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ON GRAPH AND FINE TOPOLOGIES

ĽUBICA HOLÁ AND VARUN JINDAL

Abstract. Let X be a Tychonoff space and (Y, d) be a metric
space. Let C(X,Y ) be the space of continuous functions from X
to Y and τΓ, τw be the graph and fine topologies on C(X,Y ), re-
spectively. Let (Y, d) contain a nontrivial path. We prove nontriv-
ial generalizations of some known results concerning τΓ and τw on
C(X). For example the following are equivalent (1) (C(X,Y ), τΓ) =

(C(X,Y ), τw); (2) X is a cb-space. Some topological properties of
(C(X,Y ), τΓ) and (C(X,Y ), τw) are studied too.

Let X be a topological space and (Y, d) be a metric space. We will
suppose that X and Y are infinite. As usual let C(X,Y ) be the space of
continuous functions from X to Y and C(X) be the space of continuous
real-valued functions.

As in [10] denote by τp, τu, τw, τΓ the topology of pointwise convergence,
the topology of uniform convergence, the fine topology and the graph
topology on C(X,Y ), respectively. Of course τp ⊆ τu ⊆ τw ⊆ τΓ on
C(X,Y ).

Given a function ϵ : X → (0,∞) and f ∈ C(X,Y ), define

B(f, ϵ) = {g ∈ C(X,Y ) : d(f(x), g(x)) < ϵ(x) for all x ∈ X}.

Denote by C+(X) (LSC+(X)) the set of all strictly positive real-valued
continuous (lower semicontinuous) functions defined on X.

The fine topology τw on C(X,Y ) (also called m-topology [2]) has as
a base all sets of the form B(f, ϵ), where ϵ runs over all elements from
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C+(X). The fine topology on C(X) was introduced by Hewitt [7] and it
has been thoroughly investigated in the past [2, 1, 8, 9, 10]. It was proved
in [2] and [10] that the graph topology τΓ on C(X,Y ) has as a base all
sets of the form B(f, ϵ), where ϵ runs over all elements from LSC+(X).

Both (C(X,Y ), τw) and (C(X,Y ), τΓ) are Tychonoff topological spaces,
in fact they are uniform spaces.

For general topological spaces X and Y the graph topology τΓ on
C(X,Y ) was introduced by Naimpally in [15] as the topology which is
generated by sets of the form

FU = {f ∈ C(X,Y ) : graph(f) ⊂ U},
where U runs over the family of open sets in X × Y .

Notice that if X is T1 and Y is T2, then τΓ on C(X,Y ) is the rel-
ative Vietoris topology [14] inherited from the hyperspece of nonempty
closed subsets of X×Y after identifying elements from C(X,Y ) with their
graphs.

A topological space X is called a cb-space if it satisfies one of the
following equivalent conditions [12, Theorem 1]:

(1) for every f ∈ LSC+(X) there is φ ∈ C+(X) such that φ(x) ≤ f(x)
for every x ∈ X,

(2) for each decreasing sequence (Fn)n of closed sets with
∩

n Fn = ∅
there is a sequence (Zn)n of zero sets with

∩
n Zn = ∅ such that Fn ⊆ Zn

for every n.
It was proved in [12, Corollary 2] that every cb-space is countably

paracompact.

This note is motivated by a misprint in Proposition 1.2 in [10]. Propo-
sition 1.2 in [10] states that for a Tychonoff space X and every metric
space (Y, d), the coincidence (C(X,Y ), τΓ) = (C(X,Y ), τw) is equivalent
to the condition that X is a cb-space. Proposition 1.2 in [10] refers to [2]
for the proof. In fact, if Y is the space of reals with the usual euclidean
metric, the result was proved by van Dowen in [2].

We will present an example that the above mentioned equivalence does
not work for any metric space (Y, d) and we will show that it holds for a
metric space (Y, d), which contains a non-trivial path.

1. Main result

The following theorem was proved in [2].

Theorem 1.1. Let X be a Tychonoff topological space. The following are
equivalent:

(1) (C(X), τΓ) = (C(X), τw);
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(2) X is a cb-space.

A question arises for which metric spaces Y the coincidence τΓ and τw
on C(X,Y ) implies that X is a cb-space. Of course, if X is a cb-space,
then (C(X,Y ), τΓ) = (C(X,Y ), τw).

We have the following result.

Theorem 1.2. Let X be a Tychonoff topological space and (Y, d) be
a metric space which contains a nontrivial path. If (C(X,Y ), τΓ) =
(C(X,Y ), τw), then X is a cb-space.

