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ON GRAPH AND FINE TOPOLOGIES

LUBICA HOLA AND VARUN JINDAL

ABsTrRACT. Let X be a Tychonoff space and (Y,d) be a metric
space. Let C(X,Y) be the space of continuous functions from X
to Y and 7, 7w be the graph and fine topologies on C(X,Y), re-
spectively. Let (Y, d) contain a nontrivial path. We prove nontriv-
ial generalizations of some known results concerning 7 and 7, on
C(X). For example the following are equivalent (1) (C(X,Y), ) =
(C(X,Y),Tw); (2) X is a cb-space. Some topological properties of
(C(X,Y), r) and (C(X,Y), Tw) are studied too.

Let X be a topological space and (Y, d) be a metric space. We will
suppose that X and Y are infinite. As usual let C(X,Y) be the space of
continuous functions from X to Y and C(X) be the space of continuous
real-valued functions.

As in [10] denote by 7, T, Tw, Tr the topology of pointwise convergence,
the topology of uniform convergence, the fine topology and the graph
topology on C(X,Y), respectively. Of course 7, C 7, C 7, C 7 on
C(X,Y).

Given a function € : X — (0,00) and f € C(X,Y), define
B(f,e)={g€ C(X,Y) : d(f(z),g9(x)) < e(x) for all x € X}.

Denote by C*(X) (LSCT (X)) the set of all strictly positive real-valued
continuous (lower semicontinuous) functions defined on X.

The fine topology 7, on C(X,Y) (also called m-topology [2]) has as
a base all sets of the form B(f,¢), where € runs over all elements from
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CT(X). The fine topology on C(X) was introduced by Hewitt [7] and it
has been thoroughly investigated in the past [2, 1, 8, 9, 10]. It was proved
in [2] and [10] that the graph topology 7 on C(X,Y’) has as a base all
sets of the form B(f,¢), where € runs over all elements from LSC*(X).

Both (C(X,Y), ) and (C(X,Y), ) are Tychonoff topological spaces,
in fact they are uniform spaces.

For general topological spaces X and Y the graph topology 7 on
C(X,Y) was introduced by Naimpally in [15] as the topology which is
generated by sets of the form

Fy ={f € C(X,Y) : graph(f) C U},
where U runs over the family of open sets in X x Y.

Notice that if X is T} and Y is T, then 7~ on C(X,Y) is the rel-
ative Vietoris topology [14] inherited from the hyperspece of nonempty
closed subsets of X xY after identifying elements from C(X,Y") with their
graphs.

A topological space X is called a cb-space if it satisfies one of the
following equivalent conditions [12, Theorem 1]:

(1) for every f € LSCT(X) there is ¢ € CT(X) such that o(z) < f(x)
for every z € X,

(2) for each decreasing sequence (F,), of closed sets with (), F,, = ()
there is a sequence (Z,), of zero sets with (,, Z, = 0 such that F;, C Z,
for every n.

It was proved in [12, Corollary 2] that every cb-space is countably
paracompact.

This note is motivated by a misprint in Proposition 1.2 in [10]. Propo-
sition 1.2 in [10] states that for a Tychonoff space X and every metric
space (Y,d), the coincidence (C(X,Y), ) = (C(X,Y), 7,) is equivalent
to the condition that X is a cb-space. Proposition 1.2 in [10] refers to [2]
for the proof. In fact, if Y is the space of reals with the usual euclidean
metric, the result was proved by van Dowen in [2].

We will present an example that the above mentioned equivalence does
not work for any metric space (Y, d) and we will show that it holds for a
metric space (Y, d), which contains a non-trivial path.

1. MAIN RESULT
The following theorem was proved in [2].

Theorem 1.1. Let X be a Tychonoff topological space. The following are
equivalent:

(1) (C(X), 1) = (C(X), Tw);
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(2) X is a cb-space.

A question arises for which metric spaces Y the coincidence 7 and 7,
on C(X,Y) implies that X is a cb-space. Of course, if X is a cb-space,
then (C(X,Y), ) = (C(X,Y), 7).

We have the following result.

Theorem 1.2. Let X be a Tychonoff topological space and (Y,d) be
a metric space which contains a nontrivial path. If (C(X,Y), ) =
(C(X,Y), ), then X is a cb-space.

