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METRIC CONSTRUCTIONS OF TOPOLOGICAL
INVARIANTS

ITTAY WEISS

Abstract. We present a general mechanism for obtaining topo-
logical invariants from metric constructs. In more detail, we de-
scribe a process which, under very mild conditions, produces topo-
logical invariants out of a construction on a metric space together
with a choice of scale (a non-negative value at each point of the
space). Through Flagg’s metric formalism of topology the results
are valid for all topological spaces, not just the metrizable ones. We
phrase the result in much greater generality than required for the
topological applications, using the language of fibrations. We show
that ordinary topological connectedness arises metrically, and we
obtain metrically defined theories of homology and of homotopy.

1. Introduction

The classical definition of metric space makes explicit use of R as the
codomain of the metric function. However, we note that for the immediate
formulation of the axioms of a metric space, all that is required is the
existence of 0 ∈ R, the ordering on R (but not its linearity), and the
operation of addition. Surely some further algebraic properties play a
role, but it is not of any significant importance from a metric point-of-view
that the metric function takes values in an ordered field - the field axioms
are unnecessarily strong and the ordering unnecessarily linear. Further,
only slightly beneath the surface of the theory of metric spaces lies the
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fact that the completeness of R is vital for a successful theory. However,
there are two notions of completeness to consider; order theoretic and
analytic. In fact, it is more natural to consider metric spaces valued in
[0,∞], emphasising the greater importance of the order-theoretic notion
of completeness. Of course, for [0,∞] there is little difference between the
two concepts, and together with too hastily expecting metric functions to
take values in an ordered field, the categoricity of complete ordered fields
may lead one to view R as the, up to isomorphism, only available choice
for the codomain of a distance function. However, this rigidity collapses
as soon as a more refined order theoretic perspective is allowed to take
precedence.

In light of the above, it is natural to ask whether one can usefully
replace [0,∞] by other structures to obtain a pleasant theory of more
general metric spaces. In other words, one is called upon to list the
properties of [0,∞] that are truly at the heart of the usual analytical
arguments and thus axiomatise the structures that can serve as codomains
of metric spaces.

This call was addressed by Kopperman ([14]) where the list of axioms
describes a value semigroup with positives, i.e., an ordered semigroup
together with a specified subset satisfying certain properties, and by Flagg
([9]) where the axioms describe a value quantale, i.e., a complete lattice
with a binary operation satisfying a large amount of distributivity laws,
and an important technical condition that identifies a certain subset to
act as the set of positives. Interestingly, each of these formalisms allows
for the metrizablity of all topological spaces, and that raises a natural
question: can topology be effectively practiced using these metric models?

A theoretically affirmative answer was given in [19] where it is shown
that the category Top is equivalent to the category Metc of all L-valued
metric spaces, where L is allowed to range over all value quantales, with
morphisms the continuous functions. The standard models of topology
and the L-valued metric ones are thus different representations of the same
abstract category, and thus the models are equally powerful. However,
that result does not settle the question of whether the L-valued metric
formalism is convenient. We mention [4, 5, 18] - recent results utilising
the L-valued metric models for the study of topology. Part of the aim of
this work is to provide further evidence in support of the L-valued metric
formalism for general topology.

Let us briefly recount Flagg’s L-valued metric formalism. The reader
is referred to [19] for a short yet detailed presentation. A value quantale
is a complete lattice L, with 0 < ∞, where 0 is the smallest element in
L and ∞ the largest, together with a commutative binary operation +
satisfying 0 + a = a, a +

∧
S =

∧
a + S, a =

∧
{b ∈ L | b � a}, and so
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that a ∧ b � 0 whenever a, b � 0, for all a, b ∈ L and S ⊆ L. Here
∧

is
the meet in L, b+ S is defined element-wise, and b � a is the well above
relation, i.e., for all S ⊆ L, if a ≥

∧
S, then b ≥ s for some s ∈ S.

An L-valued metric space is then a triple (X,L, d) where X is a set, L
is a value quantale, and d : X×X → L is a function satisfying d(x, x) = 0
and d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ L. With every such L-
valued metric space there is associated its open ball topology consisting
of the sets U ⊆ X such that for all x ∈ U there exists ε � 0 with
Bε(x) ⊆ U . Here Bε(x) = {y ∈ X | d(x, y) ≺ ε}. Flagg then proves that
for every topological space (X, τ) there exists a value quantale L and an
L-valued metric space (X,L, d) whose open ball topology is τ . A categor-
ical perspective is taken in [19] where this metrization result is slightly
strengthened as follows. Let Metc be the category whose objects are all
L-valued metric spaces (where L is allowed to vary), and whose morphisms
f : (X,LX , dX)→ (Y,LY , dY ) are the functions f : X → Y satisfying the
familiar continuity condition: for all x ∈ X and ε � 0LY

, there exists
δ � 0LX

such that dY (fx, fy) ≺ ε for all y ∈ X with dX(x, y) ≺ δ. The
open ball topology construction is then a functor Metc → Top which is
in fact an equivalence of categories.

