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STRAIGHT HOMOTOPY INVARIANTS

SEMËN PODKORYTOV

Abstract. Let X and Y be spaces and M be an abelian group. A
homotopy invariant f : [X,Y ] → M is called straight if there exists
a homomorphism F : L(X,Y ) → M such that f([a]) = F (⟨a⟩)
for all a ∈ C(X,Y ). Here ⟨a⟩ : ⟨X⟩ → ⟨Y ⟩ is the homomorphism
induced by a between the abelian groups freely generated by X and
Y and L(X,Y ) is a certain group of “admissible” homomorphisms.
We show that all straight invariants can be expressed through a
“universal” straight invariant of homological nature.

1. Introduction

We define straight homotopy invariants of maps and give their charac-
terization, which reduces them to the classical homology theory.

The group L(X,Y ). For a set X, let ⟨X⟩ be the (free) abelian group with
the basis X♯ ⊆ ⟨X⟩ endowed with the bijection X → X♯, x 7→ <x>. For
sets X and Y , let L(X,Y ) ⊆ Hom(⟨X⟩, ⟨Y ⟩) be the subgroup generated by
the homomorphisms u such that u(X♯) ⊆ Y ♯∪{0}. (Elements of L(X,Y )
are the homomorphisms bounded with respect to the ℓ1-norm.) A map
a : X → Y induces the homomorphism ⟨a⟩ ∈ L(X,Y ), ⟨a⟩(<x>) = <a(x)>.

Straight homotopy invariants. Let X and Y be spaces. Let C(X,Y )
be the set of continuous maps X → Y and [X,Y ] be the set of their
homotopy classes. For a ∈ C(X,Y ), let [a] ∈ [X,Y ] be the homotopy
class of a. Let M be an abelian group, and f : [X,Y ] → M be a map
(a homotopy invariant). The invariant f is called straight if there exists
a homomorphism F : L(X,Y ) → M such that f([a]) = F (⟨a⟩) for all
a ∈ C(X,Y ).
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The main invariant h : [X,Y ] → [SX,SY ]. For a space X, let SX be
its singular chain complex. Let X and Y be spaces. Let [SX, SY ] be the
group of chain homotopy classes of morphisms SX → SY . There is a
(non-naturally) split exact natural sequence

0 −→
∏
i∈Z

Ext(Hi−1X,HiY ) −→ [SX, SY ] −→
∏
i∈Z

Hom(HiX,HiY ) −→ 0

(“the universal coefficient theorem”, cf. [12, Theorem 5.5.3]). For a ∈
C(X,Y ), let Sa : SX → SY be the induced morphism and [Sa] ∈ [SX,SY ]
be its chain homotopy class. The invariant h : [X,Y ] → [SX, SY ], [a] 7→
[Sa], is called main.

The main result.

Theorem 1.1. Let X be a space homotopy equivalent to a compact CW-
complex, Y be a space homotopy equivalent to a CW-complex, h : [X,Y ] →
[SX,SY ] be the main invariant, M be an abelian group, and f : [X,Y ] →
M be an invariant. The invariant f is straight if and only if there exists
a homomorphism d : [SX, SY ] → M such that f = d ◦ h.

Proof. The theorem follows from Propositions 7.3 and 12.2. �

The theorem says that the main invariant is a “universal” straight in-
variant. For divisible M , it was known in an equivalent form [7, Theo-
rem II]. In this case, the sufficiency (“if”) follows easily from an appro-
priate form of the Dold–Thom theorem (see § 7). Any abelian group is
a subgroup of a divisible one. Straightness, however, is sensitive to the
codomain of the invariant. The Brouwer degree b : [S3,RP 3] → Z takes
even values only. Thus we have the lift b′ : [S3,RP 3] → 2Z. It follows
from Theorem 1.1 that b is a straight invariant and b′ is not.

The hypotheses about the homotopy type of X and Y are essential,
see §§ 13, 14. In § 15, we consider K-straight invariants taking values
in modules over a commutative ring K (by definitions, straight = Z-
straight).

On the definition. If M is divisible, the group L(X,Y ) in the definition
of a straight invariant can be replaced by Hom(⟨X⟩, ⟨Y ⟩) because any
homomorphism L(X,Y ) → M extends to Hom(⟨X⟩, ⟨Y ⟩) in this case.
In general, this replacement is inadequate. For example, let X = Y =
S1. Then the Brouwer degree b : [X,Y ] → Z is a straight invariant by
Theorem 1.1 (or Corollary 6.8). At the same time, every homomorphism
F : Hom(⟨X⟩, ⟨Y ⟩) → Z factors through the restriction homomorphism
Hom(⟨X⟩, ⟨Y ⟩) → Hom(⟨T ⟩, ⟨Y ⟩) for some finite set T ⊆ X [2, § 94].
Thus F cannot give rise to a non-constant homotopy invariant.
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The task done in this paper was to choose the domain of F in the
definition of a straight invariant in such a way that we could find a simple
homological characterization for arbitrary M .

Related notions. The notion of straight invariant can be generalized as
follows. Declare an invariant f : [X,Y ] → M to have degree at most r
if there exists a homomorphism F : L(Xr, Y r) → M such that f([a]) =
F (⟨ar⟩) for all a ∈ C(X,Y ). Here ar : Xr → Y r is the rth Cartesian
power of a. Clearly, invariants of degree at most 1 are precisely straight
ones. Similar (and equivalent for M divisible) notions were considered in
[10, 8, 9, 11]. Finite-degree invariants distinguish non-homotopic maps
under certain conditions [11].

Instead of homotopy invariants of continuous maps, one can consider
isotopy invariants of smooth embeddings of one fixed smooth manifold in
another. Their degree can be defined in the same way. At least for divis-
ible M , finite-degree invariants Emb(S1,R3) → M are precisely Vassiliev
knot invariants [8, 13].

We do not study finite-degree invariants in this paper.

2. Notation

The question mark. The expression [?] denotes the map a 7→ [a] be-
tween sets indicated in the context. We similarly use ⟨?⟩, etc. This
notation is also used for functors.

Sets and abelian groups. For a set X, let cX : X → ⟨X⟩ be the canon-
ical map x 7→ <x>. For v ∈ ⟨X⟩ and x ∈ X, let v/x ∈ Z be the coefficient
of <x> in v. For an abelian group G, a map a : X → G gives rise to the
homomorphism a+ : ⟨X⟩ → G, <x> 7→ a(x). GX is the group of maps
X → G.

Simplicial sets. For simplicial sets U and V , let Si(U, V ) be the set
of simplicial maps and [U, V ] be the set of their homotopy classes (two
simplicial maps are homotopic if they are connected by a sequence of
homotopies). The functor ⟨?⟩ takes simplicial sets to simplicial abelian
groups degreewise. There is the canonical simplicial map cU : U → ⟨U⟩.
For a simplicial abelian group Z, a simplicial map s : U → Z gives rise
to the simplicial homomorphism s+ : ⟨U⟩ → Z. For a simplicial set T ,
a simplicial map s : U → V induces the maps sT# : Si(T,U) → Si(T, V ),
s#T : Si(V, T ) → Si(U, T ), sT∗ : [T,U ] → [T, V ], and s∗T : [V, T ] → [U, T ].
This notation is also used in the topological case.
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3. Induced straight invariants

Lemma 3.1. Let X, X̃, Ỹ , and Y be spaces, r : X → X̃ and s : Ỹ → Y be
continuous maps, M be an abelian group and f : [X,Y ] → M be a straight
invariant. Then the invariant f̃ : [X̃, Ỹ ] → M , f̃([ã]) = f([s ◦ ã ◦ r]),
ã ∈ C(X̃, Ỹ ), is straight.

