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BOUNDEDNESS OF THE RELATIVES OF UNIFORMLY
CONTINUOUS FUNCTIONS

MANISHA AGGARWAL AND S. KUNDU

Abstract. A function f from a metric space (X, d) to another
metric space (Y, ρ) is said to be Cauchy-continuous if (f(xn)) is
Cauchy in (Y, ρ) for every Cauchy sequence (xn) in (X, d). Re-
cently in [5], Beer and Garrido have characterized those metric
spaces (X, d) on which each Cauchy-continuous function defined
on X is bounded. Since in the literature, we have various other
kinds of sequences that are weaker than Cauchy sequences, in this
paper we have discussed a few properties of functions preserving
different kinds of sequences and characterized those metric spaces
on which each such function is bounded. It suffices in each case to
consider real-valued functions. We observe that a uniformly con-
tinuous function preserves all those sequences, so those aforesaid
functions are actually the relatives of uniformly continuous func-
tions.

1. Introduction

The concepts of compactness and completeness play a vital role in the
theory of metric spaces. Surely for discussing completeness of a metric
space, one has to consider its corresponding Cauchy sequences. We recall
that a sequence (xn) in (X, d) is said to be Cauchy if for every ϵ > 0, there
exists no ∈ N such that for each n, j ≥ no, we have d(xn, xj) < ϵ. Some
classes of metric spaces satisfying properties stronger than completeness
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but weaker than compactness have been recently studied by many authors.
One of such spaces is an Atsuji space, also widely known as UC space. A
metric space (X, d) is called an Atsuji space if every real-valued continuous
function on (X, d) is uniformly continuous. The Atsuji spaces, first studied
extensively by Atsuji [2], have been the subject of a number of articles over
the years. One of the most useful characterization of Atsuji spaces is in
terms of sequences (discovered by Toader [20]): a metric space is Atsuji if
and only if each pseudo-Cauchy sequence with distinct terms in the space
has a cluster point, where a sequence (xn) is said to be pseudo-Cauchy if
∀ ϵ > 0 and ∀ n ∈ N, ∃ k, j ∈ N, k ̸= j such that k, j > n and d(xk, xj) <
ϵ. Thus, Toader’s pseudo-Cauchy sequences are those for which pairs
of terms are arbitrarily close frequently. But there is a second natural
way to generalize the definition of Cauchy sequence [11, 12], known as
cofinally Cauchy, which are obtained by replacing residual by cofinal in
the definition of Cauchy sequences. Precisely, a sequence (xn) is called
cofinally Cauchy if ∀ ϵ > 0, ∃ an infinite subset Nϵ of N such that for
each n, j ∈ Nϵ, we have d(xn, xj) < ϵ. In 2008, Beer [3] cast new light on
those metric spaces in which each cofinally Cauchy sequence has a cluster
point which is widely known as cofinally complete spaces. Such spaces lie
strictly in between Atsuji and complete metric spaces.

Recently, two new kinds of metric spaces are introduced by Garrido
and Meroño in [9], namely Bourbaki-complete and cofinally Bourbaki-
complete metric spaces, which are stronger than complete metric spaces
and weaker than compact metric spaces. Since a way to achieve a property
stronger than completeness for a metric space consists of asking for the
clustering of all the sequences belonging to some class bigger than the class
of Cauchy sequences, Garrido and Meroño defined the class of Bourbaki-
Cauchy sequences and the class of cofinally Bourbaki-Cauchy sequences
(see definitions 2.18, 2.22). These sequences appeared when they consid-
ered the so-called Bourbaki-bounded sets. This notion of boundedness
was introduced by Atsuji in [2], under the name of finitely chainable, in
order to exhibit metric spaces where every real-valued uniformly contin-
uous function is bounded. Garrido and Meroño characterized Bourbaki-
bounded sets in terms of sequences in the same way that Cauchy sequences
characterize total boundedness. In this way, Bourbaki-Cauchy sequences
came into picture, whereas the concept of cofinally Bourbaki-Cauchy se-
quences is similar to that of cofinally Cauchy sequences. This parallelism
gave us an idea of defining pseudo Bourbaki-Cauchy sequences, which
act as a generalization of pseudo-Cauchy sequences (see Definition 2.27).
We observe that the clustering of pseudo Bourbaki-Cauchy sequences of
distinct terms also characterizes Atsuji spaces.
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The role of functions is inevitable in the theory of metric spaces. Two
important classes of functions, namely the class of continuous functions
and that of uniformly continuous functions, are well known to all of us.
In [19], R. F. Snipes has studied the functions, that lie strictly in be-
tween the two aforesaid important classes of functions, which he called
Cauchy sequentially-regular, widely known as Cauchy-continuous func-
tions. A function f : (X, d) → (Y, ρ) between two metric spaces is called
Cauchy-continuous if for any Cauchy sequence (xn) in (X, d), (f(xn)) is
a Cauchy sequence in (Y, ρ). Cauchy-continuous functions are important
because: (1) some of the most useful theorems about uniformly continu-
ous functions hold also for Cauchy-continuous functions; and (2) many of
the important functions which occur in analysis are Cauchy-continuous
but not uniformly continuous. This motivated us to look for the func-
tions that preserve the aforesaid sequences which are generalizations of
Cauchy sequences. Certainly, uniformly continuous functions preserve all
those sequences. Though these newly defined classes of functions are not
contained in the class of continuous functions, they help in giving char-
acterizations of spaces like Atsuji, cofinally complete, Bourbaki-complete
and cofinally Bourbaki-complete. We discuss a few of them in this paper.
Moreover, we discuss a few properties of these functions and give various
examples in the context of their relation with each other.