The main purpose of this work is to develop general machinery pro-
ducing, among others, the following result. Consider an L-valued metric
space (X,L, d) together with a specification of a non-negative value at
each point, thought of as a scale on the space. Consider the diagram

ScMet Metc

A
F F̂

where ScMet is a suitably constructed category of scaled L-valued metric
spaces. We show that any functor F gives rise to a canonical functor F̂ ,
provided A is small complete. Due to the equivalence Metc ' Top
one obtains a general method for producing topological invariants. One
may replace Metc by Metu, the subcategory of Metc consisting of the
uniformly continuous functions, namely those f satisfying the uniform
version of the continuity condition from above: for all ε � 0LY

there exists
δ � 0LX

such that d(fx, fy) ≺ ε for all x, y ∈ X with d(x, y) ≺ δ. The
resulting invariants are than uniform invariants. The result is exemplified
by considering three particular L-valued metric constructions which give
rise to topological (resp. uniform) invariants related to connectedness,
homology, and homotopy.

Rather than taking a geodesic path toward the result, the presenta-
tion takes the scenic route, framing the construction in the language of
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Grothendieck fibrations. The plan of the paper is as follows. Section 2
introduces scales on spaces (X,L, d); roughly the L-valued metric ana-
logues of open coverings. Section 3 then presents, in a rather expository
fashion, multivalued fibrations as a convenient framework for the rela-
tionship between L-valued metric spaces and scales on them. Section 4
is concerned with stating and establishing the main construction - a ma-
chine for generating invariants on the codomain of a multivalued fibration
from a suitable functor. Finally, Section 5 specialises the general result
to obtain three topological invariants: connectedness, a variant of the
fundamental groupoid, and a homology theory.

2. Scales

In this section we introduce the concept of scale on an L-valued metric
space, and the accompanying notions of open sets and continuity induced
by a choice of a scale system.

Definition 2.1. A scale on a space (X,L, d) is a function R : X → L
with R(x) � 0 for all x ∈ X. The quadruple (X,L, d,R) is then called a
scaled space and R is a scale on X. A morphism f : (X,LX , dX , RX) →
(Y,LY , dY , RY ) is a function f : X → Y which is tolerant of the scales, in
the sense that dX(x, x′) ≺ RX(x) implies dY (fx, fx′) ≺ RY (fx), for all
x, x′ ∈ X.

It is immediate that all scaled spaces and their tolerant morphisms
form a category, denoted by ScMet.

Definition 2.2. A scale system Σ is a full subcategory of ScMet such
that for every space (X,L, d) there exists at least one scale R for which
(X,L, d,R) is an object of Σ, and so that if R1, R2 satisfy (X,L, d,Ri) ∈
Σ, i = 1, 2, then (X,L, d,R) ∈ Σ where R : X → L is given by Rx =
R1x ∧R2x.

In other words, a scale system is a choice of at least one scale for every
possible space, closed under point-wise meets over the same space. We
shall primarily be interested in the scale systems Σc = ScMet and Σu,
the full subcategory spanned by the scaled spaces whose scale function is
constant. Obviously, the hierarchy of scale systems is immense (see [18]
for more examples); we consider just one more example, the scale system
Σg. Let g be a choice, for each value quantale L, of an element gL � 0 in
L. Then the scale system Σg consists, for each space (X,L, d) of just one
scale: x 7→ gL. The choice gL is to be thought of as what is considered
negligibly small distances in L. Generally, we write Σ1 ≤ Σ2 when Σ1 is
a subcategory of Σ2 (e.g., Σg ≤ Σu ≤ Σc). For the rest of this work let
Σ denote a fixed scale system, and we’ll say “R ∈ Σ on X” as a slightly
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abusive shorthand for “with the obvious space X = (X,L, d), the scaled
space (X,L, d,R) is an object of Σ”.

Definition 2.3. Let (X,LX , dX) and (Y,LY , dY ) be spaces. A function
f : X → Y is Σ-continuous if for every RY ∈ Σ on Y there exists RX ∈ Σ
on X such that f : (X,LX , dX , RX)→ (Y, LY , dY , RY ) is tolerant.