Proof. There is a homomorphism F : L(X,Y ) → M such that f([a]) =
F (⟨a⟩), a ∈ C(X,Y ). We have the commutative diagram

C(X̃, Ỹ )
⟨?⟩ //

K

%%KK
KKK

KKK
KK

[?]

��

L(X̃, Ỹ )

T

��
F̃

��

C(X,Y )
⟨?⟩ //

[?]

��

L(X,Y )

F

��
[X̃, Ỹ ]

k //

f̃

44[X,Y ]
f // M,

where the maps K and k and the homomorphism T are induced by the
pair (r, s) (that is, K(ã) = s◦ ã◦r, k([ã]) = [s◦ ã◦r], T (ũ) = ⟨s⟩◦ ũ◦⟨r⟩),
and F̃ = F ◦ T . Thus f̃ is straight. �

4. The main invariant h : [|U |, |V |] → [S|U |, S|V |]

The geometric realization |Z| of a simplicial abelian group Z has the
structure of an abelian group. |Z| is a topological abelian group if Z is
countable; in general, it is a group of the category of compactly generated
Hausdorff spaces. For a simplicial set T , C(|T |, |Z|) and [|T |, |Z|] are
abelian groups with respect to pointwise addition. Clearly, Si(T,Z) and
[T,Z] are also abelian groups.

Lemma 4.1. Let U and V be simplicial sets. Then there exists a com-
mutative diagram

[U, V ]
(cV )U∗ //

i

��

[U, ⟨V ⟩]

j

��

e
wwooo

ooo
ooo

oo

[S|U |, S|V |]
E

''OO
OOO

OOO
OOO

[|U |, |V |]
|cV ||U|

∗ //

h

88ppppppppppp
[|U |, |⟨V ⟩|],
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where i : [s] 7→ [|s|] (the map induced by the geometric realization map), j
is similar, h is the main invariant, and e, E are some isomorphisms.

This is a version of the Dold–Thom theorem [3, § 4.K].

Proof. Let △ be the singularization functor. For a simplicial set T , let
kT : T → △|T | be the canonical weak equivalence. If T is a simplicial
abelian group, kT is a simplicial homomorphism. We have the commuta-
tive diagram

V
cV //

kV

��

⟨V ⟩

k⟨V ⟩

��

⟨kV ⟩yyttt
ttt

ttt
t

⟨△|V |⟩
m

%%JJ
JJ

JJ
JJ

J

△|V |
△|cV | //

c△|V |
::vvvvvvvvv

△|⟨V ⟩|,

where m = (△|cV |)+. k⟨V ⟩, ⟨kV ⟩, and thus m are weak equivalences.
Consider the commutative diagram

[U, V ]
(cV )U∗ //

(kV )U∗

��
i

��

[U, ⟨V ⟩]

(k⟨V ⟩)
U
∗

��
j

��

⟨kV ⟩U∗wwppp
ppp

ppp
pp

[U, ⟨△|V |⟩]
mU

∗

''NN
NNN

NNN
NNN

[U,△|V |]
(△|cV |)U∗ //

(c△|V |)
U
∗

88qqqqqqqqqqq
[U,△|⟨V ⟩|]

[|U |, |V |]
|cV ||U|

∗ //

p

OO

[|U |, |⟨V ⟩|],

q

OO

where the upper part is the result of applying the functor [U, ?] to the
previous diagram and p and q are the standard adjunction bijections for
the functors |?| and △. ⟨kV ⟩U∗ , mU

∗ , and q are isomorphisms.
We will find an isomorphism P : [S|U |, S|V |] → [U, ⟨△|V |⟩] such that

P ◦ h = (c△|V |)
U
∗ ◦ p. Then it will be enough to set e = P−1 ◦ ⟨kV ⟩U∗ and

E = q−1 ◦mU
∗ ◦ P .
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For a simplicial set T , let AT be its chain complex, so that (AT )n =
⟨Tn⟩ for n > 0, (AT )n = 0 for n < 0, and, for n > 1, the differential
∂ : (AT )n → (AT )n−1 is given by

∂ =
n∑

r=0

(−1)r⟨dr⟩,

where dr : Tn → Tn−1 are the face maps. Then SX = A△X for any space
X. A simplicial map s : T → ⟨W ⟩ gives rise to the morphism v : AT →
AW , vn = s+n , n > 0. This rule yields an isomorphism D : [T, ⟨W ⟩] →
[AT,AW ] (the Dold–Kan correspondence). We set T = △|U | and W =
△|V |. Consider the commutative diagram

[|U |, |V |] b //

p

**

h

��

[△|U |,△|V |]
(kU )∗△|V | //

(c△|V |)
△|U|
∗

��

[U,△|V |]

(c△|V |)
U
∗

��
[A△|U |, A△|V |]

P

22[△|U |, ⟨△|V |⟩]Doo
(kU )∗⟨△|V |⟩ // [U, ⟨△|V |⟩],

where the map b is given by the functor △ and P = (kU )
∗
⟨△|V |⟩ ◦ D−1.

Since (kU )
∗
⟨△|V |⟩ is an isomorphism, P is an isomorphism too. �

5. Nöbeling–Bergman theory

By a ring we mean a (non-unital) commutative ring; subring is under-
stood accordingly. The following facts follow from [5, Theorem 2 and its
proof], cf. [2, § 97].

Lemma 5.1. Let E be a torsion-free ring generated by idempotents. Then
E is a free abelian group. �

An example: the ring B(X) of bounded functions X → Z, where X is
an arbitrary set.

Lemma 5.2. Let E be a torsion-free ring and F ⊆ E be a subring, both
generated by idempotents. Then the abelian group E/F is free. �

For F = 0, this is Lemma 5.1.

6. Maps to a space with addition

Let X be a space and T be a Hausdorff space.
For a set V ⊆ T , we introduce the homomorphism sV : L(X,T ) →

ZX , sV (u)(x) = I+V (u(<x>)), x ∈ X, where IV : T → Z is the indicator
function of the set V .
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The subgroup R ⊆ L(X,T ). For p ∈ X, q ∈ T , let R(p, q) ⊆ L(X,T )
be the subgroup of homomorphisms u such that, for any sufficiently small
(open) neighbourhood V of q, the function sV (u) is constant in some
neighbourhood of p. Let R ⊆ L(X,T ) be the intersection of the subgroups
R(p, q), p ∈ X, q ∈ T .

Lemma 6.1. For a ∈ C(X,T ), we have ⟨a⟩ ∈ R.

Proof. Take p ∈ X, q ∈ T . We show that ⟨a⟩ ∈ R(p, q). If a(p) = q, then,
for any neighbourhood V of q, we take the neighbourhood U = a−1(V )
of p and get sV (⟨a⟩)|U = 1. Otherwise, choose disjoint neighbourhoods
W of q and W1 of a(p). Consider the neighbourhood U = a−1(W1) of p.
For any V ⊆ W , we have sV (⟨a⟩)|U = 0. �

Lemma 6.2. The abelian group L(X,T )/R is free.