Recall that a function f : (X, d) → (Y, ρ) between two metric spaces is
bounded if the image set f(X) is bounded in (Y, ρ). It is known that a
metric space (X, d) is compact if and only if every real-valued continuous
function on X is bounded (usually termed as pseudocompact space). This
motivated several authors, [2, 8, 15, 17], to find necessary and sufficient
conditions for a metric space (X, d) such that each uniformly continuous
function from X into any other metric space is bounded. Recently in
2014, Beer and Garrido have characterized the metric spaces on which
every real-valued Cauchy-continuous function is bounded and shown them
to be totally bounded metric spaces in [5]. This has inspired us to look
for several interesting classes of bounded real-valued functions on metric
spaces and subsequent characterization of such metric spaces. In fact,
this serves as the main goal of this paper. Meanwhile, we obtain new
characterizations of totally bounded and Bourbaki-bounded spaces.

The symbols R,C,N and Q denote the sets of real numbers, com-
plex numbers, natural numbers and rational numbers respectively. Unless
mentioned otherwise, R and its subsets carry the usual distance metric.
If (X, d) is a metric space, x ∈ X and δ > 0, then B(x, δ) (or Bδ(x))

denotes the open ball in (X, d), centered at x with radius δ. Also, (X̂, d)
denotes the completion of the metric space (X, d).
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2. Results

It is known that the class of Cauchy-continuous functions is bigger than
the class of uniformly continuous functions, where Cauchy-continuous
functions are defined as follows:

Definition 2.1. A function f : (X, d) → (Y, ρ) between two metric spaces
is said to be Cauchy-continuous if (f(xn)) is Cauchy in (Y, ρ) for every
Cauchy sequence (xn) in (X, d).

Clearly, every Cauchy-continuous function between two metric spaces
is continuous. The significance of Cauchy sequences in the theory of
metric spaces makes this class of functions equally significant. Similar
to Cauchy-continuous functions, we define another class of functions that
preserve cofinally Cauchy sequences. But before that, we recall a few
relevant definitions.

Definition 2.2. A sequence (xn) in a metric space (X, d) is called cofi-
nally Cauchy if ∀ ϵ > 0, ∃ an infinite subset Nϵ of N such that for each
n, j ∈ Nϵ, we have d(xn, xj) < ϵ.

Definition 2.3. A metric space (X, d) is said to be cofinally complete if
every cofinally Cauchy sequence in X clusters.

Definition 2.4. A function f : (X, d) → (Y, ρ) between two metric spaces
is called cofinally Cauchy regular (or CC-regular for short) if (f(xn)) is
cofinally Cauchy in (Y, ρ) for every cofinally Cauchy sequence (xn) in
(X, d).

Clearly, every uniformly continuous function between two metric spaces
is CC-regular but a CC-regular function need not be even continuous. For
example, let X = {0, 1

n+1 : n ∈ N} and Y = { 1
n : n ∈ N} with the usual

metric and let f : X → Y be defined as:

f(x) =

{
1 : x = 0
x : else

}
.

Remark 2.5. Observe that a Cauchy-continuous function need not be
CC-regular: as a metric subspace of the Hilbert space l2 of square sum-
mable sequences, let X = {en + 1

nek : n, k ∈ N}, where en is a sequence
with 1 at nth place and 0 at all other places. Note X itself is countable.
Let (xn) be an enumeration. Then (xn) is a cofinally Cauchy sequence of
distinct terms with no Cauchy subsequence. Hence, the function defined
as: f : X → N, f(xn) = n, is Cauchy-continuous which is not CC-regular.

