TOPOLOGY PROCEEDINGS Volume 49, 2017 Pages 65-73

http://topology.nipissingu.ca/tp/

ON GRAPH AND FINE TOPOLOGIES

by Ľubica Holá and Varun Jindal

Electronically published on May 10, 2016

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: (Online) 2331-1290, (Print) 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on May 10, 2016

ON GRAPH AND FINE TOPOLOGIES

ĽUBICA HOLÁ AND VARUN JINDAL

ABSTRACT. Let X be a Tychonoff space and (Y,d) be a metric space. Let C(X,Y) be the space of continuous functions from X to Y and τ_{Γ} , τ_{w} be the graph and fine topologies on C(X,Y), respectively. Let (Y,d) contain a nontrivial path. We prove nontrivial generalizations of some known results concerning τ_{Γ} and τ_{w} on C(X). For example the following are equivalent (1) $(C(X,Y),\tau_{\Gamma}) = (C(X,Y),\tau_{w})$; (2) X is a cb-space. Some topological properties of $(C(X,Y),\tau_{\Gamma})$ and $(C(X,Y),\tau_{w})$ are studied too.

Let X be a topological space and (Y,d) be a metric space. We will suppose that X and Y are infinite. As usual let C(X,Y) be the space of continuous functions from X to Y and C(X) be the space of continuous real-valued functions.

As in [10] denote by $\tau_p, \tau_u, \tau_w, \tau_\Gamma$ the topology of pointwise convergence, the topology of uniform convergence, the fine topology and the graph topology on C(X,Y), respectively. Of course $\tau_p \subseteq \tau_u \subseteq \tau_w \subseteq \tau_\Gamma$ on C(X,Y).

Given a function $\epsilon: X \to (0, \infty)$ and $f \in C(X, Y)$, define

$$B(f,\epsilon) = \{g \in C(X,Y) : d(f(x),g(x)) < \epsilon(x) \text{ for all } x \in X\}.$$

Denote by $C^+(X)$ ($LSC^+(X)$) the set of all strictly positive real-valued continuous (lower semicontinuous) functions defined on X.

The fine topology τ_w on C(X,Y) (also called *m*-topology [2]) has as a base all sets of the form $B(f,\epsilon)$, where ϵ runs over all elements from

 $^{2010\} Mathematics\ Subject\ Classification.\ 54C35.$

 $Key\ words\ and\ phrases.$ Fine topology, graph topology, cb-space.

^{©2016} Topology Proceedings.

 $[\]vec{L}.$ Holá would like to thank to grant APVV-0269-11, Vega 2/0018/13 and Vega 2/0050/15.

 $C^+(X)$. The fine topology on C(X) was introduced by Hewitt [7] and it has been thoroughly investigated in the past [2, 1, 8, 9, 10]. It was proved in [2] and [10] that the graph topology τ_{Γ} on C(X,Y) has as a base all sets of the form $B(f,\epsilon)$, where ϵ runs over all elements from $LSC^+(X)$.

Both $(C(X,Y), \tau_w)$ and $(C(X,Y), \tau_{\Gamma})$ are Tychonoff topological spaces, in fact they are uniform spaces.

For general topological spaces X and Y the graph topology τ_{Γ} on C(X,Y) was introduced by Naimpally in [15] as the topology which is generated by sets of the form

$$F_U = \{ f \in C(X, Y) : \operatorname{graph}(f) \subset U \},$$

where U runs over the family of open sets in $X \times Y$.

Notice that if X is T_1 and Y is T_2 , then τ_{Γ} on C(X,Y) is the relative Vietoris topology [14] inherited from the hyperspece of nonempty closed subsets of $X \times Y$ after identifying elements from C(X,Y) with their graphs.

A topological space X is called a cb-space if it satisfies one of the following equivalent conditions [12, Theorem 1]:

- (1) for every $f \in LSC^+(X)$ there is $\varphi \in C^+(X)$ such that $\varphi(x) \leq f(x)$ for every $x \in X$,
- (2) for each decreasing sequence $(F_n)_n$ of closed sets with $\bigcap_n F_n = \emptyset$ there is a sequence $(Z_n)_n$ of zero sets with $\bigcap_n Z_n = \emptyset$ such that $F_n \subseteq Z_n$ for every n.