Proof. Let OT be the set of open sets in T . Consider the ring E =
B(X × X × OT ). For p ∈ X, q ∈ T , let I(p, q) ⊆ E be the ideal of
functions f such that, for any sufficiently small neighbourhood V of q, the
function X → Z, x 7→ f(p, x, V ), vanishes in some neighbourhood of p.
Let I ⊆ E be the intersection of the ideals I(p, q), p ∈ X, q ∈ T . The ring
E/I is torsion-free and generated by idempotents. By Lemma 5.1, E/I
is a free abelian group. Consider the homomorphism k : L(X,T ) → E,
k(u)(p, x, V ) = sV (u)(x)− sV (u)(p), p, x ∈ X, V ∈ OT , u ∈ L(X,T ). We
have k−1(I(p, q)) = R(p, q) and thus k−1(I) = R. Therefore, k induces
a monomorphism L(X,T )/R → E/I. It follows that the abelian group
L(X,T )/R is free. �

The set Q and the homomorphisms e(D, a). Let Q be the set of pairs
(D, a), where D ⊆ X is a closed set and a ∈ C(D,T ). For (D, a) ∈ Q,
introduce the homomorphism e(D, a) ∈ L(X,T ),

e(D, a)(<x>) =

{
<a(x)> if x ∈ D,
0 otherwise,

x ∈ X.

Lemma 6.3. Let (D, a) ∈ Q, p ∈ X, and q ∈ T . If e(D, a) /∈ R(p, q),
then p ∈ D and a(p) = q.

Proof. Put u = e(D, a). The case p /∈ D. Consider the neighbourhood
U = X \D of p. We have sV (u)|U = 0 for any V ⊆ T . Thus u ∈ R(p, q).
The case p ∈ D, a(p) ̸= q. Choose disjoint neighbourhoods W of q and
W1 of a(p). There is a neighbourhood U of p such that a(D ∩ U) ⊆ W1.
We have sV (u)|U = 0 for any V ⊆ W . Thus u ∈ R(p, q). �



48 SEMËN PODKORYTOV

The subgroup K ⊆ L(X,T ). Let K ⊆ L(X,T ) be the subgroup gener-
ated by e(D, a), (D, a) ∈ Q.

Lemma 6.4. The abelian group L(X,T )/K is free.

Proof. Consider the monomorphism j : L(X,T ) → B(X×T ), j(u)(x, t) =
u(<x>)/t. For (Di, ai) ∈ Q, i = 1, 2, we have j(e(D1, a1))j(e(D2, a2)) =
j(e(D, a)), where D = {x ∈ D1 ∩ D2 : a1(x) = a2(x)} and a = a1|D =
a2|D. In particular, j(e(D, a)), (D, a) ∈ Q, are idempotents. There-
fore, j(K) is a subring generated by idempotents. By Lemma 5.2, the
abelian group B(X × T )/j(K) is free. Since j induces a monomorphism
L(X,T )/K → B(X ×T )/j(K), the abelian group L(X,T )/K is free. �

Lemma 6.5. The abelian group L(X,T )/(K ∩R) is free.

Proof. The quotients in the chain L(X,T ) ⊇ K ⊇ K ∩ R are free:
L(X,T )/K by Lemma 6.4, and K/(K ∩R) as a subgroup of L(X,T )/R,
which is free by Lemma 6.2. �

The homomorphism G : L(X,T ) → TX . Let T have the structure of
an abelian group such that, (∗) for any closed set D ⊆ X, the set C(D,T )
becomes an abelian group with respect to pointwise addition1. TX de-
notes the abelian group of all maps X → T . Consider the homomorphism
G : L(X,T ) → TX , G(u)(x) = r(u(<x>)), x ∈ X, u ∈ L(X,T ), where
r = id+ : ⟨T ⟩ → T .

Lemma 6.6. G(K ∩R) ⊆ C(X,T ).

Proof. Take u ∈ K ∩R. We show that G(u) ∈ C(X,T ). Since u ∈ K, we
have

u =
∑
i∈I

ui, ui = kie(Di, ai),

where I is a finite set, ki ∈ Z, and (Di, ai) ∈ Q. For J ⊆ I, put

uJ =
∑
i∈J

ui, DJ =
∩
i∈J

Di ⊆ X

(so D∅ = X) and

bJ =
∑
i∈J

kiai|DJ ∈ C(DJ , T ), kJ =
∑
i∈J

ki.

1The condition (∗) is satisfied if T is a topological abelian group or if X = |U | and
T = |Z|, where U is a simplicial set and Z is a simplicial abelian group.
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Take p ∈ X. We verify that G(u) is continuous at p. Put N = {i ∈ I :
p /∈ Di}. For q ∈ T , put I(q) = {i ∈ I : p ∈ Di, ai(p) = q}. We have

u = uN +
∑
q∈T

uI(q)

(almost all summands are zero). Clearly, G(uN ) vanishes in some neigh-
bourhood of p. Take q ∈ T . It suffices to show that G(uI(q)) is continuous
at p. Put t0 = G(uI(q)) ∈ T . We have t0 = kI(q)q. Let W be a neighbour-
hood of t0. We seek a neighbourhood U of p such that G(uI(q))(U) ⊆ W .

Put E = {J ⊆ I(q) : kJ = kI(q)}. For J ∈ E, we have p ∈ DJ and
bJ(p) = t0. There is a neighbourhood U1 of p such that bJ (DJ ∩U1) ⊆ W
for all J ∈ E.

By Lemma 6.3, ui ∈ R(p, q) for i ∈ I \ I(q). Since u ∈ R(p, q), we have
uI(q) ∈ R(p, q). Therefore, there is a neighbourhood V ⊆ T of q such that
the function sV (uI(q)) is constant in some neighbourhood U2 of p.

There is a neighbourhood U3 of p such that ai(Di ∩ U3) ⊆ V for all
i ∈ I(q). For x ∈ X, put J(x) = {i ∈ I(q) : x ∈ Di}. For x ∈ U2 ∩U3, we
have kJ(x) = sV (uI(q))(x) = sV (uI(q))(p) = kI(q), i. e. J(x) ∈ E.

Set U = U1∩U2∩U3. Take x ∈ U . We have G(uI(q))(x) = bJ(x)(x) ∈ W
because J(x) ∈ E. �
Lemma 6.7. There exists a homomorphism g : L(X,T ) → C(X,T ) such
that g(⟨a⟩) = a for all a ∈ C(X,T ).
Proof. We have G(⟨a⟩) = a for all a ∈ TX . Since G(K ∩ R) ⊆ C(X,T )
(by Lemma 6.6) and the abelian group L(X,T )/(K ∩ R) is free (by
Lemma 6.5), there is a homomorphism g : L(X,T ) → C(X,T ) such that
g(u) = G(u) for u ∈ K ∩ R. For a ∈ C(X,T ), we have ⟨a⟩ ∈ K (because
⟨a⟩ = e(X, a)) and ⟨a⟩ ∈ R (by Lemma 6.1). We get g(⟨a⟩) = G(⟨a⟩) =
a. �
Corollary 6.8. Suppose that (∗) [X,T ] is an abelian group with respect to
pointwise addition2. Then the invariant id : [X,T ] → [X,T ] is straight.
Proof. By Lemma 6.7, there is a homomorphism g : L(X,T ) → C(X,T )
such that g(⟨a⟩) = a for all a ∈ C(X,T ). Consider the homomorphism
F : L(X,T ) → [X,T ], u 7→ [g(u)]. For a ∈ C(X,T ), we have [a] =
[g(⟨a⟩)] = F (⟨a⟩). �

7. Sufficiency in Theorem 1.1

The proof of sufficiency in Theorem 1.1 relies on Corollary 6.8. If the
group M is divisible, it is easy to use Lemma 7.1 instead (then the stuff
of §§ 5, 6 is needless).