However, every continuous function on a cofinally complete space with
values in a metric space is CC-regular. Thus, the function f : R → R
defined as : f(x) = x2 is CC-regular.
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Since Cauchy-continuous functions preserve Cauchy sequences, they
preserve totally bounded sets as well. Our next proposition says that
CC-regular functions also preserve totally bounded sets. It can be proved
using the following result given by Beer in [3].

Lemma 2.6. Let (X, d) be a metric space. Then the following are equiv-
alent:
(a) (X, d) is totally bounded.
(b) Each sequence in X is cofinally Cauchy.
(c) Each sequence in X is pseudo-Cauchy (see definition 2.9).

Proposition 2.7. Let f : (X, d) → (Y, ρ) be a CC-regular function from
a metric space (X, d) to another metric space (Y, ρ) and A be a totally
bounded subset of X. Then f(A) is a totally bounded subset of Y.

The converse of the previous proposition need not hold as we know that
there exists a Cauchy-continuous function which is not CC-regular and
every Cauchy-continuous function preserves totally bounded sets. Now
we give one of our main results.

Theorem 2.8. Let (X, d) be a metric space. Then the following are
equivalent:

(a) (X, d) is totally bounded.
(b) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is CC-

regular, then f is bounded.
(c) Whenever f : (X, d) → (Z, σ) is CC-regular where (Z, σ) is an

unbounded metric space, then f is bounded.

Proof. The implication (a) ⇒ (b) follows from Proposition 2.7, whereas
(b) ⇒ (c) is immediate.

(c) ⇒ (a) : Let zo ∈ Z. Since (Z, σ) is unbounded, for every n ∈ N,
there exists zn ∈ Z such that σ(zn, zo) > n. Suppose that (X, d) is not
totally bounded. Then there exists a sequence, say (xn), in X satisfying
the following condition: there exists δ > 0 such that d(xn, xm) > δ for all
n ̸= m. Now define a function f : X → Z as:

f(x) =

{
zn : x = xn for some n
zo : else

}
.

Then f is an unbounded CC-regular function on X because if (yn) is a
cofinally Cauchy sequence in X, then the sequence (f(yn)) has a constant
subsequence. Hence we get a contradiction. �

In the literature one can find another important generalization of Cauchy
sequences, known as pseudo-Cauchy sequences. These sequences play an
important role in characterizing Atsuji spaces: a metric space is Atsuji if
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and only if every pseudo-Cauchy sequence of distinct points in the space
clusters. The significance of pseudo-Cauchy sequences motivated us to
talk about the functions that preserve such sequences. Before we define
a new type of functions, let us recall a few relevant definitions.

Definition 2.9. A sequence (xn) in (X, d) is said to be pseudo-Cauchy
if ∀ ϵ > 0 and ∀ n ∈ N, there exist k, j ∈ N, k ̸= j such that k, j > n and
d(xk, xj) < ϵ.

Definition 2.10. A metric space (X, d) is called an Atsuji space if every
real-valued continuous function on X is uniformly continuous.

Note that Atsuji spaces are also widely known as UC spaces in the
literature. Now we are ready to define another kind of functions.

Definition 2.11. A function f : (X, d) → (Y, ρ) between two metric
spaces is said to be pseudo-Cauchy regular (or PC-regular for short) if
given any pseudo-Cauchy sequence (xn) in (X, d), the sequence (f(xn))
is pseudo-Cauchy in (Y, ρ).

Note that every uniformly continuous function between two metric
spaces is PC-regular but a PC-regular function need not be continuous.
Let us look at the relation between PC-regular and CC-regular functions.

Proposition 2.12. Every PC-regular function from a metric space (X, d)
to a metric space (Y, ρ) is CC-regular.

Proof. Let (xn) be a cofinally Cauchy sequence in X. Suppose that
(f(xn)) is not cofinally Cauchy. Then there exists ϵo > 0, such that
for all n ∈ N, f(xm) ∈ B(f(xn), ϵo) for at most finitely many m ∈ N.
For k = 1, choose m1, n1 ∈ N, m1 < n1 such that d(xm1 , xn1) < 1
and ρ(f(xm1), f(xn1)) ≥ ϵo. Similarly, for k = 2, choose m2, n2 ∈
N, n1 < m2 < n2 such that d(xm2 , xn2) <

1
2 and ρ(f(xvp), f(xwq )) ≥ ϵo

for vp ̸= wq, p, q ∈ {1, 2} and v, w ∈ {m,n}. By induction, we can
choose mk, nk ∈ N, nk−1 < mk < nk such that d(xmk