It is straightforward that all spaces together with all Σ-continuous
functions form a category, denoted by MetΣ. It is nothing but a play on
words that Σc-continuity coincides with the usual notion of continuity,
while Σu-continuity coincides with uniform continuity. In other words,
MetΣc = Metc and MetΣu = Metu. Σg-continuous functions need not
be continuous as their graphs may have small (as determined by g) gaps.

Given a scaled space (X,L, d,R) we write BR(x) = {y ∈ X | d(x, y) ≺
R(x)}, and extend the notation to subsets S ⊆ X by means of BR(S) =⋃
x∈S BR(x).

Definition 2.4. Let (X,L, d) be a space. A subset U ⊆ X is Σ-open if
there exists R ∈ Σ on X such that U = BR(U). Σ-closed subsets are
the complements of Σ-open sets, and Σ-clopen subsets are those that are
both Σ-open and Σ-closed.

Evidently, Σc-open (resp. Σc-closed, Σc-clopen) sets are the usual
open (resp. closed, clopen) sets in the induced open ball topology, while
Σu-open (resp. Σu-closed, Σu-clopen) sets yields the notion of uniformly
open (resp. uniformly closed, uniformly clopen) sets (and if d is sym-
metric, then these three notions coincide). For a set to qualify as being
Σg-open, every point in it is required to be surrounded by a ball in the
set whose radius, as far as g is concerned, is not too small.

Proposition 2.5. For a Σ-continuous function f : (X,LX , dX) →
(Y,LY , dY ), the inverse image W = f�(U) of every Σ-open set U ⊆ Y is
Σ-open in X. The converse need not hold.

Proof. Let RY ∈ Σ on Y be a witness for U being Σ-open, i.e., BRY
(U) =

U . Since f is Σ-continuous, there exists RX ∈ Σ on X such that f
is tolerant with respect to these scales. It follows at once then that
BRX

(W ) = W , thus W is Σ-open. That the converse generally fails may
be seen, e.g., by considering Q with its usual metric. Its Σu-open sets are
just ∅ and Q, and thus the inverse image of every function f : Q → Q
preserves Σ-open sets, but, obviously, not all such functions are Σu-
continuous (i.e., uniformly continuous). �

We end this section with the following simple observations. Denote by
τΣ(X,L, d) the collection of all Σ-open subsets of X. Then, for all spaces
X = (X,L, d)
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• ∅, X ∈ τΣ(X).
• τΣ(X) is closed under finite intersections and finite unions (this

would not necessarily be true without the requirement that a scale
system is closed under point-wise meets). In other words, τΣ(X)
is a lattice.

• If Σ1 ≤ Σ2, then τΣ1(X) ⊆ τΣ2(X). In particular, the usual
open ball topology τ(X), which coincides with τΣc(X), is the
ambient complete lattice in which all other lattices τΣ(X) reside
as sublattices.

• A scale system Σ is saturated if for all R,S : X → L with Rx ≥
Sx, if S ∈ Σ on X, then R ∈ Σ on X. Clearly, every scale system
Σ defines a unique saturated scale system Σ̄ containing it, and
it holds that τΣ̄(X) = τΣ(X). Further, a function f : X → Y is
Σ-continuous if, and only if, it is Σ̄-continuous.

3. Multivalued fibrations

In this section we introduce the concept of multivalued fibration as
a framework for the main construction given in the next section. For
the convenience of the reader we include a self-contained discussion of
Grothendieck fibrations, as we notice some similarities with the above
formalism of Σ-continuity.

As motivation, notice that the condition of Σ-continuity can be framed
as follows. Let Metall be the category whose objects are all spaces
(X,L, d) and whose morphisms f : (X,LX , dX) → (Y, LY , dY ) are all
functions (continuous or not) f : X → Y between the underlying sets.
There is then a forgetful functor q : Σ → Metall which forgets the
scale, mapping every tolerant function to itself. The category MetΣ

consisting of the Σ-continuous functions can be described as the subcat-
egory of Metall containing all of the objects but only the morphisms
f : (X,LX , dX) → (Y,LY , dY ) satisfying the lifting condition: for all
eY ∈ Σ with qeY = (Y,LY , dY ), there is a morphism eX

ef−→ eY with
qef = f . In other words Σ carves out of Metall the Σ-continuous
functions as those morphisms that can be lifted along q, provided their
codomain can be lifted.