Proof. Let n € LSCT(X), h :[0,1] — Y be a continuous function such
that h(z) # h(0) for every z # 0 and define f(x) = h(0) for all z €
X. Then f € C(X,Y), and if n* = min{n,d(h(0),h(1))/2}, then n* €
LSCH(X).

Since (C(X,Y), ) = (C(X,Y),7y), there is ¢ € C*(X) such that

B(f,¢) € B(f,n").

We claim that ¢(z) < n*(z) for every x € X, otherwise, n* (o) < ¢(x0)
for some xy € X. Let O(zg) be an open neighbourhood of xy such that
n*(zg) < @(z) for every € O(xg). Since {z € [0,1] : d(h(0),h(z)) >
n*(xo)} is a nonempty compact subset of [0,1], it has a minimum b > 0.
Note that d(h(0),h(z)) < n*(zo) for all z € [0,b), and d(h(0), (b)) =
" (zo).

Since X is a Tychonoff space, there is a continuous function H : X —
[0,0] such that H(xo) = b and H(z) = 0 for every x ¢ O(zg). Define the
function G : X — Y as follows: G(z) = h(H(z)) for every z € X. Then
G is a continuous function which is different from f and

G € B(f, ),
since for x € O(xy), d(f(z), G(x)) = d(h(0), h(H(z)) < n*(x0) < p(z),
and for x ¢ O(xzg), d(f(z),G(z)) = d(h(0),h(0)) = 0 < @(x). This
implies G € B(f,n*), which is a contradiction, since d(f(x¢), G(xg)) =
d(h(0),h(b)) = n*(xo). In conclusion, we found ¢ € C*(X) with ¢ <
n* <mn,so X is a cb-space. O

The condition on Y to have a nontrivial path in Theorem 1.2 is essen-
tial.
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Example 1.1. Let X be a connected topological space which is not
countably paracompact (the Niemytzki plane is such a space). Let (Y, d)
be a metric space with the 0 — 1 metric. Then (C(X,Y),7,) is a dis-
crete topological space. Thus we have (C(X,Y),7,) = (C(X,Y),7,) =
(C(X,Y),7w) = (C(X,Y),m). Of course such a space X cannot be a
ch-space.

Theorem 1.3. Let X be a Tychonoff topological space and (Y,d) be a
metric space which contains a nontrivial path. The following are equiva-
lent:

(1) (C(Xv Y)aTF) - (C(Xv Y)aTw);
(2) X is a cb-space.

2. OTHER RESULTS

If X is a pseudocompact space and (Y,d) is a metric space, then
(C(X,Y),w) = (C(X,Y),7,) [13, Proposition 2.1].

Theorem 2.1. Let X be a Tychonoff space and (Y,d) be a metric space
with a non isolated point. The following are equivalent:

(1) (C(X,Y), ) = (C(X,Y),7);

(2) X is pseudocompact.

Proof. Tt is sufficient to prove that (1) = (2). Suppose that X is not
pseudocompact. There is a continuous real-valued function h which is
not bounded. Consider the function g : X — R defined as follows: g(z) =
| h(z) | +1 for every z € X.

Let y € Y be a non isolated point in Y and {y, : n € w} be a sequence
in Y which converges to y such that y,, # y for every n € w. Let f: X —
Y be a function defined as follows: f(x) = y for every z € X. For every
n € w define a function f, : X =Y as f,(x) =y, for every x € X. It is
easy to verify that {f, : n € w} converges to f in (C(X,Y),7,). However
{fn : n € w} fails to converge to f in (C(X,Y),7,), since

feB(f,1/9)={leC(X,Y) :d(f(x),l(z)) <1/g(x) for all z € X},

but no f, is contained in B(f,1/g). O

The condition on a metric space (Y, d) to have a non isolated point in
Theorem 2.1 is essential.
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Example 2.1. Let X be a connected topological space which is not pseu-
docompact (the Niemytzki plane is such a space). Let (Y, d) be a metric
space with the 0 — 1 metric. Then (C(X,Y), 7,) is a discrete topological
space. Thus we have (C(X,Y),7,) = (C(X,Y),7,) = (C(X,Y), Tw)-

The following theorem was proved by Hansard in [6].