, xnk
) < 1

k and
ρ(f(xvp), f(xwq )) ≥ ϵo for vp ̸= wq, p, q ∈ {1, ..., k} and v, w ∈ {m,n}.
Then the sequence (xm1 , xn1 , xm2 , xn2 , ...) is pseudo-Cauchy in X but
(f(xm1), f(xn1), f(xm2), f(xn2), ...) is not pseudo-Cauchy in Y , which is
a contradiction. �

Note that a CC-regular function need not be PC-regular. For example,
consider the function f : R → R defined as : f(x) = x2. Then f is
CC-regular, but f is not PC-regular as the image of the pseudo-Cauchy
sequence (1, 1+1, 2, 2+ 1

2 , 3, 3+
1
3 , ...) is not pseudo-Cauchy under f . One

can find various properties of CC-regular and PC-regular functions in [1].
The proof of our next result is similar to that of Theorem 2.8.
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Theorem 2.13. Let (X, d) be a metric space. Then the following are
equivalent:

(a) (X, d) is totally bounded.
(b) Whenever f : (X, d) → (Y, ρ) is a metric space and f : X → Y is

PC-regular, then f is bounded.
(c) Whenever f : (X, d) → (Z, σ) is PC-regular where (Z, σ) is an

unbounded metric space, then f is bounded.

Before looking at the boundedness of our next class of functions, which
is yet another relative of uniformly continuous functions, we need to give
the following definition.

Definition 2.14. Let f be an arbitrary function defined on a metric
space (X, d) with values in a metric space (Y, ρ). Then f is said to be
uniformly locally bounded if ∃ δ > 0 such that ∀ x ∈ X, f(B(x, δ)) is a
bounded subset of Y .

The significance of these functions follows from their role in character-
izing cofinally complete spaces via functions ([3]): a metric space (X, d)
is cofinally complete if and only if every real-valued continuous function
on X is uniformly locally bounded.

Theorem 2.15. Let (X, d) be a metric space. Then the following are
equivalent:

(a) (X, d) is totally bounded.
(b) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is

uniformly locally bounded, then f is bounded.
(c) Whenever f : (X, d) → (Z, σ) is uniformly locally bounded where

(Z, σ) is an unbounded metric space, then f is bounded.

Proof. The implication (b) ⇒ (c) is immediate. The proof of (c) ⇒ (a) is
similar to that of Theorem 2.8.

(a) ⇒ (b) : Let f be a uniformly locally bounded function from X to
Y . Thus, ∃ ϵ > 0 such that f(B(x, ϵ)) is bounded for all x ∈ X. Since X
is totally bounded, ∃ x1, ..., xn in X such that X =

∪n
i=1 B(xi, ϵ). Hence,

f(X) =
∪n

i=1 f(B(xi, ϵ)), which is bounded. �

In 1958, Atsuji introduced in [2] a notion, namely finitely chainable
metric space, which was weaker than totally bounded metric space but
stronger than bounded metric space. Recently in 2014, Garrido and
Meroño called such spaces in [9] to be Bourbaki-bounded and gave nice
characterization of such spaces in terms of sequences, which they called
Bourbaki-Cauchy.
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Proposition 2.16. ([9]) A subset B of (X, d) is Bourbaki-bounded in X
if and only if every sequence in B has a Bourbaki-Cauchy subsequence in
X.

This motivated us to look for the functions that preserve Bourbaki-
Cauchy sequences. Now before giving our next result, let us recall a few
relevant definitions.

Definitions 2.17. Let (X, d) be a metric space and ϵ be a positive
number, then an ordered set of points {x0, x1, ..., xm} in X satisfying
d(xi−1, xi) < ϵ, where i = 1, 2, ...,m, is said to be an ϵ-chain of length m
from xo to xm. We call X ϵ−chainable if each two points in X can be
joined by an ϵ−chain, and X is called chainable if X is ϵ−chainable for
every ϵ > 0.

Clearly, R is chainable. In fact, every connected metric space is chain-
able.

Definitions 2.18. Let (X, d) be a metric space. A sequence (xn) is said
to be Bourbaki-Cauchy in X if for every ϵ > 0, there exist m ∈ N and
no ∈ N such that whenever n > j ≥ no, the points xj and xn can be
joined by an ϵ−chain of length m. Moreover, a subset B of (X, d) is said
to be Bourbaki-bounded subset of X if for every ϵ > 0, ∃ m ∈ N and
a finite collection of points p1, p2, ..., pk ∈ X such that every point of B
can be joined with some element of the finite collection by an ϵ−chain of
length m.