Let us briefly recall the basics of the theory of Grothendieck fibrations
(see [2] for more details with terminology very close to ours, or [13, 3] for
deeper treatments and different perspectives). Fix a category B. For a
functor F : Bop → Set one constructs the category

´
F whose objects are

all pairs (B, x) with B ∈ ob(B) and x ∈ FB. The morphisms (B, x) →
(B′, x′) are given as follows. For any morphism b : B → B′ in B such
that x = (Fb)(x′), there corresponds a morphism bx,x′ : (B, x)→ (B′, x′).
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Identities and compositions are given as in B, which implies that mapping
(B, x) toB and bx,x′ to b yields a functor p :

´
F → B. Moreover, denoting

by [Bop,Set] the category of functors F : Bop → Set, and by Cat/B the
category of categories over B, namely the category of functors p : E → B
with morphisms corresponding to commuting triangles, the Grothendieck
construction F 7→ (

´
F → B) is functorial.

Identifying the essential image of
´

: [Bop,Set] → Cat/B is achieved
through the notion of discrete Grothendieck fibration. A functor p : E → B
is a discrete Grothendieck fibration if for every b : B → B′ in B and E′

in E with pE′ = B′, there exists a unique e : E → E′ with pe = f . Let
dFib(B) be the category of discrete Grothendieck fibrations p : E → B,
with the obvious notion of morphism of fibrations. There is then a functor
−B : dFib(B) → [Bop,Set] given as follows. For a discrete Grothendieck
fibration p : E → B, and an objectB in B, let EB = {E ∈ ob(E) | pE = B},
the fiber over the object B. Given a morphism b : B → B′, the definition
of discrete Grothendieck fibration yields at once a function Eb : EB′ → EB .
The assignments B 7→ EB and b 7→ Eb are functorial, thus resulting in a
functor pB : Bop → Set. The functoriality of the entire construction is
routinely verified. The above constructions fit together in the following
theorem.

Theorem 3.1. dFib(B) [Bop,Set]
−B

´ is an equivalence of categories.

The discrete case of Grothendieck’s theory of fibrations is somewhat
degenerate, but it illustrates the point well; the theorem above provides
a convenient translation mechanism between functors to Set and discrete
fibrations, where it is generally simpler to work with discrete fibrations.
Grothendieck’s original construction is an extension of the equivalence in
the discrete case, where [Bop,Set] is replaced by [Bop,Cat] and dFib(B)
is replaced by the category Fib(B) of Grothendieck fibrations.

In the context of the above discussion concerning Σ-continuity, we are
led to another extension of the equivalence in the discrete case, namely
when lifts exist but are not unique, nor do different lifts of the same
morphism necessarily have isomorphic domains.

Definition 3.2. A multivalued fibration is a functor p : E → B which is
surjective on objects, with the property that for all b : B → B′ in B, and
E′ in E with pE′ = B′, there exists (a not necessarily unique) e : E → E′

in E with pe = b. If, further, pe = idB implies e is an identity morphism,
and if no two lifts of a given morphism b have the same domain, then p
is a discrete multivalued fibration.

If p : E → B is a discrete multivalued fibration, and EB = {E ∈ ob(E) |
pE = B} is the discrete fiber over B, then, given a morphism b : B → B′,
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one immediately obtains a multivalued function Eb : EB′ → EB , namely
E ∈ Eb(E′) if, and only if, there exists e : E → E′ with pe = b. Let
us thus be explicit about the formalism of multivalued functions. The
category SetMV is the Kleisli category associated to the covariant monad
structure on P∗ : Set→ Set given by unions, where P∗(T ) is the set of all
non-empty subsets of T . In more detail the objects of SetMV are all sets,
and morphisms f : S → T are functions f : S → P∗(T ), with composition
(f ◦ g)(x) =

⋃
y∈g(x) f(y). It is easy to verify that a discrete multivalued

fibration as above gives rise to a functor Bop → SetMV.
The Grothendieck construction

´
F easily adapts to operate on func-

tors F : Bop → SetMV, as follows. The objects of
´
F are pairs (B, x)

with B ∈ ob(B) and x ∈ FB (just as in the classical construction). A mor-
phism (B, x)→ (B′, x′) is a bx,x′ where b : B → B′ satisfies x ∈ (Fb)(x′).
Projecting onto the first coordinate gives a discrete multivalued fibra-
tion

´
F → B. The details are very similar to the classical discrete

Grothendieck fibration case (which is presented in great detail in [2]),
including the following theorem, where dFib(B)MV is the category of dis-
crete multivalued fibrations over B.

Theorem 3.3. dFib(B)MV [Bop,SetMV]
−B

´ is an equivalence of

categories.

Obviously there is a more general theory of multivalued fibrations,
related to appropriate notions of multivalued functors. However, as this
is not the aim of this work, and since the discussion above is sufficient
justification for adopting Grothendieck’s terminology for our purposes,
we postpone the development of the multivalued theory in full to future
work.