Theorem 2.2. Let X be a Tychonoff space and (Y,d) be a metric space
with a non isolated point. The following are equivalent:

(1) (C(X,Y), ) = (C(X,Y), 7u);

(2) X is countably compact.

Of course, if X is countably compact, then for every metric space
(Y,d) we have (C(X,Y), ) = (C(X,Y),7,). However the condition
on a metric space (Y, d) to have a non isolated point in Theorem 2.2 is
essential.

Example 2.2. Let X be a connected topological space which is not count-
ably compact (the Niemytzki plane is such a space). Let (Y, d) be a metric
space with the 0 — 1 metric. Then (C(X,Y), 7,) is a discrete topological
space. Thus we have (C(X,Y),7,) = (C(X,Y),1,) = (C(X,Y), ).

3. TOPOLOGICAL PROPERTIES OF T AND T,

Theorem 3.1. Let X be a Tychonoff space and (Y,d) be a metric space
which contains a nontrivial path. The following are equivalent:
(1) (C(X,Y),1r) is metrizable;

(2) (C(X,Y),rr) is a p-space;

(3) (C(X,Y), ) is g-space;

(4) (C(X,Y),r) is 1st countable;
(5) (C(X,Y), ) is a Frechet space;
(6) (C(X,Y), ) is sequential;

(7) (C(X,Y),1r) is a k-space;

(8) (C(X,Y),r) is countably tight;
(9) (C(X,Y), ) is a M-space;

(10) (C(X,Y), ) is pointwise countable type;
(11) (C(X,Y), 1) is a r-space;

(12) X is countably compact;

(13) (C(X,Y), ) is radial;

(14) (C(X,Y), ) is pseudoradial.

Proof. We prove (8) = (12). Assume that X is not countably compact.
There is a sequence {z,, : n € w} in X which has no cluster point in X.
Let {U, : n € w} be a pairwise disjoint sequence of open neighborhoods
of the x,’s. There is a continuous function H : [0,1] — Y such that
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H(z) # H(0) for every z € (0,1]. Let fo be the function defined as
fo(z) = H(0) for every € X. As in [10] define

L={geC(X,Y):g(x,) # H(0) for every n € w}.

We claim that fj is in the closure of L in (C(X,Y), ). Let G be an
open set in X x Y such that fy € Fg.

For every n € w there are V,,, an open neighborhood of z,, and €, > 0
such that

V, CU, and V,, x S(H(0),¢,) C G,

where S(H(0),e,) ={y €Y : d(y, H(0)) < e, }.

For every n € w let 1 > n,, > 0 be such that d(H(0), H(z)) < e, for
every z € [0,m,] and {7, : n € w} converges to 0.

For every n € w define the continuous function h, : V;, — [0,7,] such
that hy,(x,) =1, and h,,(V, \ V) = 0. Let h : X — [0, 1] be a continuous
function defined as follows:

h(z) = h,(z) if 2 € V,, for some n € w and h(z) = 0 otherwise.

It is easy to verify that the function F' : X — Y defined as F(z) =
H(h(z)) for every x € X is a continuous function and F € Fg.

Since (C'(X,Y), ) is countably tight, there is a countable subset L' =
{fn : n € w} of L such that fy is in the closure of L’ in (C(X,Y), ).

Put M = {(2n, fn(zn)) : n € w}. Then M is a closed set in X x Y and
graph(fo) C (X xY)\ M, but no graph(f,,) is contained in (X xY)\ M,
a contradiction.

The implications (12) = (1) = (2) = (3) are well known; for (3) = (4)
note that (C(X,Y), ) is a Tychonoff space and it is a submetrizable
space. The implication then follows from the fact that a regular g-space
whose points are G is 1st countable [4].