Note that a subset of a metric space (X, d) which is Bourbaki-bounded
in X, need not be Bourbaki-bounded in itself. For example, consider any
infinite bounded uniformly discrete set in a normed linear space, where a
subset A of a metric space (X, d) is said to be uniformly discrete if there
exists δ > 0 such that d(x, y) > δ for all x, y ∈ A, x ̸= y. Now, we give
the following terminology.

Definition 2.19. A function f from a metric space (X, d) to another
metric space (Y, ρ) is said to be Bourbaki-Cauchy regular (or BC-regular
for short) if (f(xn)) is Bourbaki-Cauchy in (Y, ρ) for every Bourbaki-
Cauchy sequence (xn) in (X, d).

Note that every uniformly continuous function from a metric space
(X, d) to another metric space (Y, ρ) is BC-regular, but a BC-regular
function need not be continuous. For example, let X = {0, 1

n+1 : n ∈ N}
and Y = R with the usual metric and let f : X → Y be defined as:

f(x) =

{
1 : x = 0
x : else

}
.
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A Cauchy-continuous function need not be BC-regular. For example,
consider the l2−space. Let A = {en : n ∈ N}. Then (en) is a Bourbaki-
Cauchy sequence in l2 with no Cauchy subsequence. Consider the function
f : A → R: f(en) = n. Then f is Cauchy-continuous. Hence, by Propo-
sition 2.15 of [13], f can be extended to a real-valued Cauchy-continuous
function f ′ on l2 which will not be BC-regular as (en) is Bourbaki-Cauchy
in l2 but (f ′(en)) = (f(en)) = (n) is not Bourbaki-Cauchy in R.

Using Proposition 2.16, we can easily prove our next proposition.
Proposition 2.20. If f : (X, d) → (Y, ρ) is a BC-regular function be-
tween two metric spaces and A is a Bourbaki-bounded subset of X, then
f(A) is a Bourbaki-bounded subset of Y.

Our next result characterizes the metric spaces on which every real-
valued BC-regular function is bounded.
Theorem 2.21. Let (X, d) be a metric space. Then the following are
equivalent:

(a) (X, d) is Bourbaki-bounded.
(b) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is BC-

regular, then f is bounded.
(c) Whenever f : (X, d) → (Z, σ) is BC-regular where (Z, σ) is an

unbounded chainable metric space, then f is bounded.
Proof. The implication (a) ⇒ (b) follows from Proposition 2.20 and (b) ⇒
(c) is immediate.

(c) ⇒ (a) : Let zo ∈ Z. Since (Z, σ) is unbounded, for every n ∈ N,
there exists zn ∈ Z such that σ(zn, zo) > n. Suppose that (X, d) is not
Bourbaki-bounded. Then there exists a sequence (an) in X with distinct
terms which has no Bourbaki-Cauchy subsequence in X. Now define a
function f : X → Z as:

f(x) =

{
zn : x = an for some n
zo : else

}
.

We claim that f is BC-regular. Let (xn) be a Bourbaki-Cauchy sequence
in X, then am ∈ {xn : n ∈ N} for at most finitely many m otherwise (an)
will have a Bourbaki-Cauchy subsequence. Hence, {f(xn) : n ∈ N} is a
finite set. Since (Z, σ) is chainable, (f(xn)) is Bourbaki-Cauchy. Hence
f is an unbounded BC-regular function, which is a contradiction. �

Note that chainability of (Z, σ) in the last theorem is necessary for
(X, d) to be Bourbaki-bounded. For example, consider (X, d) to be R
and (Z, σ) to be N. Let f : R → N be any BC-regular function then
f must be a constant function otherwise there exists x, y ∈ R, x ̸=
y such that f(x) = n1 and f(y) = n2 where n1, n2 ∈ N, n1 ̸= n2.
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Then the sequence (x, y, x, y, ...) is Bourbaki-Cauchy in R but its image
is not Bourbaki-Cauchy in N, which is a contradiction.

The way Bourbaki-Cauchy sequences generalize the concept of Cauchy
sequences, one can naturally generalize the concept of cofinally Cauchy
sequences as well. In [9], Garrido and Meroño introduced this notion and
called such sequences to be cofinally Bourbaki-Cauchy. Let us give the
precise definition.

Definitions 2.22. Let (X, d) be a metric space. A sequence (xn) is said
to be cofinally Bourbaki-Cauchy in X if for every ϵ > 0, there exist m ∈ N
and an infinite subset Nϵ of N such that the points xj and xn can be joined
by an ϵ−chain of length m for every j, n ∈ Nϵ. Moreover, a metric space is
said to be cofinally Bourbaki-complete if every cofinally Bourbaki-Cauchy
sequence in the space clusters.