It was proved in [12, Corollary 2] that every *cb*-space is countably paracompact.

This note is motivated by a misprint in Proposition 1.2 in [10]. Proposition 1.2 in [10] states that for a Tychonoff space X and every metric space (Y,d), the coincidence $(C(X,Y),\tau_{\Gamma})=(C(X,Y),\tau_w)$ is equivalent to the condition that X is a cb-space. Proposition 1.2 in [10] refers to [2] for the proof. In fact, if Y is the space of reals with the usual euclidean metric, the result was proved by van Dowen in [2].

We will present an example that the above mentioned equivalence does not work for any metric space (Y, d) and we will show that it holds for a metric space (Y, d), which contains a non-trivial path.

1. Main result

The following theorem was proved in [2].

Theorem 1.1. Let X be a Tychonoff topological space. The following are equivalent:

(1)
$$(C(X), \tau_{\Gamma}) = (C(X), \tau_{w});$$

(2) X is a cb-space.

A question arises for which metric spaces Y the coincidence τ_{Γ} and τ_w on C(X,Y) implies that X is a cb-space. Of course, if X is a cb-space, then $(C(X,Y),\tau_{\Gamma})=(C(X,Y),\tau_w)$.

We have the following result.

Theorem 1.2. Let X be a Tychonoff topological space and (Y,d) be a metric space which contains a nontrivial path. If $(C(X,Y), \tau_{\Gamma}) = (C(X,Y), \tau_w)$, then X is a cb-space.

Proof. Let $\eta \in LSC^+(X)$, $h:[0,1] \to Y$ be a continuous function such that $h(z) \neq h(0)$ for every $z \neq 0$ and define f(x) = h(0) for all $x \in X$. Then $f \in C(X,Y)$, and if $\eta^* = min\{\eta, d(h(0), h(1))/2\}$, then $\eta^* \in LSC^+(X)$.

Since $(C(X,Y),\tau_{\Gamma})=(C(X,Y),\tau_{w})$, there is $\varphi\in C^{+}(X)$ such that

$$B(f,\varphi) \subseteq B(f,\eta^*).$$

We claim that $\varphi(x) \leq \eta^*(x)$ for every $x \in X$, otherwise, $\eta^*(x_0) < \varphi(x_0)$ for some $x_0 \in X$. Let $O(x_0)$ be an open neighbourhood of x_0 such that $\eta^*(x_0) < \varphi(x)$ for every $x \in O(x_0)$. Since $\{z \in [0,1] : d(h(0),h(z)) \geq \eta^*(x_0)\}$ is a nonempty compact subset of [0,1], it has a minimum b > 0. Note that $d(h(0),h(z)) < \eta^*(x_0)$ for all $z \in [0,b)$, and $d(h(0),h(b)) = \eta^*(x_0)$.

Since X is a Tychonoff space, there is a continuous function $H: X \to [0,b]$ such that $H(x_0)=b$ and H(x)=0 for every $x \notin O(x_0)$. Define the function $G: X \to Y$ as follows: G(z)=h(H(z)) for every $z \in X$. Then G is a continuous function which is different from f and

$$G \in B(f, \varphi),$$

since for $x \in O(x_0)$, $d(f(x), G(x)) = d(h(0), h(H(x)) \le \eta^*(x_0) < \varphi(x)$, and for $x \notin O(x_0)$, $d(f(x), G(x)) = d(h(0), h(0)) = 0 < \varphi(x)$. This implies $G \in B(f, \eta^*)$, which is a contradiction, since $d(f(x_0), G(x_0)) = d(h(0), h(b)) = \eta^*(x_0)$. In conclusion, we found $\varphi \in C^+(X)$ with $\varphi \le \eta^* \le \eta$, so X is a cb-space.

The condition on Y to have a nontrivial path in Theorem 1.2 is essential.