Conveniently, every functor q : D → C has a canonical multivalued
fibration p, as in the diagram

E D

B C

p q

associated with it (the horizontal arrows are inclusions), as we now (easily)
establish. Given a functor q : D → C, declare a morphism c : C → C ′ in C
to be light (with respect to q) if it can be lifted to D along q whenever its
codomain can be so lifted, and if at least one lift of the codomain exists
(explicitly, for all D′ with qD′ = C ′ there exists d : D → D′ with qd = c,
and at least one D′ with qD′ = C ′ exists).
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Lemma 3.4. Let q : D → C be a functor. Then restricting C to the light
morphisms results in a subcategory B, restricting D to those morphisms
d such that qd is light results in a subcategory E, and the restriction of q
to E yields a multivalued fibration p : E → B.

Proof. Clearly, if the codomain of c = idC lifts to D, then c lifts to idD.
Given a composition c = c′ ◦ c′′ with c′, c′′ light, if the codomain of c lifts
to D, then lifting first c′ and then c′′ results in a lift of c. Thus B is a
category, and it follows at once that so is E , and obviously p = q|E is a
multivalued fibration. �

The motivating discussion at the beginning of this section can now be
rephrased as the claim that the forgetful functor cΣ→MetΣ, where cΣ
is the subcategory of Σ specified by the Σ-continuous functions, is the
multivalued fibration associated to the forgetful functor q : Σ→Metall.

Remark 3.5. It is interesting to note that the proof that the composition
of two light morphisms is light in the case of Σc (resp. Σu) is a rather
unorthodox proof that the composition of two continuous (resp. uni-
formly continuous) functions is continuous (resp. uniformly continuous),
revealing how formal the result is.

We conclude by noting that much of the above is familiar in the con-
text of continuity or uniform continuity, though is rarely explicitly given
in terms of multivaluedness, namely, in the familiar ε − δ definition of
continuity, the dependence of δ on ε is multivalued.

4. The main construction

Suppose that B is a category whose objects one wishes to study and
that A is a category whose objects one wishes to use as invariants in the
study of B. In other words, we seek a functor B → A. We give conditions
under which such a functor is canonically obtained from a functor D → A
for an auxiliary category D. We phrase the theorem with applications for
Σ→Metall in mind, given in the next section.

Generally, given a functor p : E → B, the fiber EB over B (under p) is
the subcategory of E consisting of those objects that project to B, and
those morphisms that project to idB . The fiber is small if it is small as a
category.
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Theorem 4.1. Consider the diagram

E D

B C

A

p q

F

F̂

π

in which q and F are given functors, p is the multivalued fibration asso-
ciated to q (cf. Lemma 3.4), and the horizontal arrows are inclusions.
Suppose A is small complete, p has small fibers, and for all b : B → B′

and morphisms e1 : E1 → E′ and e2 : E2 → E′ with pe1 = b = pe2, there
exist morphisms e′1 : E → E1 and e′2 : E → E2, each projecting to idB,
with e1 ◦ e′1 = e2 ◦ e′2. Then there exist a functor F̂ : B → A and a natural
transformation

satisfying the universal property depicted in the diagram

E D

B C

A

p q

F

F̂

∀H
∃!β

∀α

which, in more detail, reads as: for all functors H : B → A together
with a natural transformation α from E p−→ B H−→ A to E → D F−→ A there
exists a unique natural transformation β : H → F̂ such that α = π◦(β •p)
(where ◦ is vertical composition and • is horizontal composition of natural
transformations).

Proof. Given an object B in B let EB be the fiber over B and let FB : EB →
A be the restriction of the functor F . By the assumption of small fibers,
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the limit F̂B = lim←−FB exists. For every object E in EB , let πE : F̂B →
FE be the canonical projection. Let now b : B → B′ be a morphism in B,
and we must construct a morphism F̂ b : F̂B → F̂B′. Such a morphism
amounts to constructing a cone

FE′ FE′′

F̂B

Fe′

from F̂B to the diagram given by FB′ , namely E′, E′′ project to B′ and
e′ projects to idB′ . Given any E′ with pE′ = B′ we obtain the morphism
F̂B → FE′ as follows. Firstly, by the lifting property, there exists e : E →
E′ with pe = b, and we may thus consider

FE′

FE F̂B

Fe

πE

obtaining morphisms from F̂B to each object of the diagram FB′ . To ver-
ify independence of the choice of e, suppose that e1, e2 are two morphisms
with pei = b. Then, by the assumed condition on p in the statement of
the theorem, we obtain the commuting diagram

E1 E E2

E′
e1

e
e2

and we must show that Fe1 ◦ πE1
= Fe2 ◦ πE2

. Notice that applying F
to the top part of this diagram yields a portion of the diagram FB . We
thus have