Proof. Let η ∈ LSC+(X), h : [0, 1] → Y be a continuous function such
that h(z) ̸= h(0) for every z ̸= 0 and define f(x) = h(0) for all x ∈
X. Then f ∈ C(X,Y ), and if η∗ = min{η, d(h(0), h(1))/2}, then η∗ ∈
LSC+(X).

Since (C(X,Y ), τΓ) = (C(X,Y ), τw), there is φ ∈ C+(X) such that

B(f, φ) ⊆ B(f, η∗).

We claim that φ(x) ≤ η∗(x) for every x ∈ X, otherwise, η∗(x0) < φ(x0)
for some x0 ∈ X. Let O(x0) be an open neighbourhood of x0 such that
η∗(x0) < φ(x) for every x ∈ O(x0). Since {z ∈ [0, 1] : d(h(0), h(z)) ≥
η∗(x0)} is a nonempty compact subset of [0, 1], it has a minimum b > 0.
Note that d(h(0), h(z)) < η∗(x0) for all z ∈ [0, b), and d(h(0), h(b)) =
η∗(x0).

Since X is a Tychonoff space, there is a continuous function H : X →
[0, b] such that H(x0) = b and H(x) = 0 for every x /∈ O(x0). Define the
function G : X → Y as follows: G(z) = h(H(z)) for every z ∈ X. Then
G is a continuous function which is different from f and

G ∈ B(f, φ),

since for x ∈ O(x0), d(f(x), G(x)) = d(h(0), h(H(x)) ≤ η∗(x0) < φ(x),
and for x /∈ O(x0), d(f(x), G(x)) = d(h(0), h(0)) = 0 < φ(x). This
implies G ∈ B(f, η∗), which is a contradiction, since d(f(x0), G(x0)) =
d(h(0), h(b)) = η∗(x0). In conclusion, we found φ ∈ C+(X) with φ ≤
η∗ ≤ η, so X is a cb-space. �

The condition on Y to have a nontrivial path in Theorem 1.2 is essen-
tial.
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Example 1.1. Let X be a connected topological space which is not
countably paracompact (the Niemytzki plane is such a space). Let (Y, d)
be a metric space with the 0 − 1 metric. Then (C(X,Y ), τp) is a dis-
crete topological space. Thus we have (C(X,Y ), τp) = (C(X,Y ), τu) =
(C(X,Y ), τw) = (C(X,Y ), τΓ). Of course such a space X cannot be a
cb-space.

Theorem 1.3. Let X be a Tychonoff topological space and (Y, d) be a
metric space which contains a nontrivial path. The following are equiva-
lent:

(1) (C(X,Y ), τΓ) = (C(X,Y ), τw);
(2) X is a cb-space.

2. Other results

If X is a pseudocompact space and (Y, d) is a metric space, then
(C(X,Y ), τw) = (C(X,Y ), τu) [13, Proposition 2.1].

Theorem 2.1. Let X be a Tychonoff space and (Y, d) be a metric space
with a non isolated point. The following are equivalent:

(1) (C(X,Y ), τw) = (C(X,Y ), τu);
(2) X is pseudocompact.

Proof. It is sufficient to prove that (1) ⇒ (2). Suppose that X is not
pseudocompact. There is a continuous real-valued function h which is
not bounded. Consider the function g : X → R defined as follows: g(x) =
| h(x) | +1 for every x ∈ X.

Let y ∈ Y be a non isolated point in Y and {yn : n ∈ ω} be a sequence
in Y which converges to y such that yn ̸= y for every n ∈ ω. Let f : X →
Y be a function defined as follows: f(x) = y for every x ∈ X. For every
n ∈ ω define a function fn : X → Y as fn(x) = yn for every x ∈ X. It is
easy to verify that {fn : n ∈ ω} converges to f in (C(X,Y ), τu). However
{fn : n ∈ ω} fails to converge to f in (C(X,Y ), τw), since

f ∈ B(f, 1/g) = {l ∈ C(X,Y ) : d(f(x), l(x)) < 1/g(x) for all x ∈ X},

but no fn is contained in B(f, 1/g). �

The condition on a metric space (Y, d) to have a non isolated point in
Theorem 2.1 is essential.
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Example 2.1. Let X be a connected topological space which is not pseu-
docompact (the Niemytzki plane is such a space). Let (Y, d) be a metric
space with the 0− 1 metric. Then (C(X,Y ), τp) is a discrete topological
space. Thus we have (C(X,Y ), τp) = (C(X,Y ), τu) = (C(X,Y ), τw).

The following theorem was proved by Hansard in [6].

Theorem 2.2. Let X be a Tychonoff space and (Y, d) be a metric space
with a non isolated point. The following are equivalent:

(1) (C(X,Y ), τΓ) = (C(X,Y ), τu);
(2) X is countably compact.