Example 1.1. Let X be a connected topological space which is not countably paracompact (the Niemytzki plane is such a space). Let (Y, d) be a metric space with the 0-1 metric. Then $(C(X,Y),\tau_p)$ is a discrete topological space. Thus we have $(C(X,Y),\tau_p)=(C(X,Y),\tau_u)=(C(X,Y),\tau_w)=(C(X,Y),\tau_r)$. Of course such a space X cannot be a cb-space.

Theorem 1.3. Let X be a Tychonoff topological space and (Y,d) be a metric space which contains a nontrivial path. The following are equivalent:

- (1) $(C(X,Y), \tau_{\Gamma}) = (C(X,Y), \tau_{w});$ (2) X is a cb-space.
 - 2. Other results

If X is a pseudocompact space and (Y,d) is a metric space, then $(C(X,Y),\tau_w)=(C(X,Y),\tau_u)$ [13, Proposition 2.1].

Theorem 2.1. Let X be a Tychonoff space and (Y,d) be a metric space with a non isolated point. The following are equivalent:

- (1) $(C(X,Y), \tau_w) = (C(X,Y), \tau_u);$
- (2) X is pseudocompact.

Proof. It is sufficient to prove that $(1) \Rightarrow (2)$. Suppose that X is not pseudocompact. There is a continuous real-valued function h which is not bounded. Consider the function $g: X \to R$ defined as follows: g(x) = |h(x)| + 1 for every $x \in X$.

Let $y \in Y$ be a non isolated point in Y and $\{y_n : n \in \omega\}$ be a sequence in Y which converges to y such that $y_n \neq y$ for every $n \in \omega$. Let $f: X \to Y$ be a function defined as follows: f(x) = y for every $x \in X$. For every $n \in \omega$ define a function $f_n: X \to Y$ as $f_n(x) = y_n$ for every $x \in X$. It is easy to verify that $\{f_n: n \in \omega\}$ converges to f in $(C(X,Y), \tau_u)$. However $\{f_n: n \in \omega\}$ fails to converge to f in $(C(X,Y), \tau_w)$, since

$$f \in B(f, 1/g) = \{l \in C(X, Y) : d(f(x), l(x)) < 1/g(x) \text{ for all } x \in X\},\$$

but no f_n is contained in B(f, 1/g).

The condition on a metric space (Y, d) to have a non isolated point in Theorem 2.1 is essential.

Example 2.1. Let X be a connected topological space which is not pseudocompact (the Niemytzki plane is such a space). Let (Y,d) be a metric space with the 0-1 metric. Then $(C(X,Y),\tau_p)$ is a discrete topological space. Thus we have $(C(X,Y),\tau_p)=(C(X,Y),\tau_u)=(C(X,Y),\tau_w)$.

The following theorem was proved by Hansard in [6].

Theorem 2.2. Let X be a Tychonoff space and (Y,d) be a metric space with a non isolated point. The following are equivalent:

- (1) $(C(X,Y), \tau_{\Gamma}) = (C(X,Y), \tau_{u});$
- (2) X is countably compact.

Of course, if X is countably compact, then for every metric space (Y,d) we have $(C(X,Y),\tau_{\Gamma})=(C(X,Y),\tau_u)$. However the condition on a metric space (Y,d) to have a non isolated point in Theorem 2.2 is essential.

Example 2.2. Let X be a connected topological space which is not countably compact (the Niemytzki plane is such a space). Let (Y, d) be a metric space with the 0-1 metric. Then $(C(X,Y), \tau_p)$ is a discrete topological space. Thus we have $(C(X,Y), \tau_p) = (C(X,Y), \tau_u) = (C(X,Y), \tau_\Gamma)$.