F̂B

FE1 FE FE2

FE′

πE1 πE

πE2

Fe1
Fe

Fe2

in which all triangles commute, and thus the entire diagram commutes,
yielding Fe1 ◦ πE1

= Fe ◦ πE = Fe2 ◦ πE2
, as required.
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The morphisms F̂B → FE′ are thus well-defined, and we now show
that they form a cone over FB′ , namely that the outer part of the diagram

FE′1 FE′2

FE1 FE2

F̂B

Fe′

Fe1
Fe

Fe2

πE1
πE2

commutes for all e′ : E′1 → E′2 with pe′ = idB′ . For the rest of the diagram
the morphisms e1 and e2 may be chosen arbitrarily, as long as ei has E′i
as codomain and pei = b. For a given morphism e′ proceed as follows.
Form the commutative diagram

E1 Et E′1

E2 E′2

es

e

et

e′

e2

by choosing e2 and et to satisfy pe2 = b = pet, and then, again by
the assumed condition on p in the statement of the theorem, add the
morphisms e and es, which satisfy pe = idB = pes. We then take e1 =
et ◦ es, and note that e1 and e2 may be used in the diagram above. Since
pe = idB it follows that the inner triangle in that diagram commutes,
while the trapezoid commutes since it is simply F applied to the auxiliary
commutative diagram. The commutativity of the entire diagram follows
and with it the claim regarding the cone over FB′ .

We thus obtain F̂ b : F̂B → F̂B′ for each b : B → B′. The functoriality
of the construction follows easily. Indeed, to verify that F̂ idB : F̂B → F̂B
is the identity morphism all we need to do is show that πE ◦ F̂ idB = πE ,
for all E with pE = B. Since the diagram

F̂B F̂B

FE′ FE

F̂ idB

πE′ πE

Fe

commutes for all e : E′ → E with pe = idB , choosing e = idE gives the

desired equality. Finally, given B B′ B′′

b′′=b′◦b

b b′ then, again, to
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show that F̂ b′′ = F̂ b′ ◦ F̂ b one needs to examine the diagram

F̂B F̂B′ F̂B′′

FE′′

F̂ b′′

F̂ b F̂ b′

πE′′

and argue for the equality of the two mophirms F̂B → FE′′, for
each E′′ with pE′′ = B′′, which we now fix. By first lifting b′ and

then lifting b we may find E E′ E′′

e′′=e′◦e

e e′ projecting precisely to

B B′ B′′

b′′=b′◦b

b b′ . Applying F , the diagram above is augmented
to become

F̂B F̂B′ F̂B′′

FE FE′ FE′′

πE

F̂ b′′

F̂ b F̂ b′

πE′′

Fe

Fe′′

Fe′

in which, by definition of F̂ , each of the squares commutes, as well as the
outer part of the diagram (consisting of the two bent morphisms and the
outer vertical morphisms). The required equality is now a simple diagram
chase.

The canonical natural transformation π is given, for all objects E in
E , by the components πE : F̂ (pE) → FE, the canonical projection from
the limit F̂ (pE) to FE. The naturality condition

F̂ (pE) F̂ (pE′)

FE FE′

F̂ (pe)

πE πE′

Fe

for a morphism e follows by the definition of F̂ . As for the universal
property, suppose H : B → A is a functor together with a natural trans-
formation α as in the main diagram above. The uniqueness of a natural
transformation β is immediate, since the property of β is expressed by
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the commutativity of the diagram

H(pE) F̂ (pE)

FE

β(pE)

αE
πE

for all objects E. In particular, fixing an object B in B, we obtain the
commutativity of

HB F̂B

FE

βb

αE πE

for all object E with pE = B. Since the πE are the projections from
F̂B to its defining diagram, βb is uniquely determined by the αE . To
conclude the proof we establish the existence of β. For an object B in B,
objects E1, E2 with pEi = B, and morphisms e : E1 → E2 with pe = idB,
consider the diagram

FE1 FE2

HB

Fe

αE1
αE2

which may be re-written as

FE1 FE2

HB HB

Fe

αE1

H(pe)

αE2

since H(pe) = idHB . The diagram commutes by the naturality of α. We
have thus shown that HB forms a cone over the diagram FB defining F̂B,
and thus obtain the morphisms βb : HB → F̂B and the commutativity of

HB F̂B

H(pE) FE

βb

idB πE

αE
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which gives at once the desired decomposition of α. It thus remains to
verify the naturality of β, for which we consider the diagram

HB F̂B FE

HB′ F̂B′ FE′

Hb

αE

βB πE

F̂ b Fe

αE′

βB′ πE′

and we aim to establish the commutativity of the left square. To that
end, it suffices to prove that the two morphisms HB → FE′ along the
solid part of the diagram are equal, for all E′ with pE′ = B′. But for
such E′ a simple chase around the diagram, using the definition of β and
the naturality of α as needed, yields the desired equality, and with it the
proof is complete. �

Noting that q : D → C, other than give rise to the multivalued fibration
p, played no role in the proof, we obtain the following corollary, which is
in fact a restatement of the theorem.