2See footnote 1.
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Lemma 7.1 (cf. [10, Lemma 1.2]). Let X and T be spaces, where T has
the structure of an abelian group such that (∗) the sets C(X,T ) and [X,T ]
become abelian groups with respect to pointwise addition3. Let M be a
divisible abelian group and f : [X,T ] → M be a homomorphism. Then f
is a straight invariant.

Proof. Consider the homomorphism G : L(X,T ) → TX , G(u)(x) =
r(u(<x>)), x ∈ X, u ∈ L(X,T ), where r = id+ : ⟨T ⟩ → T . Let D ⊆
L(X,T ) be the subgroup generated by the homomorphisms ⟨a⟩, a ∈
C(X,T ). Clearly, G(⟨a⟩) = a for a ∈ C(X,T ). Therefore, G(D) ⊆
C(X,T ). Consider the homomorphism F0 : D → M , u 7→ f([G(u)]).
Since M is divisible, there is a homomorphism F : L(X,T ) → M such that
F |D = F0. For a ∈ C(X,T ), we have f([a]) = f([G(⟨a⟩)]) = F0(⟨a⟩) =
F (⟨a⟩). �

Claim 7.2. Let U and V be simplicial sets. Then the main invariant
h : [|U |, |V |] → [S|U |, S|V |] is straight.

Proof. Consider the commutative diagram

[|U |, |V |] h //

|cV ||U|
∗ &&NN

NNN
NNN

NNN
[S|U |, S|V |]

E

��
[|U |, |⟨V ⟩|],

where E is the isomorphism from Lemma 4.1. By Corollary 6.8, the in-
variant id : [|U |, |⟨V ⟩|] → [|U |, |⟨V ⟩|] is straight. Therefore, by Lemma 3.1,
the invariant |cV ||U |

∗ is straight. Since E is an isomorphism, h is also
straight. �

Proposition 7.3. Let X be a space and Y be a space homotopy equivalent
to a CW-complex. Then the main invariant h : [X,Y ] → [SX, SY ] is
straight.

Proof. There are homology equivalences r : |U | → X and s : Y → |V |,
where U and V are simplicial sets. Consider the commutative diagram

[X,Y ]
h //

k

��

[SX, SY ]

l

��
[|U |, |V |] h̃ // [S|U |, S|V |],

3See footnote 1.
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where h̃ is the main invariant and the map k as well as the isomorphism l
are induced by the pair (r, s). By Claim 7.2, h̃ is straight. By Lemma 3.1,
the invariant h̃ ◦ k is straight. Since h = l−1 ◦ h̃ ◦ k, h is also straight. �

8. The superposition Z : ⟨Si(U, V )⟩0 → Si(U, ⟨V ⟩0)

For a set X, let ⟨X⟩0 ⊆ ⟨X⟩ be the kernel of the homomorphism ⟨X⟩ →
Z, <x> 7→ 1. We apply the functor ⟨?⟩0 to simplicial sets degreewise.

Let U and V be simplicial sets. The canonical simplicial map c =
cV : V → ⟨V ⟩ gives rise to the map cU# : Si(U, V ) → Si(U, ⟨V ⟩) and the
homomorphism (cU#)

+ : ⟨Si(U, V )⟩ → Si(U, ⟨V ⟩). We have the commuta-
tive diagram

⟨Si(U, V )⟩0
Z //

��

Si(U, ⟨V ⟩0)

��
⟨Si(U, V )⟩

(cU#)+

// Si(U, ⟨V ⟩),

where the vertical arrows are induced by the canonical inclusion ⟨?⟩0 →
⟨?⟩ and Z is a new homomorphism called the superposition.

9. Surjectivity of the superposition

Our aim here is Lemma 9.1. We follow [10, §§ 12, 13].

Extension of simplicial maps. For n > 0, let ∆n be the combinatorial
standard n-simplex (a simplicial set) and ∂∆n be its boundary.

Let W be a contractible fibrant simplicial set. For each n > 0, choose
a map en : Si(∂∆n,W ) → Si(∆n,W ) such that en(q)|∂∆n = q for any
q ∈ Si(∂∆n,W ).

Let U be a simplicial set. For each simplicial subset A ⊆ U , we in-
troduce the map EA : Si(A,W ) → Si(U,W ), x 7→ t, where t|A = x and
t ◦ p = en(t ◦ p|∂∆n) for the characteristic map p : ∆n → U of each non-
degenerate simplex outside A. Clearly,

(1) EA(x)|A = x;
(2) EA(x)|B = EA∩B(x|A∩B)|B ,

where A,B ⊆ U are simplicial subsets and x ∈ Si(A,W ).

The ring ⟨Q⟩ and its identity I. Let Q be the system of simplicial
subsets of U consisting of all subsets isomorphic to ∆n, n > 0, and the
empty subset. Suppose that the simplicial set U is polyhedral, i. e. Q is
its cover closed under intersection, and compact, i. e. generated by a finite
number of simplices. Q is finite.
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We introduce multiplication in ⟨Q⟩ by putting <A><B> = <A∩B> for
A,B ∈ Q. The ring ⟨Q⟩ has an identity I. Indeed, the homomorphism
e : ⟨Q⟩ → ZQ,

e(<A>)(B) =

{
1 if A ⊇ B,
0 otherwise,

A,B ∈ Q, is an isomorphism (“an upper unitriangular matrix”) preserving
multiplication. Therefore, I = e−1(1) is an identity.

The homomorphism K : Si(U, ⟨W ⟩0) → ⟨Si(U,W )⟩0. For a simplicial
set T , let ZT : ⟨Si(T,W )⟩0 → Si(T, ⟨W ⟩0) be the superposition. For sim-
plicial sets T ⊇ A, let rTA : Si(T,W ) → Si(A,W ) and sTA : Si(T, ⟨W ⟩0) →
Si(A, ⟨W ⟩0) be the restriction maps. sTA is a homomorphism. If T = U ,
we omit the corresponding sub/superscript in this notation.

Note that ZA is an isomorphism for A ∈ Q. Consider the map k : Q →
Hom(Si(U, ⟨W ⟩0), ⟨Si(U,W )⟩0), A 7→ ⟨EA⟩0 ◦ Z−1

A ◦ sA:

k(A) : Si(U, ⟨W ⟩0)
sA−−→ Si(A, ⟨W ⟩0)