The implications (4) = (5) = (6) = (7) are well known; as for (7) =
(8) see [10]. The implications (4) = (10) = (11) = (3) and (1) =
(9) = (3) are well known. (12) = (13) = (14) are clear. To prove that
(14) = (6) we use the idea from the proof of Theorem 2.7 in [5]. O

Theorem 3.2. Let X be a Tychonoff space and (Y,d) be a completely
metrizable space which contains a nontrivial path. The following are equiv-
alent:

(1) (C(X,Y), ) is completely metrizable;

(2) (C(X,Y), ) is Cech complete;

(3) (C(X,Y), ) is sieve complete;

(4) (C(X,Y),1r) is hereditarily Baire;

(5) X is countably compact.
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Proof. The implications (1) = (2) = (3) = (4) are well known. We prove
(4) = (5). If X is not countably compact, there is a sequence {z,, : n € w}
in X which has no cluster point in X. There is a continuous function
L :[0,1] = Y such that L(0) # L(1). By [3] there is a homeomorphism
H :[0,1] — H([0,1]) C Y such that H(0) = L(0) and H(1) = L(1). For
each n € w define, similarly as in [10],

Sp={feC(X,Y): f(xx) = H(0) for every k > n},

and put S =, c., Sn-

It is easy to verify that S, is closed in (C(X,Y), ) for every n € w,
since Sy, is closed in (C(X,Y),7,). Also, S is closed in (C(X,Y), ). If
feC(X,Y)\S, then f(z,) # H(0) for infinitely many n (w.l.o.g., all
n). Define

U=XxY\{zn:new}x{H(0)}).

Then graph(f) C U and Fy C C(X,Y)\ S.

Putnow T'=SN{f € C(X,Y): f(X) C H([0,1])} and for each n € w,
T, =S,N{feCX,Y): f(X)C H(0,1])}. T={J, . Ty Then T and
T, n € w are closed in (C(X,Y), ) .

new

We will show that each T;, is nowhere dense in T'. Assume, there is an
open set V in X x Y such that § # Fy NT C T,. Let f € Fy NT,. Then
f(xn) = H(0). There is € > 0 and an open neighbourhood G of z,, such
that

G x S(H(0),e) CVand GN{z;:jecw}={z,}.
Put
n = min{e/2,d(H(0), H(1))}.

There must exist a € (0, 1) such that for every s € (a, 1), d(H(0), H(s))>
1/2. There is an open set G; C G, z, € Gy with

d(f(x), H(0)) < n/2 for every x € G;.

For every z € G1, H !(f(z)) € [0,a]. Let o > 0 be such that a+a < 1
and d(H(s),H(t)) < n/2 for every s,t € [0,1] with | s — ¢ |< .

Let ¢ : X — [0,a] be a continuous function such that g(z,) = «
and g(z) = 0 for every « ¢ G;. Then the function [ : X — Y defined as
I(z) = H(g(z)+H(f(z))) for every z € X belongs to the set Fy\yNT\T},,

a contradiction.
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The proof of (5) = (1) follows from Theorem 3.1 and [10, Theorem
3.1]. O

Example 2.2 shows that the condition on Y to have a nontrivial path
in Theorems 3.1 and 3.2 is essential.

Theorems 3.3 and 3.4 have been proved in [11] but these can also be
proved using the ideas of the proofs of Theorems 3.1 and 3.2 above.

Theorem 3.3. Let X be a Tychonoff space and (Y,d) be a metric space
which contains a nontrivial path. The following are equivalent:

(1) (C(X,Y),Ty) is metrizable;

(2) (C(X.Y). ) is a p-space;

(3) (C(X,Y), 7) is g-space;

(4) (C(X,Y), Ty) is 1st countable;

(5) (C(X,Y),7w) is a Frechet space;

(6) (C(X,Y),Ty) is sequential;

(7) (C(X,Y),Ty) is a k-space;

(8) (C(X,Y), 1) is countably tight;

(9) (C(X,Y),7y) is a M-space;

(10) (C(X,Y), ) is pointwise countable type;

(11) (C(X,Y),Ty) is a r-space;
(12) X is pseudocompact;

(13) (C(X,Y), ) is radial;

(14) (C(X,Y), T,) is pseudoradial.

Theorem 3.4. Let X be a Tychonoff space and (Y, d) be a complete met-
ric space which contains a nontrivial path. The following are equivalent:
(1) (C(X,Y), 1) is completely metrizable;
(2) (C(X,Y), Ty) is Cech complete;
(8) (C(X,Y),7y) is sieve complete;
(4) (C(X,Y), Ty) is hereditarily Baire;
(5) X is pseudocompact.

Example 2.1 shows that the condition on Y to have a nontrivial path
in Theorems 3.3 and 3.4 is essential.
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