3. Topological properties of τ_{Γ} and τ_{w}

Theorem 3.1. Let X be a Tychonoff space and (Y,d) be a metric space which contains a nontrivial path. The following are equivalent:

- (1) $(C(X,Y), \tau_{\Gamma})$ is metrizable;
- (2) $(C(X,Y), \tau_{\Gamma})$ is a p-space;
- (3) $(C(X,Y), \tau_{\Gamma})$ is q-space;
- (4) $(C(X,Y), \tau_{\Gamma})$ is 1st countable;
- (5) $(C(X,Y), \tau_{\Gamma})$ is a Frechet space;
- (6) $(C(X,Y), \tau_{\Gamma})$ is sequential;
- (7) $(C(X,Y), \tau_{\Gamma})$ is a k-space;
- (8) $(C(X,Y), \tau_{\Gamma})$ is countably tight;
- (9) $(C(X,Y), \tau_{\Gamma})$ is a M-space;
- (10) $(C(X,Y), \tau_{\Gamma})$ is pointwise countable type;
- (11) $(C(X,Y), \tau_{\Gamma})$ is a r-space;
- (12) X is countably compact;
- (13) $(C(X,Y), \tau_{\Gamma})$ is radial;
- (14) $(C(X,Y), \tau_{\Gamma})$ is pseudoradial.

Proof. We prove $(8) \Rightarrow (12)$. Assume that X is not countably compact. There is a sequence $\{x_n : n \in \omega\}$ in X which has no cluster point in X. Let $\{U_n : n \in \omega\}$ be a pairwise disjoint sequence of open neighborhoods of the x_n 's. There is a continuous function $H : [0,1] \to Y$ such that

 $H(x) \neq H(0)$ for every $x \in (0,1]$. Let f_0 be the function defined as $f_0(x) = H(0)$ for every $x \in X$. As in [10] define

$$L = \{g \in C(X,Y) : g(x_n) \neq H(0) \text{ for every } n \in \omega\}.$$

We claim that f_0 is in the closure of L in $(C(X,Y),\tau_{\Gamma})$. Let G be an open set in $X \times Y$ such that $f_0 \in F_G$.

For every $n \in \omega$ there are V_n , an open neighborhood of x_n and $\epsilon_n > 0$ such that

$$\overline{V_n} \subseteq U_n \text{ and } V_n \times S(H(0), \epsilon_n) \subset G,$$

where $S(H(0), \epsilon_n) = \{ y \in Y : d(y, H(0)) < \epsilon_n \}.$

For every $n \in \omega$ let $1 > \eta_n > 0$ be such that $d(H(0), H(z)) < \epsilon_n$ for every $z \in [0, \eta_n]$ and $\{\eta_n : n \in \omega\}$ converges to 0.

For every $n \in \omega$ define the continuous function $h_n : \overline{V_n} \to [0, \eta_n]$ such that $h_n(x_n) = \eta_n$ and $h_n(\overline{V_n} \setminus V_n) = 0$. Let $h : X \to [0, 1]$ be a continuous function defined as follows:

$$h(x) = h_n(x)$$
 if $x \in \overline{V_n}$ for some $n \in \omega$ and $h(x) = 0$ otherwise.

It is easy to verify that the function $F: X \to Y$ defined as F(x) = H(h(x)) for every $x \in X$ is a continuous function and $F \in F_G$.

Since $(C(X,Y), \tau_{\Gamma})$ is countably tight, there is a countable subset $L' = \{f_n : n \in \omega\}$ of L such that f_0 is in the closure of L' in $(C(X,Y), \tau_{\Gamma})$.

Put $M = \{(x_n, f_n(x_n)) : n \in \omega\}$. Then M is a closed set in $X \times Y$ and $graph(f_0) \subset (X \times Y) \setminus M$, but no $graph(f_n)$ is contained in $(X \times Y) \setminus M$, a contradiction.

The implications $(12) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3)$ are well known; for $(3) \Rightarrow (4)$ note that $(C(X,Y),\tau_{\Gamma})$ is a Tychonoff space and it is a submetrizable space. The implication then follows from the fact that a regular q-space whose points are G_{δ} is 1st countable [4].

The implications $(4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7)$ are well known; as for $(7) \Rightarrow$ (8) see [10]. The implications $(4) \Rightarrow (10) \Rightarrow (11) \Rightarrow (3)$ and $(1) \Rightarrow (9) \Rightarrow (3)$ are well known. $(12) \Rightarrow (13) \Rightarrow (14)$ are clear. To prove that $(14) \Rightarrow (6)$ we use the idea from the proof of Theorem 2.7 in [5].