Z−1
A−−−→ ⟨Si(A,W )⟩0

⟨EA⟩0−−−−→ ⟨Si(U,W )⟩0.
Put K = k+(I).
Lemma 9.1. The diagram

⟨Si(U,W )⟩0

Z

��
Si(U, ⟨W ⟩0)

id //

K

77ooooooooooo
Si(U, ⟨W ⟩0)

is commutative.
Proof. Take A,B ∈ Q. We have the commutative diagram

Si(A, ⟨W ⟩0)
Z−1

A //

sAC

��

⟨Si(A,W )⟩0
⟨EA⟩0 //

⟨rAC⟩0

��

⟨Si(U,W )⟩0

⟨rB⟩0
��

Si(U, ⟨W ⟩0)

sA

77ooooooooooo

sC ''OO
OOO

OOO
OOO

⟨Si(B,W )⟩0

Si(C, ⟨W ⟩0)
Z−1

C // ⟨Si(C,W )⟩0
⟨EC⟩0 // ⟨Si(U,W )⟩0,

⟨rB⟩0

OO

where C = A ∩ B (commutativity of the “pentagon” follows from the
property (2) of the family E). Therefore, ⟨rB⟩0 ◦k(A) = ⟨rB⟩0 ◦k(A∩B).
Therefore, ⟨rB⟩0 ◦ k+(X) = ⟨rB⟩0 ◦ k+(X<B>) for X ∈ ⟨Q⟩. We have
⟨rB⟩0 ◦ K = ⟨rB⟩0 ◦ k+(I) = ⟨rB⟩0 ◦ k+(I<B>) = ⟨rB⟩0 ◦ k+(<B>) =
⟨rB⟩0 ◦k(B) = ⟨rB⟩0 ◦ ⟨EB⟩0 ◦Z−1

B ◦sB = Z−1
B ◦sB , because rB ◦EB = id

by property (1) of the family E. We get sB ◦Z ◦K = ZB ◦⟨rB⟩0 ◦K = sB .
Since B is arbitrary, Z ◦K = id. �
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10. A cocartesian square

Let U be a compact polyhedral simplicial set and V be a fibrant sim-
plicial set. The canonical simplicial map c = cV : V → ⟨V ⟩ induces the
maps cU# : Si(U, V ) → Si(U, ⟨V ⟩) and cU∗ : [U, V ] → [U, ⟨V ⟩]. Consider the
commutative square of abelian groups and homomorphisms

⟨Si(U, V )⟩
(cU#)+

//

⟨p⟩
��

Si(U, ⟨V ⟩)

q

��
⟨[U, V ]⟩

(cU∗ )+ // [U, ⟨V ⟩],

where p = [?] : Si(U, V ) → [U, V ] and q = [?] (the projections).

Lemma 10.1. This square is cocartesian.

Proof. Since ⟨p⟩ and q are epimorphisms, it suffices to show that Ker q =
(cU#)

+(Ker⟨p⟩).
Suppose we have a decomposition

V =
⨿
i∈I

Vi.

Consider the commutative diagram

⊕
i∈I⟨Si(U, Vi)⟩

⊕
i∈I((ci)

U
#)+

//

⊕
i∈I⟨pi⟩

��

''PP
PPP

PPP
PPP

⊕
i∈I Si(U, ⟨Vi⟩)

⊕
i∈I qi

��

Evvnnn
nnn

nnn
nnn

⟨Si(U, V )⟩
(cU#)+

//

⟨p⟩
��

Si(U, ⟨V ⟩)

q

��
⟨[U, V ]⟩

(cU∗ )+ // [U, ⟨V ⟩]

⊕
i∈I⟨[U, Vi]⟩

⊕
i∈I((ci)

U
∗ )+

//

77nnnnnnnnnnnn ⊕
i∈I [U, ⟨Vi⟩],

e

hhPPPPPPPPPPPP

where ci, pi, and qi are similar to c, p, and q (respectively) and the
slanting arrows are induced by the inclusions Vi → V . Since U is compact,
E and e are isomorphisms. Therefore, is suffices to show that Ker qi =
((ci)

U
#)

+(Ker⟨pi⟩) for each i ∈ I. This reduction allows us to assume that
V is 0-connected.
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Consider the commutative diagram

⟨Si(U, V )⟩0
Z //

⟨p⟩0

��

I ''NN
NNN

NNN
NNN

Si(U, ⟨V ⟩0)

q0

��

jU#wwppp
ppp

ppp
pp

⟨Si(U, V )⟩
(cU#)+

//

⟨p⟩
��

Si(U, ⟨V ⟩)

q

��
⟨[U, V ]⟩

(cU∗ )+ // [U, ⟨V ⟩]

⟨[U, V ]⟩0
z //

i

77ppppppppppp
[U, ⟨V ⟩0],

jU∗

ggNNNNNNNNNNN

where q0 = [?] (the projection), Z is the superposition, z is the homo-
morphism such that the outer square is commutative, I and i are the
inclusion homomorphisms, and j : ⟨V ⟩0 → ⟨V ⟩ is the inclusion simplicial
homomorphism. Clearly, Ker q = jU#(Ker q0). Therefore, it suffices to
show that Ker q0 = Z(Ker⟨p⟩0).

Since V is fibrant and 0-connected, there is a surjective simplicial map
f : W → V , where W is a contractible fibrant simplicial set. Consider the
commutative diagram

⟨Si(U,W )⟩0
Z̃ //

⟨fU
# ⟩0

��

Si(U, ⟨W ⟩0)

(⟨f⟩0)U#
��

⟨Si(U, V )⟩0
Z //

⟨p⟩0
��

Si(U, ⟨V ⟩0)

q0

��
⟨[U, V ]⟩0

z // [U, ⟨V ⟩0],

where the map fU
# : Si(U,W ) → Si(U, V ) and the simplicial homomor-

phism ⟨f⟩0 : ⟨W ⟩0 → ⟨V ⟩0 are induced by f and Z̃ is the superposition.
Since ⟨f⟩0 is surjective, it is a fibration. Therefore, Ker q0 ⊆ Im(⟨f⟩0)U#.
By Lemma 9.1, Z̃ is surjective. Since W is contractible, Im⟨fU

# ⟩0 ⊆
Ker⟨p⟩0. Therefore, Ker q0 ⊆ Z(Ker⟨p⟩0). The reverse inclusion is obvi-
ous. �

11. The homomorphism P : Si(U, ⟨V ⟩) → L(|U |, |V |)

For n > 0, let ∆∆∆n be the geometric standard n-simplex and ∆̊∆∆n be its
interior. For a simplicial set U and a point z ∈ ∆∆∆n, there is a canonical
map zU : Un → |U |. The map ∆∆∆n × Un → |U |, (z, u) 7→ zU (u), is the
canonical pairing of geometric realization.
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Let U and V be simplicial sets. We define a homomorphism P̃ :
Si(U, ⟨V ⟩) → Hom(⟨|U |⟩, ⟨|V |⟩). For t ∈ Si(U, ⟨V ⟩) and x ∈ |U |, x =

zU (u), where z ∈∆∆∆n and u ∈ Un (n > 0), put P̃ (t)(<x>) = ⟨zV ⟩(tn(u)):

u ∈ Un
tn−→ ⟨V ⟩n = ⟨Vn⟩

⟨zV ⟩−−−→ ⟨|V |⟩.

P̃ is well-defined.
Suppose that U is compact.

Lemma 11.1. Im P̃ ⊆ L(|U |, |V |).

Proof. Let U×
n ⊆ Un (n > 0) be the set of non-degenerate simplices. For

u ∈ U×
n (n > 0), we define a homomorphism Iu : ⟨Vn⟩ → L(|U |, |V |). For

v ∈ Vn, x ∈ |U |, put

Iu(<v>)(<x>) =

{
<zV (v)> if x = zU (u) for z ∈ ∆̊∆∆n,
0 otherwise.

This equality is preserved if we replace <v> by w ∈ ⟨Vn⟩ and <zV (v)> by
⟨zV ⟩(w). It suffices to show that

P̃ (t) =
∑

n>0, u∈U×
n

Iu(tn(u)), t ∈ Si(U, ⟨V ⟩).