Since the collection of cofinally Cauchy sequences in a metric space is
contained in a bigger collection of cofinally Bourbaki-Cauchy sequences,
every cofinally Bourbaki-complete space is cofinally complete. Now, we
introduce another relative of uniformly continuous function.

Definition 2.23. A function f from a metric space (X, d) to another
metric space (Y, ρ) is said to be cofinally Bourbaki-Cauchy regular (or
CBC-regular for short) if (f(xn)) is cofinally Bourbaki-Cauchy in (Y, ρ)
for every cofinally Bourbaki-Cauchy sequence (xn) in (X, d).

A CBC-regular function need not be BC-regular. For example, let
f : R → {0, 1} be defined as:

f(x) =

{
1 : x ∈ Q
0 : else

}
.

Here note that if we would have taken the range of the function to be R
instead of {0, 1}, then this example won’t have worked. Moreover, a BC-
regular function need not be CBC-regular: consider the example given
in remark 2.5, the function f is BC-regular as every Bourbaki-Cauchy
sequence in X is eventually constant.

A CBC-regular function need not be CC-regular. For example, let
f : { 1

n : n ∈ N} → l2 be defined as: f( 1n ) = en. In fact, the converse is
also not true. For example, let f : l2 → N be defined as,

f(x) =

{
n : x = en for some n ∈ N
1 : else

}
.

Our next result characterizes cofinally Boubaki-complete spaces in terms
of functions.

Theorem 2.24. Let (X, d) be a metric space. Then the following state-
ments are equivalent:
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(a) (X, d) is cofinally Bourbaki-complete.
(b) Each continuous function on X with values in a metric space (Y, ρ)

is CBC-regular.
(c) Each real-valued continuous function on X is CBC-regular.

Proof. Only (c) ⇒ (a) needs some explanation, the rest is immediate.
(c) ⇒ (a) : Let (yn) be a cofinally Bourbaki-Cauchy sequence in X. If

(yn) has a constant subsequence then we are done, else it has a cofinally
Bourbaki-Cauchy subsequence of distinct points. Thus it is enough to
prove that every cofinally Bourbaki-Cauchy sequence in X with distinct
terms clusters. Suppose that there exists a cofinally Bourbaki-Cauchy
sequence (xn) of distinct points in X which does not cluster. Let A =
{xn : n ∈ N}. Consider the function f : A → R: f(xn) = 2n. Then f is
a real-valued continuous function on the closed set A. Hence by Tietze’s
extension theorem, f can be extended to a real-valued continuous function
f ′ on X, which will not be CBC-regular. Hence a contradiction. �

Since a cofinally Boubaki-complete space is complete, it is very natu-
ral to consider metric spaces whose completions are cofinally Bourbaki-
complete. In our next result, we present some equivalent conditions for
such metric spaces.

Theorem 2.25. Let (X, d) be a metric space. Then the following state-
ments are equivalent:

(a) The completion (X̂, d) of (X, d) is cofinally Bourbaki-complete.
(b) Each Cauchy-continuous function on X with values in a metric

space (Y, ρ) is CBC-regular.
(c) Each real-valued Cauchy-continuous function on X is CBC-regular.
(d) Every cofinally Bourbaki-Cauchy sequence in X has a Cauchy sub-

sequence.

Proof. (a) ⇒ (b) ⇒ (c) : Easy to prove.
(c) ⇒ (d) : Let (xn) be a cofinally Bourbaki-Cauchy sequence of dis-

tinct terms in X with no Cauchy subsequence. Let A = {xn : n ∈ N}.
Consider the function f : A → R: f(xn) = 2n. Then f is a Cauchy-
continuous function on A. Hence by Proposition 2.15 of [13], f can be
extended to a real-valued Cauchy-continuous function f ′ on X, which is
not CBC-regular. Hence a contradiction.

(d) ⇒ (a) : Let (x̂n) be a cofinally Bourbaki-Cauchy sequence in X̂
with no Cauchy subsequence. Let (xn) ⊆ X such that d(xn, x̂n) < 1

n .
Therefore, (xn) is a cofinally Bourbaki-Cauchy sequence in X with no
Cauchy subsequence, which is a contradiction. �
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By the previous theorem, one can conclude that every real-valued
Cauchy-continuous function need not be CBC-regular. Now we would
like to talk about the characterization of the metric spaces on which ev-
ery real-valued CBC-regular function is bounded. Note that the proof
of our next theorem is similar to that of Theorem 2.21 using the follow-
ing result given by Garrido and Meroño in [9]: a subset B of (X, d) is
Bourbaki-bounded in X if and only if every sequence in B is cofinally
Bourbaki-Cauchy in X.