Theorem 3.2. Let X be a Tychonoff space and (Y,d) be a completely metrizable space which contains a nontrivial path. The following are equivalent:

- (1) $(C(X,Y), \tau_{\Gamma})$ is completely metrizable;
- (2) $(C(X,Y), \tau_{\Gamma})$ is Čech complete;
- (3) $(C(X,Y), \tau_{\Gamma})$ is sieve complete;
- (4) $(C(X,Y), \tau_{\Gamma})$ is hereditarily Baire;
- (5) X is countably compact.

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are well known. We prove $(4) \Rightarrow (5)$. If X is not countably compact, there is a sequence $\{x_n : n \in \omega\}$ in X which has no cluster point in X. There is a continuous function $L:[0,1]\to Y$ such that $L(0)\neq L(1)$. By [3] there is a homeomorphism $H:[0,1]\to H([0,1])\subseteq Y$ such that H(0)=L(0) and H(1)=L(1). For each $n \in \omega$ define, similarly as in [10],

$$S_n = \{ f \in C(X, Y) : f(x_k) = H(0) \text{ for every } k \ge n \},$$

and put $S=\bigcup_{n\in\omega}S_n$. It is easy to verify that S_n is closed in $(C(X,Y),\tau_\Gamma)$ for every $n\in\omega$, since S_n is closed in $(C(X,Y),\tau_p)$. Also, S is closed in $(C(X,Y),\tau_\Gamma)$. If $f \in C(X,Y) \setminus S$, then $f(x_n) \neq H(0)$ for infinitely many n (w.l.o.g., all n). Define

$$U = X \times Y \setminus (\{x_n : n \in \omega\} \times \{H(0)\}).$$

Then graph $(f) \subset U$ and $F_U \subset C(X,Y) \setminus S$.

Put now $T = S \cap \{f \in C(X,Y) : f(X) \subseteq H([0,1])\}$ and for each $n \in \omega$, $T_n = S_n \cap \{f \in C(X,Y) : f(X) \subseteq H([0,1])\}.$ $T = \bigcup_{n \in \omega} T_n$. Then T and $T_n, n \in \omega$ are closed in $(C(X,Y), \tau_{\Gamma})$.

We will show that each T_n is nowhere dense in T. Assume, there is an open set V in $X \times Y$ such that $\emptyset \neq F_V \cap T \subseteq T_n$. Let $f \in F_V \cap T_n$. Then $f(x_n) = H(0)$. There is $\epsilon > 0$ and an open neighbourhood G of x_n such that

$$G \times S(H(0), \epsilon) \subseteq V$$
 and $G \cap \{x_j : j \in \omega\} = \{x_n\}.$

Put

$$\eta = \min\{\epsilon/2, d(H(0), H(1))\}.$$

There must exist $a \in (0,1)$ such that for every $s \in (a,1)$, $d(H(0),H(s)) \ge$ $\eta/2$. There is an open set $G_1 \subset G$, $x_n \in G_1$ with

$$d(f(x), H(0)) < \eta/2$$
 for every $x \in G_1$.

For every $x \in G_1$, $H^{-1}(f(x)) \in [0, a]$. Let $\alpha > 0$ be such that $a + \alpha < 1$ and $d(H(s), H(t)) < \eta/2$ for every $s, t \in [0, 1]$ with $|s - t| \le \alpha$.

Let $g: X \to [0, \alpha]$ be a continuous function such that $g(x_n) = \alpha$ and g(x) = 0 for every $x \notin G_1$. Then the function $l: X \to Y$ defined as $l(x) = H(g(x) + H^{-1}(f(x)))$ for every $x \in X$ belongs to the set $F_V \cap T \setminus T_n$, a contradiction.

The proof of (5) \Rightarrow (1) follows from Theorem 3.1 and [10, Theorem 3.1].

Example 2.2 shows that the condition on Y to have a nontrivial path in Theorems 3.1 and 3.2 is essential.

Theorems 3.3 and 3.4 have been proved in [11] but these can also be proved using the ideas of the proofs of Theorems 3.1 and 3.2 above.