Of course, if X is countably compact, then for every metric space
(Y, d) we have (C(X,Y ), τΓ) = (C(X,Y ), τu). However the condition
on a metric space (Y, d) to have a non isolated point in Theorem 2.2 is
essential.

Example 2.2. Let X be a connected topological space which is not count-
ably compact (the Niemytzki plane is such a space). Let (Y, d) be a metric
space with the 0− 1 metric. Then (C(X,Y ), τp) is a discrete topological
space. Thus we have (C(X,Y ), τp) = (C(X,Y ), τu) = (C(X,Y ), τΓ).

3. Topological properties of τΓ and τw

Theorem 3.1. Let X be a Tychonoff space and (Y, d) be a metric space
which contains a nontrivial path. The following are equivalent:

(1) (C(X,Y ), τΓ) is metrizable;
(2) (C(X,Y ), τΓ) is a p-space;
(3) (C(X,Y ), τΓ) is q-space;
(4) (C(X,Y ), τΓ) is 1st countable;
(5) (C(X,Y ), τΓ) is a Frechet space;
(6) (C(X,Y ), τΓ) is sequential;
(7) (C(X,Y ), τΓ) is a k-space;
(8) (C(X,Y ), τΓ) is countably tight;
(9) (C(X,Y ), τΓ) is a M -space;
(10) (C(X,Y ), τΓ) is pointwise countable type;
(11) (C(X,Y ), τΓ) is a r-space;
(12) X is countably compact;
(13) (C(X,Y ), τΓ) is radial;
(14) (C(X,Y ), τΓ) is pseudoradial.

Proof. We prove (8) ⇒ (12). Assume that X is not countably compact.
There is a sequence {xn : n ∈ ω} in X which has no cluster point in X.
Let {Un : n ∈ ω} be a pairwise disjoint sequence of open neighborhoods
of the xn’s. There is a continuous function H : [0, 1] → Y such that
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H(x) ̸= H(0) for every x ∈ (0, 1]. Let f0 be the function defined as
f0(x) = H(0) for every x ∈ X. As in [10] define

L = {g ∈ C(X,Y ) : g(xn) ̸= H(0) for every n ∈ ω}.

We claim that f0 is in the closure of L in (C(X,Y ), τΓ). Let G be an
open set in X × Y such that f0 ∈ FG.

For every n ∈ ω there are Vn, an open neighborhood of xn and ϵn > 0
such that

Vn ⊆ Un and Vn × S(H(0), ϵn) ⊂ G,

where S(H(0), ϵn) = {y ∈ Y : d(y,H(0)) < ϵn}.
For every n ∈ ω let 1 > ηn > 0 be such that d(H(0), H(z)) < ϵn for

every z ∈ [0, ηn] and {ηn : n ∈ ω} converges to 0.
For every n ∈ ω define the continuous function hn : Vn → [0, ηn] such

that hn(xn) = ηn and hn(Vn \Vn) = 0. Let h : X → [0, 1] be a continuous
function defined as follows:

h(x) = hn(x) if x ∈ Vn for some n ∈ ω and h(x) = 0 otherwise.

It is easy to verify that the function F : X → Y defined as F (x) =
H(h(x)) for every x ∈ X is a continuous function and F ∈ FG.

Since (C(X,Y ), τΓ) is countably tight, there is a countable subset L′ =
{fn : n ∈ ω} of L such that f0 is in the closure of L′ in (C(X,Y ), τΓ).

Put M = {(xn, fn(xn)) : n ∈ ω}. Then M is a closed set in X×Y and
graph(f0) ⊂ (X ×Y ) \M , but no graph(fn) is contained in (X ×Y ) \M ,
a contradiction.

The implications (12) ⇒ (1) ⇒ (2) ⇒ (3) are well known; for (3) ⇒ (4)
note that (C(X,Y ), τΓ) is a Tychonoff space and it is a submetrizable
space. The implication then follows from the fact that a regular q-space
whose points are Gδ is 1st countable [4].

The implications (4) ⇒ (5) ⇒ (6) ⇒ (7) are well known; as for (7) ⇒
(8) see [10]. The implications (4) ⇒ (10) ⇒ (11) ⇒ (3) and (1) ⇒
(9) ⇒ (3) are well known. (12) ⇒ (13) ⇒ (14) are clear. To prove that
(14) ⇒ (6) we use the idea from the proof of Theorem 2.7 in [5]. �
Theorem 3.2. Let X be a Tychonoff space and (Y, d) be a completely
metrizable space which contains a nontrivial path. The following are equiv-
alent:

(1) (C(X,Y ), τΓ) is completely metrizable;
(2) (C(X,Y ), τΓ) is Čech complete;
(3) (C(X,Y ), τΓ) is sieve complete;
(4) (C(X,Y ), τΓ) is hereditarily Baire;
(5) X is countably compact.
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Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are well known. We prove
(4) ⇒ (5). If X is not countably compact, there is a sequence {xn : n ∈ ω}
in X which has no cluster point in X. There is a continuous function
L : [0, 1] → Y such that L(0) ̸= L(1). By [3] there is a homeomorphism
H : [0, 1] → H([0, 1]) ⊆ Y such that H(0) = L(0) and H(1) = L(1). For
each n ∈ ω define, similarly as in [10],

Sn = {f ∈ C(X,Y ) : f(xk) = H(0) for every k ≥ n},

and put S =
∪

n∈ω Sn.
It is easy to verify that Sn is closed in (C(X,Y ), τΓ) for every n ∈ ω,

since Sn is closed in (C(X,Y ), τp). Also, S is closed in (C(X,Y ), τΓ). If
f ∈ C(X,Y ) \ S, then f(xn) ̸= H(0) for infinitely many n (w.l.o.g., all
n). Define

U = X × Y \ ({xn : n ∈ ω} × {H(0)}).

Then graph(f) ⊂ U and FU ⊂ C(X,Y ) \ S.
Put now T = S∩{f ∈ C(X,Y ) : f(X) ⊆ H([0, 1])} and for each n ∈ ω,

Tn = Sn ∩ {f ∈ C(X,Y ) : f(X) ⊆ H([0, 1])}. T =
∪

n∈ω Tn. Then T and
Tn, n ∈ ω are closed in (C(X,Y ), τΓ) .

We will show that each Tn is nowhere dense in T . Assume, there is an
open set V in X ×Y such that ∅ ≠ FV ∩T ⊆ Tn. Let f ∈ FV ∩Tn. Then
f(xn) = H(0). There is ϵ > 0 and an open neighbourhood G of xn such
that

G× S(H(0), ϵ) ⊆ V and G ∩ {xj : j ∈ ω} = {xn}.

Put

η = min{ϵ/2, d(H(0),H(1))}.

There must exist a∈(0, 1) such that for every s ∈ (a, 1), d(H(0),H(s))≥
η/2. There is an open set G1 ⊂ G, xn ∈ G1 with

d(f(x),H(0)) < η/2 for every x ∈ G1.

For every x ∈ G1, H−1(f(x)) ∈ [0, a]. Let α > 0 be such that a+α < 1
and d(H(s),H(t)) < η/2 for every s, t ∈ [0, 1] with | s− t |≤ α.

Let g : X → [0, α] be a continuous function such that g(xn) = α
and g(x) = 0 for every x /∈ G1. Then the function l : X → Y defined as
l(x) = H(g(x)+H−1(f(x))) for every x ∈ X belongs to the set FV ∩T \Tn,
a contradiction.
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The proof of (5) ⇒ (1) follows from Theorem 3.1 and [10, Theorem
3.1]. �

Example 2.2 shows that the condition on Y to have a nontrivial path
in Theorems 3.1 and 3.2 is essential.

Theorems 3.3 and 3.4 have been proved in [11] but these can also be
proved using the ideas of the proofs of Theorems 3.1 and 3.2 above.

Theorem 3.3. Let X be a Tychonoff space and (Y, d) be a metric space
which contains a nontrivial path. The following are equivalent:

(1) (C(X,Y ), τw) is metrizable;
(2) (C(X,Y ), τw) is a p-space;
(3) (C(X,Y ), τw) is q-space;
(4) (C(X,Y ), τw) is 1st countable;
(5) (C(X,Y ), τw) is a Frechet space;
(6) (C(X,Y ), τw) is sequential;
(7) (C(X,Y ), τw) is a k-space;
(8) (C(X,Y ), τw) is countably tight;
(9) (C(X,Y ), τw) is a M -space;
(10) (C(X,Y ), τw) is pointwise countable type;
(11) (C(X,Y ), τw) is a r-space;
(12) X is pseudocompact;
(13) (C(X,Y ), τw) is radial;
(14) (C(X,Y ), τw) is pseudoradial.

Theorem 3.4. Let X be a Tychonoff space and (Y, d) be a complete met-
ric space which contains a nontrivial path. The following are equivalent:

(1) (C(X,Y ), τw) is completely metrizable;
(2) (C(X,Y ), τw) is Čech complete;
(3) (C(X,Y ), τw) is sieve complete;
(4) (C(X,Y ), τw) is hereditarily Baire;
(5) X is pseudocompact.

Example 2.1 shows that the condition on Y to have a nontrivial path
in Theorems 3.3 and 3.4 is essential.
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