Evaluating each side at <x>, x = zU (u), where z ∈ ∆̊∆∆n and u ∈ U×
n

(n > 0), we get ⟨zV ⟩(tn(u)). �

Lemma 11.1 allows us to introduce the homomorphism P : Si(U, ⟨V ⟩) →
L(|U |, [V |), P (t) = P̃ (t).

Lemma 11.2. The diagram

Si(U, V )
cU# //

|?|
��

Si(U, ⟨V ⟩)

P

��
C(|U |, |V |)

⟨?⟩ // L(|U |, |V |),

where c = cV : V → ⟨V ⟩ is the canonical simplicial map, is commutative.

Proof. For s ∈ Si(U, V ) and x ∈ |U |, x = zU (u), where z ∈∆∆∆n and u ∈ Un

(n > 0), we have (P ◦ cU#)(s)(<x>) = P (c ◦ s)(<x>) = ⟨zV ⟩((c ◦ s)n(u)) =
<zV (sn(u))> = <|s|(zU (u))> = <|s|(x)> = ⟨|s|⟩(<x>). �
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12. Necessity in Theorem 1.1

Claim 12.1. Let U be a compact polyhedral simplicial set, V be a fibrant
simplicial set, h : [|U |, |V |] → [S|U |, S|V |] be the main invariant, M be an
abelian group, and f : [|U |, |V |] → M be a straight invariant. Then there
exists a homomorphism d : [S|U |, S|V |] → M such that f = d ◦ h.

Proof. Since f is straight, there is a homomorphism F : L(|U |, |V |) → M
such that f([a]) = F (⟨a⟩) for a ∈ C(|U |, |V |). Consider the diagram of
abelian groups and homomorphisms

⟨C(|U |, |V |)⟩ k+
//

⟨r⟩

��

L(|U |, |V |)

F

��

⟨Si(U, V )⟩
(cU#)+

//

⟨p⟩
��

⟨I⟩

ggOOOOOOOOOOO
Si(U, ⟨V ⟩)

q

��

P

88ppppppppppp

⟨[U, V ]⟩
(cU∗ )+ //

⟨i⟩

wwooo
ooo

ooo
oo

[U, ⟨V ⟩]
d̃

&&N
NNNNN

⟨[|U |, |V |]⟩
f+

// M.

Here the inner square is as in § 10, r = [?] : C(|U |, |V |) → [|U |, |V |]
(the projection), k = ⟨?⟩ : C(|U |, |V |) → L(|U |, |V |), I = |?| : Si(U, V ) →
C(|U |, |V |) (the geometric realization map), i : [U, V ] → [|U |, |V |], [s] 7→
[|s|], and P is as in § 11. By Lemma 11.2, the upper trapezium is commu-
tative. The solid arrows are defined and form a commutative subdiagram.
Since the inner square is cocartesian by Lemma 10.1, the dashed arrow d̃
is well-defined by the condition of commutativity of the diagram.

Consider the diagram

⟨[U, V ]⟩
(cU∗ )+ //

⟨i⟩

��

[U, ⟨V ⟩]

e

��

d̃

yysss
sss

sss
s

M

⟨[|U |, |V |]⟩ h+
//

f+
::ttttttttt

[S|U |, S|V |],

d

eeKKKKKKKKKK

where e is the isomorphism from Lemma 4.1 and d = d̃ ◦ e−1. The square
is commutative by Lemma 4.1. We have d̃ ◦ (cU∗ )

+ = f+ ◦ ⟨i⟩. Since
V is fibrant, i is a bijection, and thus ⟨i⟩ is an isomorphism. We get
f+ = d ◦ h+ (so the diagram is commutative). Therefore, f = d ◦ h. �
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Proposition 12.2. Let X be space homotopy equivalent to a compact
CW-complex, Y be a space, h : [X,Y ] → [SX, SY ] be the main invariant,
M be an abelian group, and f : [X,Y ] → M be a straight invariant. Then
there exists a homomorphism d : [SX,SY ] → M such that f = d ◦ h.

Proof. There are a homotopy equivalence r : X → |U | and a weak homo-
topy equivalence s : |V | → Y , where U is a compact polyhedral simplicial
set and V is a fibrant simplicial set. We construct the commutative dia-
gram

[|U |, |V |] h̃ //

k

��

f̃ $$H
HH

HH
HH

HH
[S|U |, S|V |]

l

��

d̃yysss
sss

sss
s

M

[X,Y ]
h //

f
::vvvvvvvvv

[SX,SY ].

d

eeKKKKKKKKKK

Here the bijection k and the isomorphism l are induced by the pair (r, s)

and h̃ is the main invariant. The square is commutative. By Lemma 3.1,
the invariant f̃ = f ◦ k is straight. By Claim 12.1, there is a homomor-
phism d̃ such that f̃ = d̃ ◦ h̃. Set d = d̃ ◦ l−1. Since k is a bijection, we
get f = d ◦ h (so the diagram is commutative). �

13. Three counterexamples

The Hawaiian ear-ring. Let us show that the hypothesis about the
homotopy type of Y in Theorem 1.1 and Proposition 7.3 is essential. Let
X be the one-point compactification of the ray R+ = (0,∞) (a circle) and
Y be that of the space R+ \N (the Hawaiian ear-ring [3, Example 1.25]).
We define a map m ∈ C(X,Y ) by putting

m(x) =

[
x+ 1

2

]
+ (−1)[x/2]{−x}

for x ∈ R+ \ N. Here [t] and {t} are the integral and the fractional
(respectively) parts of a number t ∈ R. The element of π1(Y,∞) repre-
sented by the loop m is the (reasonably understood) infinite product of
commutators

(∗)
∞∏
p=0

[u2p, u2p+1],

where uq is the element realized by the closure of the interval
(q, q + 1). Let e ∈ H1(X) be the standard generator. As in [4, p. 76],
we get that the element m∗(e) ∈ H1(Y ) has infinite order.
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Therefore, there is a homomorphism k : H1(Y ) → Q such that k(m∗(e)) =
1. We define a homomorphism d : [SX, SY ] → Q by putting d([v]) =
k(v∗(e)) for a morphism v : SX → SY . Let h : [X,Y ] → [SX, SY ] be the
main invariant. We show that the invariants d ◦ h and thus h are not
straight.

For y ∈ Y and i = 0, 1, put y(i) ∈ Y equal to ∞ if i = 1 and to y
otherwise. For i, j = 0, 1, we define a map rij ∈ C(Y, Y ). For y ∈ R+ \N,
we put rij(y) equal to y(j) if [y] is odd and to y(i) otherwise. For elements
zij , i, j = 0, 1, of an abelian group, put ∨ijzij = z00 − z10 − z01 + z11.
Clearly, ∨ij⟨rij⟩ = 0 in L(Y, Y ). Put aij = rij ◦ m ∈ C(X,Y ). We
get ∨ij⟨aij⟩ = 0 in L(X,Y ). Therefore, ∨ijf([aij ]) = 0 for any straight
invariant f . We show that this is false for the invariant d ◦ h. We have
a00 = m; the map a11 is constant. It is easy to see that the maps a10 and
a01 are null-homotopic (this “follows formally” from the presentation (∗)
and the equalities r10 ∗(u2p) = r01 ∗(u2p+1) = 1). We get ∨ij(d◦h)([aij ]) =
(d ◦ h)([m]) = k(m∗(e)) = 1. �

Using [1, Theorem 2], one can make the spaces X and Y simply-
connected in this example.