Theorem 3.3. Let X be a Tychonoff space and (Y,d) be a metric space which contains a nontrivial path. The following are equivalent:

```
(1) (C(X,Y), \tau_w) is metrizable;
```

- (2) $(C(X,Y), \tau_w)$ is a p-space;
- (3) $(C(X,Y), \tau_w)$ is q-space;
- (4) $(C(X,Y), \tau_w)$ is 1st countable;
- (5) $(C(X,Y), \tau_w)$ is a Frechet space;
- (6) $(C(X,Y), \tau_w)$ is sequential;
- (7) $(C(X,Y), \tau_w)$ is a k-space;
- (8) $(C(X,Y), \tau_w)$ is countably tight;
- (9) $(C(X,Y), \tau_w)$ is a M-space;
- (10) $(C(X,Y), \tau_w)$ is pointwise countable type;
- (11) $(C(X,Y), \tau_w)$ is a r-space;
- (12) X is pseudocompact;
- (13) $(C(X,Y), \tau_w)$ is radial;
- (14) $(C(X,Y), \tau_w)$ is pseudoradial.

Theorem 3.4. Let X be a Tychonoff space and (Y,d) be a complete metric space which contains a nontrivial path. The following are equivalent:

- (1) $(C(X,Y), \tau_w)$ is completely metrizable;
- (2) $(C(X,Y), \tau_w)$ is Čech complete;
- (3) $(C(X,Y), \tau_w)$ is sieve complete;
- (4) $(C(X,Y), \tau_w)$ is hereditarily Baire;
- (5) X is pseudocompact.

Example 2.1 shows that the condition on Y to have a nontrivial path in Theorems 3.3 and 3.4 is essential.

Acknowledgement

The authors would like to thank the referee for his (her) useful comments.

References

- Di Maio, G.—Holá, Ľ.—Holý, D.—McCoy, R.A.: Topologies on the space of continuous functions, Topology Appl. 86 (1998), 105–122.
- [2] van Douwen, E.K.: Nonnormality or hereditary paracompactness of some spaces of real functions, Topology Appl. 39 (1991), 3–32.
- [3] Engelking, R.: General Topology, PWN 1977.
- [4] Gruenhage, G.: Generalized metric spaces in Handbook of Set-Theoretic Topology. Ed. K. Kunnen and J. Vaughan. Amsterdam: North Holland, 1984, 423–501.
- [5] Gomez-Perez, J.—McGovern, W.W.: The m-topology on C_m(X) revisited, Topology Appl. 153 (2006), 1838–1848.
- [6] Hansard, J.D.: Function space topologies, Pacific J. Math. 35 (1970), 381–388.
- [7] Hewitt, E.: Rings of real-valued continuous functions I, Trans. Amer. Math. Soc. 64 (1948), 45–99.
- [8] Holá, Ľ.—Holý, D.: Spaces of lower semicontinuous set-valued maps, Math. Slovaca 63 (2013), 863–870.
- [9] Holá, Ľ.—McCoy, R.A..: Compactness in the fine and related topologies, Topology Appl. 109 (2001), 183–190.
- [10] Holá, Ľ.—Zsilinszky, L.: Completeness properties of the graph topology, Topology Proc. 46 (2015), 1–14.
- [11] Jindal, V.—Kundu, S.: Metrizability, Completeness and Connectedness of the Fine Topology on C(X,Y), submitted.
- [12] Mack, J.: On a class of countably paracompact spaces, Proc. Amer. Math. Soc. 16 (1965), 467–472.
- [13] McCoy, R.A.: Fine topology on function spaces, Internat. J. Math. Math. Sci. ${\bf 9}$ (1986), 417–424.
- [14] Michael, E.: Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182.
- [15] Naimpally, S.A.: Graph topology for function spaces, Trans. Amer. Math. Soc. 123 (1966), 267–272.

(Holá) Academy of Sciences, Institute of Mathematics

Štefánikova 49, 81473 Bratislava, Slovakia

 $E\text{-}mail\ address{:}\ \mathtt{hola@mat.savba.sk}$

(Jindal) Department of Mathematics,

Malaviya National Institute of Technology Jaipur

 $E ext{-}mail\ address: \ {\tt vjindal.maths@mnit.ac.in}$