Theorem 4.2. Let p : E → B be a multivalued fibration satisfying the
same conditions as in the theorem above. Then for every small complete
category A the assignment F 7→ F̂ yields a functor [E ,A]→ [B,A] between
the functor categories to A.

Proof. The assignment on natural transformations is given by the univer-
sal property, and functoriality follows by it as well. �

5. Topological invariants

In this section we consider three L-valued metric constructions giving
rise, respectively, to connectedness, a variant of homology, and a variant
of the fundamental groupoid. The constructions are valid for any scale
system Σ. The topological invariants are obtained when taking Σ = Σc,
while choosing Σ = Σu yields uniform invariants.

In more detail, let A be an arbitrary category which is small complete.
Given any scale system Σ consider the forgetful functor q : Σ→Metall.
Let p : cΣ → MetΣ be the multivalued fibration associated to q (cf.
Lemma 3.4). It is straightforward to verify that the conditions of Theo-
rem 4.1 are satisfied (we note that the requirement on the scale system
to be closed under point-wise meets is crucial), and thus any functor
F : Σ → A gives rise to a functor F̂ : MetΣ → A. F̂ computes ob-
jects in A which are invariant with respect to isomorphisms in MetΣ.
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In particular, given a single functor Σc → A, one obtains, for every scale
system Σ the functor Σ → Σc → A, and thus corresponding invariants.
For Σ = Σc, these are topological invariants since the isomorphisms in
MetΣc are continuous functions with continuous inverses, namely homeo-
morphisms. For Σu the isomorphisms in MetΣu are uniformly continuous
functions with uniformly continuous inverses, and thus the invariants are
uniform invariants. In the three examples below we simply present one
functor Σc → A, and then speak freely of the resulting topological and
uniform invariants. We keep the discussion somewhat informal.

All of the constructions pass through the category Tol of tolerance
spaces, namely pairs (X,T ) where T is a symmetric and reflexive relation
on X. The morphisms f : (X,T ) → (Y, S) in Tol are the tolerant func-
tions, namely functions f : X → Y satisfying (fx)S(fy) for all x, y ∈ X
with xTy. The concept goes back to Poincaré (see [16]) but more formally
introduced by Zeeman in [20] (see [15] for a modern perspective, includ-
ing historical remarks). It is straightforward that, given a scaled space
(X,L, d,R), defining xTy precisely when d(x, y) ≺ Rx is a reflexive rela-
tion. Taking its symmetric closure yields a tolerance space, giving rise to
a functor ScMet → Tol. The reference of importance for the invariants
we introduce below is [17] where the homotopy and homology of toler-
ance spaces are studied (see also [7] for deeper results on the homology of
relations).

5.1. Connectedness. Firstly, we recast the L-valued metric character-
isation of connectedness given in [18] in the language of the machinery
above. Consider the category A = {False→ True} with only two objects
and three morphisms. For a tolerance space (X,T ) let T̂ be the transitive
closure of T . Consider the diagram

ScMetc ScMet Tol

Metc Metall

A

c?

ĉ?

where the functor Tol→ A maps (X,T ) to True if, and only if, T̂ is the
trivial relation X × X. Then, by the results of [18], for X = (X,L, d),
ĉ?(X) = True precisely when X is connected in the classical topological
sense. The uniform invariant corresponding to ĉ? is precisely the notion
of uniform connectedness (also known as Cantor connectedness).
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More generally, consider the diagram

ScMetc ScMet Tol

Metc Metall Eq

Set

cc

ĉc

where cc(X,T ) is the set of equivalence classes of T̂ . Then ĉc(X) is the set
of quasi-components of X in the classical topological sense (i.e., the quasi-
component of x ∈ X is the intersection of all clopen subsets containing
x). The uniform variant of ĉc is given by the uniform quasi-components.

