∞

sk

)
= ϕ(ϵ0),

which contradicts the fact that ϵ0 > r. Hence, ⟨xn⟩n∈N is Cauchy. �
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It thus follows that an orbitally ϕr-contractive map is Cauchy for every
r ∈ R. A similar claim for weak ϕ-contractive functions in the context
of partial metric spaces bounded below by zero has been proved in [8,
Theorem 2.2]. However, the proof there is incomplete. The author proves
the claim under the assumption that sn := sup{p(xi, xj) | i, j ≥ n} exists
for all n, for which he does not provide any justification. Our proof above
is different and does not assume/require the existence of such a supremum.

Because of the Cauchy property, the orbitally ϕr-contractive functions
provide further examples of fixed point theorems. As a corollary, we
obtain the following generalization of [8, Theorem 2.2].

Theorem 7.3. Let (X, p) be a partial metric space, r ∈ R, x0 ∈ X,
ϕ : [r,∞) → [0,∞) be a continuous and non-decreasing function with
ϕ(r) = 0 and ϕ(t) > 0 for all t > r, and f : X → X be a map such that
f is orbitally ϕr-contractive at x0 and (X, p) is orbitally complete for f .
Further assume that one of the following holds:

(1) f is non-expansive and orbitally continuous at x0;
(2) f is non-expansive and (X, p) is bounded below by r.

Then there exists a ∈ X such that fa = a and p(a, a) = r.

Proof. By Lemma 7.2, the orbit ⟨fnx0⟩n∈N of x0 under f is a Cauchy
sequence with limm,n→∞ p(fmx0, f

nx0) = r. Since (X, p) is orbitally
complete for f , there is an element a ∈ X such that a is a special limit of
⟨fnx0⟩n∈N. By Definition 1.2, we have

p(a, a) = lim
m,n→∞

p(fmx0, f
nx0) = r.

Finally, by Theorem 1.7, we have fa = a, i.e., a is a fixed point of f . �

An analogous proof using Theorem 1.8 instead of Theorem 1.7 then
gives the following.

Theorem 7.4. Let (X, p) be a strong partial metric space, r ∈ R, x0 ∈ X,
ϕ : [r,∞) → [0,∞) be a continuous and non-decreasing function with
ϕ(r) = 0 and ϕ(t) > 0 for all t > r, and f : X → X be a map such that
f is orbitally ϕr-contractive at x0 and (X, p) is orbitally complete for f .
Further assume that one of the following holds:

(1) f is non-expansive;
(2) f is orbitally continuous at x0.

Then there exists a ∈ X such that fa = a and p(a, a) = r.

8. Variations

In this final section, we apply our results to give alternate proofs to
two other known fixed point theorems [9, 4] in the special case when the
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underlying space is a strong partial metric space. In this context, we
see that the use of Theorem 6.5 makes the proofs of these theorems non-
repetitive and more streamlined. We start with the following theorem.

Theorem 8.1. Let (X, p) be a strong partial metric space bounded below
by zero and f : X → X be an orbitally continuous map such that (X, p)
is orbitally complete for f . If there is some 0 < c < 1 such that

min{p(fx, fy), p(x, fx), p(y, fy)} ≤ c p(x, y)

for all x, y ∈ X, then the sequence ⟨fnx⟩n∈N converges to a fixed point of
f with self distance 0, for every x ∈ X.

Proof. Pick any x0 ∈ X. We first show that f is orbitally 0-contractive at
x0 : consider the orbit ⟨fnx0⟩n∈N of x0 under f . Set xn := fnx0, for n ∈
N. If p(xn, xn+1) = 0 for some n, then xn = xn+1, and consequently, xm =
xn for all m ≥ n. Moreover, p(xn, xn) = p(xn, xn+1) = 0. Hence, we have
got our result. So assume without loss of generality that p(xn, xn+1) ̸= 0
for all n ∈ N. Letting x = xn and y = xn+1 in the given condition for f ,
we get

min{p(xn+1, xn+2), p(xn, xn+1), p(xn+1, xn+2)} ≤ c p(xn, xn+1).

If min{p(xn+1, xn+2), p(xn, xn+1)} = p(xn, xn+1), then it implies

p(xn, xn+1) ≤ c p(xn, xn+1) < p(xn, xn+1),

which is absurd. Hence, min{p(xn+1, xn+2), p(xn, xn+1)}=p(xn+1, xn+2),
and therefore,

p(xn+1, xn+2) ≤ c p(xn, xn+1).

Thus, f is orbitally 0-contractive at x0. The rest follows by Theorem 6.5.
�

Now we give our second application.

Theorem 8.2. Let (X, p) be a strong partial metric space bounded below
by zero and f : X → X be an orbitally continuous map such that (X, p)
is orbitally complete for f . If there is some 0 < c < 1 such that

min{p(fx, fy)p(x, y), p(x, fx)p(y, fy)}
min{p(x, fx), p(y, fy)}

≤ c p(x, y)

for all x, y ∈ X such that p(x, fx) ̸= 0 and p(y, fy) ̸= 0, then the sequence
⟨fnx⟩n∈N converges to a fixed point of f with self distance 0, for every
x ∈ X.

Proof. Pick any x0 ∈ X. We start by showing that f is orbitally 0-
contractive at x0 : consider the orbit ⟨fnx0⟩n∈N of x0 under f . Set xn :=
fnx0, for n ∈ N. If p(xn, xn+1) = 0 for some n, then xn = xn+1, and con-
sequently, xm = xn for all m ≥ n. Moreover, p(xn, xn) = p(xn, xn+1) = 0.
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Hence, we have got our result. So assume without loss of generality that
p(xn, xn+1) ̸= 0 for all n ∈ N. Letting x = xn and y = xn+1 in the given
condition for f , we get

min{p(xn+1, xn+2)p(xn, xn+1), p(xn, xn+1)p(xn+1, xn+2)}
min{p(xn, xn+1), p(xn+1, xn+2)}

≤ c p(xn, xn+1)

=⇒ p(xn+1, xn+2)p(xn, xn+1)

min{p(xn, xn+1), p(xn+1, xn+2)}
≤ c p(xn, xn+1).

If min{p(xn, xn+1), p(xn+1, xn+2)} = p(xn+1, xn+2), then it implies

p(xn, xn+1) ≤ c p(xn, xn+1) < p(xn, xn+1),

which is absurd. Hence, min{p(xn, xn+1), p(xn+1, xn+2)} = p(xn, xn+1),
and therefore,

p(xn+1, xn+2) ≤ c p(xn, xn+1).

Thus, f is orbitally 0-contractive at x0. The rest follows by Theorem 6.5.
�
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