Theorem 2.26. Let (X, d) be a metric space. Then the following are
equivalent:

(a) (X, d) is Bourbaki-bounded.
(b) Whenever f : (X, d) → (Y, ρ) is a metric space and f : X → Y is

CBC-regular, then f is bounded.
(c) Whenever f : (X, d) → (Z, σ) is CBC-regular where (Z, σ) is an

unbounded metric space, then f is bounded.

So far we have seen generalizations of Cauchy and cofinally Cauchy
sequences. Now we would like to define sequences which are weaker than
pseudo-Cauchy sequences and we call them pseudo Bourbaki-Cauchy.

Definition 2.27. Let (X, d) be a metric space. A sequence (xn) is said
to be pseudo Bourbaki-Cauchy in X if for every ϵ > 0, there exists m ∈ N
such that ∀ n ∈ N, ∃ j, k > n, j ̸= k such that the points xj and xk can
be joined by an ϵ−chain of length m.

Clearly, every cofinally Bourbaki-Cauchy sequence is pseudo Bourbaki-
Cauchy, but a pseudo Bourbaki-Cauchy sequence need not be cofinally
Bourbaki-Cauchy. The sequence (n)n∈N is pseudo Bourbaki-Cauchy in R
but not cofinally Bourbaki-Cauchy.

Our next proposition is another sequential characterization of Bourbaki-
bounded sets.

Proposition 2.28. A subset B of (X, d) is Bourbaki-bounded in X if and
only if every sequence in B is pseudo Bourbaki-Cauchy in X.

Proof. Let B be a Bourbaki-bounded subset of X, then every sequence in
B is pseudo Bourbaki-Cauchy in X by Proposition 2.16. For the converse,
suppose that B is not Bourbaki-bounded in X. Then there exist ϵo > 0
and a sequence (an) ⊆ B such that for every n ∈ N, an+1 can’t be joined
with any ai, i ∈ {1, 2, ..., n}, by an ϵo−chain of length n. Thus, (an) is
not pseudo Bourbaki-Cauchy in X, which is a contradiction. �

Now, let us introduce a terminology for functions preserving pseudo
Bourbaki-Cauchy sequences.
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Definition 2.29. A function f : (X, d) → (Y, ρ) between two metric
spaces is said to be pseudo Bourbaki-Cauchy regular (or PBC-regular for
short) if (f(xn)) is pseudo Bourbaki-Cauchy in (Y, ρ) for every pseudo
Bourbaki-Cauchy sequence (xn) in (X, d).

A PC-regular function need not be PBC-regular. For example, let
f : R → {en : n ∈ N} be defined as follows:

f(x) =

{
en : x = n for some n ∈ N
e1 : else

}
.

If (xn) is a pseudo-Cauchy sequence of distinct points in R, then (f(xn))
must have a constant subsequence and hence (f(xn)) is pseudo-Cauchy.
Moreover, a PBC-regular function need not be PC-regular.

Now one might be thinking why we didn’t introduce a terminology for
the metric spaces in which every pseudo Bourbaki-Cauchy sequence of
distinct terms clusters. Our next result says that such a metric space is
actually an Atsuji space.

Theorem 2.30. Let (X, d) be a metric space. Then the following state-
ments are equivalent:

(a) (X, d) is an Atsuji space.
(b) Each continuous function on X with values in a metric space (Y, ρ)

is PBC-regular.
(c) Each real-valued continuous function on X is PBC-regular.
(d) Every pseudo Bourbaki-Cauchy sequence in X with distinct terms

clusters.

Proof. The implications (a) ⇒ (b) ⇒ (c), (d) ⇒ (a) are immediate. The
proof of (c) ⇒ (d) is similar to that of Theorem 2.24. �

By Theorems 2.24 and 2.30, one can conclude that there exists a
CBC-regular function which is not PBC-regular, otherwise every cofinally
Bourbaki-complete space would have been an Atsuji space which is not
true, for example, R with the usual metric is not an Atsuji space.

Theorem 2.31. Let (X, d) be a metric space. Then the following state-
ments are equivalent:

(a) The completion (X̂, d) of (X, d) is an Atsuji space.
(b) Each Cauchy-continuous function on X with values in a metric

space (Y, ρ) is PBC-regular.
(c) Each real-valued Cauchy-continuous function on X is PBC-regular.
(d) Every pseudo Bourbaki-Cauchy sequence of distinct terms in X

has a Cauchy subsequence.