The Warsaw circle. Let us show that the hypothesis about the ho-
motopy type of X in Theorem 1.1 and Proposition 12.2 is essential and
cannot be replaced by the weaker assumption that X is weakly homotopy
equivalent to a compact CW-complex. Let X be the Warsaw circle [3,
Exercise 7 in § 1.3] and Y be the unit circle in C. Y is a topological
abelian group. The group [X,Y ] is non-zero by [3, Exercise 7 in § 1.3,
Proposition 1.30] and torsion-free by [6, Theorem 1 in § 56-III]. There-
fore, there is a non-zero homomorphism f : [X,Y ] → Q. By Lemma 7.1,
f is a straight invariant. Since X is weakly homotopy equivalent to a
point [3, Exercise 10 in § 4.1] and Y is 0-connected, the main invariant
h : [X,Y ] → [SX,SY ] is constant. Therefore there exists no homomor-
phism d : [SX,SY ] → Q such that f = d ◦ h. �

An infinite discrete space. Let us show that the word “compact” in
the hypothesis about the homotopy type of X in Theorem 1.1 and Propo-
sition 12.2 is essential (see also § 14).

Note that, for an infinite set X, the subgroup B(X) ⊆ ZX is not a di-
rect summand because the group ZX is reduced and the group ZX/B(X)
is divisible and non-zero.

Let X and Y be discrete spaces, X infinite and Y = {y0, y1}. Intro-
duce the function k : Y → Z, yi 7→ i, i = 0, 1. Consider the invariant
f : [X,Y ] → B(X), [a] 7→ k ◦ a, a ∈ C(X,Y ).
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The invariant f is straight because, for the homomorphism
F : L(X,Y ) → B(X), F (u)(x) = k+(u(<x>)), x ∈ X, u ∈ L(X,Y ),
we have f([a]) = F (⟨a⟩), a ∈ C(X,Y ).

Let h : [X,Y ] → [SX, SY ] be the main invariant. We show that there
exists no homomorphism d : [SX, SY ] → B(X) such that f = d ◦ h. As-
sume that there is such a d.

Consider the homomorphism l : ZX → Hom(⟨X⟩, ⟨Y ⟩), l(v)(<x>) =
v(x)(<y1> − <y0>), x ∈ X, v ∈ ZX . We have l(f([a])) = ⟨a⟩ − ⟨a0⟩,
a ∈ C(X,Y ), where a0 : X → Y , x 7→ y0. Clearly, there is an isomorphism
e : Hom(⟨X⟩, ⟨Y ⟩) → [SX,SY ] such that e(⟨a⟩) = h([a]), a ∈ C(X,Y ).
Consider the composition

r : ZX l−→ Hom(⟨X⟩, ⟨Y ⟩) e−→ [SX,SY ]
d−→ B(X).

For a ∈ C(X,Y ), we have r(f([a])) = (d◦e◦l◦f)([a]) = d(e(⟨a⟩−⟨a0⟩)) =
d(h([a]) − h([a0])) = f([a]) − f([a0]) = f([a]). Since the elements f([a]),
a ∈ C(X,Y ), generate B(X), we get r|B(X) = id, which is impossible. �

14. Invariants of maps RP∞ → RP∞

Here we show that the word “compact” in the hypothesis about the
homotopy type of X in Theorem 1.1 and Proposition 12.2 is essential
even if M is divisible. (Possibly, if M is divisible and/or Y is (simply-)
connected, the hypothesis about the homotopy type of X can be replaced
by the weaker assumption that X is homotopy equivalent to a finite-
dimensional CW-complex.)

Let X and Y be spaces. A set E ⊆ X is called Y -representative if any
maps a, b ∈ C(X,Y ) equal on E are homotopic. X is called Y -unitary if
any finite cover of X contains a Y -representative set.

Lemma 14.1. Let M be a divisible group. If X is Y -unitary, then any
invariant f : [X,Y ] → M is straight.

Proof. Introduce the maps r = [?] : C(X,Y ) → [X,Y ] (the projection)
and k = ⟨?⟩ : C(X,Y ) → L(X,Y ). We seek a homomorphism F giving
the commutative diagram

⟨C(X,Y )⟩ k+
//

⟨r⟩
��

L(X,Y )

F

��
⟨[X,Y ]⟩

f+

// M.

Since M is divisible, it suffices to show that Ker k+ ⊆ Ker⟨r⟩. Take an
element w ∈ Ker k+. We show that w ∈ Ker⟨r⟩. There are a finite set
I, a map l : I → C(X,Y ), and an element v ∈ ⟨I⟩ such that ⟨l⟩(v) = w.
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Put ai = l(i), i ∈ I. For an equivalence d on I, let pd : I → I/d be the
projection. Let N be the set of equivalences d on I such that ⟨pd⟩(v) = 0
in ⟨I/d⟩.

Take x ∈ X. Consider the equivalence d(x) = {(i, j) : ai(x) = aj(x)}
on I. We show that d(x) ∈ N . We have the commutative diagrams

I
l //

pd(x)

��

C(X,Y )

ex

��

⟨C(X,Y )⟩ k+
//

⟨ex⟩
��

L(X,Y )

hxxxqqq
qqq

qqq
qq

I/d(x)
lx // Y, ⟨Y ⟩,

where the map lx is defined by the condition of commutativity of the
diagram, ex is the map of evaluation at x, and hx is the homomorphism
of evaluation at <x>. We get ⟨lx⟩(⟨pd(x)⟩(v)) = ⟨ex⟩(⟨l⟩(v)) = ⟨ex⟩(w) =
hx(k

+(w)) = 0. Since lx is injective, we get ⟨pd(x)⟩(v) = 0, which is what
we promised.

For an equivalence d on I, put Ed = {x ∈ X : (i, j) ∈ d ⇒ ai(x) =
aj(x)}. Since x ∈ Ed(x) for any x ∈ X, the family Ed, d ∈ N , is a
cover of X. Since X is Y -unitary, Ed is Y -representative for some d ∈ N .
For (i, j) ∈ d, the maps ai and aj are equal on Ed and thus homotopic.
Therefore, there is a map m giving the commutative diagram

I
l //

pd

��

C(X,Y )

r

��
I/d

m // [X,Y ].

We get ⟨r⟩(w) = ⟨r⟩(⟨l⟩(v)) = ⟨m⟩(⟨pd⟩(v)) = 0 because d ∈ N . �

Hereafter, let X and Y be homeomorphic to RP∞.

Lemma 14.2. X is Y -unitary.

Proof. Let H• be the Z2-cohomology. Let g ∈ H1X and h ∈ H1Y be the
non-zero classes.

We show that (∗) a set E ⊆ X is Y -representative if g|U ̸= 0 for any
neighbourhood U of E. If maps a, b ∈ C(X,Y ) are equal on E, they
are homotopic on some neighbourhood U of E. Then a∗(h)|U = b∗(h)|U .
Since g|U ̸= 0, the homomorphism ?|U : H1X → H1U is injective. There-
fore, a∗(h) = b∗(h). Since Y is a K(Z2, 1) space, a and b are homotopic,
as needed.