5.2. Homology. To address homology we consider the category sSet of
simplicial sets (see, e.g., [10]) and the category cSet of cubical sets (see,
e.g., [11] or [12]), recalling that an object in each of these categories yields
a chain complex, and thus homology group functors sSet, cSet → Ab.
Let ∆n (resp. �n) be the set of vertices of the standard n-simplex (resp.
n-cube) endowed with the tolerance relation given by adjacency. For a
tolerance space (X,T ) one may follow [17] and define a simplicial set
whose simplices are the tolerance functions ∆n → X or one may define
a cubical set whose cubes are the tolerant functions �n → X (which is
essentially what [1] does, though not explicitly factored through tolerance
spaces). Consider the diagram

ScMetc ScMet Tol

Metc Metall sSet cSet

Ab

cHn

sHnĉHn

ŝHn

where cHn is the n-th homology computed via cSet and sHn is the n-
th homology computed via sSet. The authors of [1] refer to cHn as
discrete homology of classical metric spaces, and their remarks in [1, p.
904, Section 7, (3)] is the statement that the uniform invariant ĉH0 of
a punctured disk is trivial. It is not hard to see that the topological
invariant ĉH0 of a punctured disc is isomorphic to Z. More generally,
both topological invariants ŝH0(X) and ĉH0(X) are isomorphic to the
free abelian group on the quasi-components of X. At this point, while an
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equivalence is certainly expected, we do not know the precise relationship
between ĉHn and ŝHn for arbitrary n.

5.3. Homotopy. In [17] the notion of homotopy for tolerance spaces
is given, briefly, as follows. Two tolerant functions f, h : X → Y be-
tween tolerance spaces are homotopic if there exists a finite sequence
g1, . . . , gn : X → Y of tolerant functions such that g1 = f , gn = h, and,
for all 1 ≤ k < n, xTx′ implies (gk(x))T (gk+1(x)) for all x, x′ ∈ X. Such
a sequence is called a homotopy. Relative homotopy is defined in the
obvious way. One may then consider tolerant functions [n] → X, where
[n] is the set {0, 1, . . . , n} with tolerance given by kTm precisely when
|k − m| ≤ 1 as discrete analogues of paths. The authors of [6] perform
essentially the same construction directly on uniformly scaled classical
metric spaces under the name of discrete homotopy. It is straightforward
to define the fundamental groupoid πg1(X,T ) of a tolerance space: the
objects are the points of X, and the morphisms are equivalence classes of
paths [n]→ X modulo homotopy relative to end-points (paths of different
lengths can always be augmented without affecting the homotopy class to
obtain two representatives with the same domain [n]). This gives rise to
the functor πg1 : Tol→ Grpd. Consider now the diagram

ScMetc ScMet Tol

Metc Metall

Grpd

πg
1

π̂g
1

It is not hard to see that the uniform invariant π̂g1 of the punctured disk
is contractible, while the topological invariant is isomorphic to the fun-
damental groupoid of S1 in the classical sense. Going back to [6], where
the authors concentrate on the uniform picture, we note that the general
discussion of the following subsection are related to the concept of critical
points presented in [6].

5.4. Persistence and Stability. We conclude this work with a short
discussion of the naturally arising concepts of persistence and stability
for invariants F̂ produced via a multivalued fibration p : E → B according
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to the main construction

E D

B C

A

p q

F

F̂

Let us recall that F̂B is the limit of the diagram F : EB → A, with EB
the fiber over B, namely all objects projecting to B and all morphisms
projecting to idB . For the rest of this section, fix the above, including an
object B whose invariant F̂B is of interest.

Definition 5.1. Let I be a non-empty full subcategory of EB . Say that
I is an interval if for all E1 → E2 → E3 in EB if E1, E3 ∈ I, then E2 ∈ I.
If F is constant on an interval I, then we say that FE, the common value
on the objects of the interval, is a persistent approximation of F̂B over I.
Say that an interval I is a ray if for all E′ in EB there exists E in I with
at least one morphism E → E′ in EB . Then F̂B is stable if there exists
a persistent approximation FE on a ray I such that π : F̂B

πE−−→ FE is
the identity, for all E in the interval. More generally, define F̂B to be
stable over any non-empty subcategory J of EB , if πE : F̂B → FE is the
identity for all E in J .

In the context of the topological and uniform invariants above, it is
obvious that persistence and stability are highly sensitive to the L-valued
metric, and are far from being topological or uniform invariants. A de-
tailed study of persistence and stability will be carried out in future work,
including the elucidation of the relationship with computational topology
([8]). At this point let us just point out that some aspects of stability
are topological. For instance, connectedness is highly stable. In fact, if
X = (X,L, d) is connected, then the topological invariant ĉ?(X) is stable
over the entire diagram EB , independently of the L-valued metric, simply
because ĉ?(X) = True, for all scales R ∈ Σ on X. On the other extreme,
for a totally disconnected and nowhere discrete space X = (X,L, d),
ĉc(X) is, regardless of the L-valued metric, highly unstable. In fact,
it is not hard to see that ĉc(X) is not stable over any ray.
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