Proof. Similar to the proofs of Theorems 2.25 and 2.30. �
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Thus, every Cauchy-continuous function need not be PBC-regular. Our
next theorem talks about the boundedness of PBC-regular functions.

Theorem 2.32. Let (X, d) be a metric space. Then the following are
equivalent:

(a) (X, d) is Bourbaki-bounded.
(b) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is PBC-

regular, then f is bounded.
(c) Whenever f : (X, d) → (Z, σ) is PBC-regular where (Z, σ) is an

unbounded metric space, then f is bounded.

Proof. The proof is similar to that of Theorem 2.21. �
It is well known that a metric space (X, d) is compact if and only if

every real-valued continuous function on X is bounded. Using this, we
get the following corollary.

Corollary 2.33. The following statements are equivalent for a metric
space (X, d):

(a) (X, d) is compact.
(b) (X, d) is Bourbaki-bounded and an Atsuji space.

Proof. The implication (b) ⇒ (a) follows from Theorems 2.30 and 2.32.
�

Corollary 2.34. The following statements are equivalent for a metric
space (X, d):

(a) (X, d) is totally bounded.
(b) (X, d) is Bourbaki-bounded and its completion is an Atsuji space.
(c) (X, d) is Bourbaki-bounded and its completion is cofinally Bourbaki-

complete.

Proof. The implication (a) ⇒ (b) is immediate, while (b) ⇒ (c) follows
from Proposition 17 of [9].

(c) ⇒ (a) : It follows from Theorem 2.25 and Theorem 2.26. �

References

[1] M. Aggarwal and S. Kundu, More about the cofinally complete spaces and the
Atsuji spaces, to appear in Hous. J. Math.

[2] M. Atsuji, Uniform continuity of continuous functions of metric spaces, Pacific
J. Math. 8 (1958), 11–16.

[3] G. Beer, Between compactness and completeness, Top. Appl. 155 (2008), 503–514.
[4] , Which connected metric spaces are compact?, Proc. Amer. Math. Soc.

83 (1981), 807–811.
[5] G. Beer and M. I. Garrido, Bornologies and locally Lipschitz functions, Bull. Aust.

Math. Soc. 90 (2014), 257–263.



BOUNDEDNESS OF THE RELATIVES OF UNIFORMLY CONTINUOUS... 119

[6] J. Borsík, Mappings preserving Cauchy nets, Tatra Mt. Math. Publ. 19 (2000),
63–73.

[7] N. Bourbaki, Elements of mathematics, general topology, part 1, Hermann, Paris,
1966.

[8] A. G. O’Farrell, When uniformly-continuous implies bounded, Irish Math Soc.
Bulletin 53 (2004), 53–56.

[9] M. Isabel Garrido and Ana S. Meroño, New types of completeness in metric
spaces, Ann. Acad. Sci. Fenn. Math. 39 (2014), 733–758.

[10] J. Hejcman, Boundedness in uniform spaces and topological groups, Czechoslovak
Math. J. 9 (1959), 544–563.

[11] N. Howes, On completeness, Pacific J. Math. 38 (1971) 431–440.
[12] , Modern analysis and topology, Springer, New York, 1995.
[13] T. Jain and S. Kundu, Atsuji completions: Equivalent characterisations, Top.

Appl. 154 (2007), 28–38.
[14] , Atsuji spaces: Equivalent conditions, Top. Proc. 30 (2006), 301–325.
[15] S. Kundu, M. Aggarwal and S. Hazra, Finitely chainable and totally bounded

metric spaces: Equivalent characterizations, submitted for publication.
[16] E. Lowen-Colebunders, Function classes of Cauchy continuous maps, Marcel

Dekker, New York, 1989.
[17] O. Njåstad, On uniform Spaces where all uniformly continuous functions are

Bounded, Monatsh. Math. 69 (1965), 167–176.
[18] R. F. Snipes, Cauchy-Regular Functions, J. Math. Anal. Appl. 79 (1981), 18–25.
[19] , Functions that preserve Cauchy sequences, Nieuw Archief Voor Wiskunde

25 (1977), 409–422.
[20] G. Toader, On a problem of Nagata, Mathematica 20 (1978) 77–79.

(Aggarwal) Department of Mathematics; Indian Institute of Technology
Delhi; New Delhi-110016, India

E-mail address: manishaaggarwal.iitd@gmail.com

(Kundu) Department of Mathematics; Indian Institute of Technology
Delhi; New Delhi-110016, India

E-mail address: skundu@maths.iitd.ac.in