We show that X is Y -unitary. Assume that X = E1∪. . .∪En, where the
sets Ei are not Y -representative. By (∗), each Ei has a neighbourhood Ui

with g|Ui = 0. Since U1 ∪ . . .∪Un = X, we get gn = 0, which is false. �
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We have [X,Y ] = {u0, u1}, where u0 is the class of a constant map and
u1 is that of a homeomorphism. Consider the invariant f : [X,Y ] → Q,
ui 7→ i, i = 0, 1. By Lemmas 14.2 and 14.1, f is straight. Let h : [X,Y ] →
[SX,SY ] be the main invariant. Using the isomorphism

[SX,SY ] −→
∏
i∈Z

Hom(HiX,HiY ), [v] 7→ v∗,

we get 2h(u0) = 2h(u1). Therefore, there exists no homomorphism
d : [SX, SY ] → Q such that f = d ◦ h. �

15. K-straight invariants

Let K be a unital ring. K-modules are unital.

K-module LK(X,Y ). For a set X, let ⟨X⟩K be the (free) K-module
with the basis X♯

K ⊆ ⟨X⟩K endowed with the bijection X → X♯
K , x 7→

<x>K . For sets X and Y , let LK(X,Y ) ⊆ HomK(⟨X⟩K , ⟨Y ⟩K) be the K-
submodule generated by the K-homomorphisms u such that u(X♯

K) ⊆
Y ♯
K ∪ {0}. A map a : X → Y induces a K-homomorphism ⟨a⟩K ∈

LK(X,Y ), ⟨a⟩K(<x>K) = <a(x)>K .

K-straight invariants. Let X and Y be spaces and M be a K-module.
An invariant f : [X,Y ] → M is called K-straight if there exists a K-
homomorphism F̃ : LK(X,Y ) → M such that f([a]) = F̃ (⟨a⟩K) for all
a ∈ C(X,Y ).

Proposition 15.1. An invariant f : [X,Y ] → M is K-straight if and
only if it is straight.

Proof is given in § 16.

The K-main invariant h̃ : [X,Y ] → [SKX,SKY ]K . Let SKX be the K-
complex of singular chains of X with coefficients in K and [SKX,SKY ]K
be the K-module of K-chain homotopy classes of K-morphisms SKX →
SKY . For a ∈ C(X,Y ), let SKa : SKX → SKY be the induced K-
morphism and [SKa]K ∈ [SKX,SKY ]K be its K-chain homotopy class.
The invariant h̃ : [X,Y ] → [SKX,SKY ]K , [a] 7→ [SKa]K , is called K-
main.

Theorem 15.2. Suppose that X is homotopy equivalent to a compact
CW-complex and Y is homotopy equivalent to a CW-complex. An in-
variant f : [X,Y ] → M is K-straight if and only if there exists a K-
homomorphism d̃ : [SKX,SKY ]K → M such that f = d̃ ◦ h̃.

Proof is given in § 16. For K = Z, this is Theorem 1.1.
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16. K-straight invariants: proofs

Let X and Y be sets. We define a homomorphism e : L(X,Y ) →
LK(X,Y ). For u ∈ L(X,Y ), let e(u) be the K-homomorphism giving the
commutative diagram

⟨X⟩ u //

iX

��

⟨Y ⟩

iY

��
⟨X⟩K

e(u) // ⟨Y ⟩K ,

where iX is the homomorphism <x> 7→ <x>K and iY is similar.
For an abelian group A, a K-module M , and a homomorphism t : A →

M , we introduce the K-homomorphism t(K) : K ⊗A → M , 1⊗ a 7→ t(a).

Lemma 16.1. e(K) : K ⊗ L(X,Y ) → LK(X,Y ) is a K-isomorphism.

Proof. For w ∈ ⟨Y ⟩K and y ∈ Y , let w/y ∈ K be the coefficient of <y>K

in w. For v ∈ LK(X,Y ) and k ∈ K\{0}, we introduce the homomorphism
vk ∈ L(X,Y ),

vk(<x>) =
∑

y∈Y :v(<x>K)/y=k

<y>, x ∈ X.

It is not difficult to verify that the map d : LK(X,Y ) → K ⊗ L(X,Y ),

d(v) =
∑

k∈K\{0}

k ⊗ vk,

is a K-homomorphism. Using this, we get e(K) ◦ d = id and d ◦ e(K) =
id. �

Proof of Proposition 15.1. Necessity. Let f be K-straight. There
is a K-homomorphism F̃ : LK(X,Y ) → M such that f([a]) = F̃ (⟨a⟩K),
a ∈ C(X,Y ). Consider the homomorphism F = F̃ ◦ e:

C(X,Y )
⟨?⟩K //

[?]

��

⟨?⟩ %%LL
LLL

LLL
LL

LK(X,Y )

F̃

��

L(X,Y )

e

88qqqqqqqqqq

F

&&MM
MMM

MMM
MMM

[X,Y ]
f // M.

The diagram is commutative. We get f([a]) = F (⟨a⟩), a ∈ C(X,Y ).
Therefore, f is straight.
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Sufficiency. Let f be straight. There is a homomorphism F : L(X,Y ) →
M such that f([a]) = F (⟨a⟩), a ∈ C(X,Y ). By Lemma 16.1, e(K) is a
K-isomorphism. Consider the homomorphism F̃ = F (K) ◦ (e(K))−1:

C(X,Y )
⟨?⟩K //

[?]

��

⟨?⟩ %%LL
LLL

LLL
LL

LK(X,Y )

F̃

zz

L(X,Y )
1⊗? //

e

77ppppppppppp

F
''NN

NNN
NNN

NNN
N

K ⊗ L(X,Y )

e(K)

OO

F (K)

��
[X,Y ]

f // M.

The diagram is commutative. We get f([a]) = F̃ (⟨a⟩K), a ∈ C(X,Y ).
Therefore, f is K-straight. �

The homomorphism I : [SX, SY ] → [SKX,SKY ]K . Let X and Y be
spaces. A morphism v : SX → SY induces a K-morphism

SKX = K ⊗ SX
id⊗v−−−→ K ⊗ SY = SKY.

Consider the homomorphism I : [SX,SY ] → [SKX,SKY ]K , [v] 7→ [id ⊗
v]K .

Lemma 16.2. If the group H•(X) is finitely generated, then the K-
homomorphism

I(K) : K ⊗ [SX, SY ] → [SKX,SKY ]K

is a K-split K-monomorphism, i. e. there exists a K-homomorphism
R : [SKX,SKY ]K → K ⊗ [SX,SY ] such that R ◦ I(K) = id.

Proof. This is a variant of the universal coefficient theorem, cf. [12, The-
orems 5.2.8 and 5.5.10]. �

Proof of Theorem 15.2. We have h̃ = I ◦ h, where h : [X,Y ] →
[SX,SY ] is the main invariant. By Proposition 7.3, h is straight. There-
fore, h̃ is straight. By Proposition 15.1, h̃ is K-straight.

This gives the sufficiency. Necessity. Let f be K-straight. By Propo-
sition 15.1, f is straight. By Proposition 12.2, there is a homomorphism
d : [SX,SY ] → M such that f = d ◦ h. By Lemma 16.2, there is a
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K-homomorphism d̃ such that d̃ ◦ I(K) = d(K):

[SX, SY ]

I

rr

d

�� 1⊗? ((QQ
QQQ

QQQ
QQQ

QQ

[X,Y ]
f //

h

77ppppppppppp

h̃ ''NN
NNN

NNN
NNN

M K ⊗ [SX, SY ]
d(K)

oo

I(K)

vvmmm
mmm

mmm
mmm

m

[SKX,SKY ]K .

d̃

OO

The diagram is commutative. In particular, f = d̃ ◦ h̃. �
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