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EXTENDING T1 TOPOLOGIES TO HAUSDORFF
WITH THE SAME SETS OF LIMIT POINTS

KYRIAKOS KEREMEDIS

Abstract. Within the framework of ZF set theory we show that
the statements: “Every infinite T1 topological space (X,Q) with a
finite set of limit points can be extended to a T2 space with the
same set of limit points” and “there exist no free ultrafilters” are
equivalent.

1. Notation and terminology

Given a set X, a non-empty collection F ⊆ P(X)\{∅} is called a filter
iff it is closed under finite intersections and for every F ∈ F and O ⊆ X
if F ⊆ O then O ∈ F .

A non-empty collection H ⊆ P(X)\{∅} is a filterbase iff it is closed
under finite intersections.

A filterbase F of X is called free if
∩
F = ∅. A maximal with respect

to inclusion filter of X is called ultrafilter. cof(X) will denote the filter
of all cofinite subsets of X. i.e., A ∈ cof(X) iff |X\A| < ℵ0.

Let X = (X,T ) be a topological space and A ⊆ X. An element
x ∈ X is said to be a limit point of A iff for every neighborhood Vx of
x, Vx ∩ A\{x} ̸= ∅. A non-limit point of X is called isolated. LimT (X)
denotes the set of all limit points of X and IsoT (X) denotes the set of
all isolated points of X. If no confusion is likely to arise we shall omit the
subscript T from IsoT (X) and LimT (X). If A ⊆ X then TA will denote
the topology A inherits as a subspace of X.
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Given an infinite set A, a free filter H of A and a non-empty set X

disjoint from A, TA,H
X (resp. TA

X ) will denote the topology on Y = X ∪A
generated by the collection:

CA,H
X = {{a} : a ∈ A} ∪ {{x} ∪H : x ∈ X,H ∈ H}

(resp. CA
X = {{a} : a ∈ A} ∪ cof(Y )).

Clearly, (Y, TA,H
X ) is a T1 space such that Iso(Y ) = A and Lim(Y ) = X.

Likewise, (Y, TA
X ) is a compact T1 space with Iso(Y ) = A and Lim(Y ) =

X. Note that if A = ∅ then T∅
X is just the cofinite topology on X.

The following properties of TA
X and T

A,cof(A)
X are simple observations:

• TA
X ⊆ T

A,cof(A)
X ,

• T
A,cof(A)
X is generated by the family TA

X ∪ {{x} ∪ F : x ∈ X,F ∈
cof(A)},

• if X is finite then T
A,cof(A)
X = TA

X ,
• if X is infinite then T

A,cof(A)
X ̸= TA

X .

An infinite set X is said to be:

• amorphous iff X cannot be partitioned into two infinite sets;
• Dedekind-infinite, denoted by DI(X), iff it contains a countably

infinite set. Otherwise is said to be Dedekind-finite;
• weakly Dedekind-infinite, denoted by WDI(X), iff P(X) contains

a countably infinite set. Otherwise is said to be weakly Dedekind-
finite;

• filterbase infinite, denoted by FBI(X), iff there exists a family
V = {Vi : i ∈ ω} of free filterbases of X such that for every
i, j ∈ ω with i ̸= j there exists V ∈ Vi, U ∈ Vj with V ∩ U = ∅.
Otherwise X is said to be filterbase-finite;

• (T1, T2)-infinite, denoted by EI(X,T1, T2), iff every T1 topology
Q on X with |LimQ(X)| < ℵ0 can be extended to a T2 topology
T on X such that LimQ(X) = LimT (X). Otherwise is said to be
(T1, T2)-finite.

By universal quantifying over X, each of these notions give rise to a
choice principle. For example, IDI is the statement

∀X(X infinite → DI(X))

that is “every infinite set is Dedekind-infinite” (Form 9 of [1]). Similarly
one defines IWDI (Form 82 of [1]), IFBI and IEI(T1, T2).

There are three more weak forms of choice that we will use in this
paper:
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• NAS : There are no amorphous sets (Form 64 of [1]) and,
• EFU : There exists an infinite set X and a free ultrafilter F on
X (Form 206 of [1]),

• SPI : Every infinite set X has a free ultrafilter (Form 63 of [1]).

2. Introduction and some preliminary results

Clearly, for every infinite set X, cof(X) is a free filter of X. However,
one cannot prove in ZF that given an infinite set X the statement:

• FBI2(X) : There exist two free filterbases V, U of X such that
V ∩ U = ∅ for some V ∈ V, U ∈ U

holds true. Indeed, FBI2(X) clearly implies “X is not amorphous” and
it is known, see e.g., [1], that there exist ZF models including amorphous
sets. On the other hand, the statement “X is not amorphous” implies
FBI2(X). Indeed, if {A,Ac} is a partition of X into infinite sets then
V = cof(A), U = cof(Ac) satisfy the conclusion of FBI2(X). Thus, part
(i) of Proposition 2.1 is proved.

Proposition 2.1. Let X be an infinite set.
(i) X is not amorphous iff FBI2(X). In particular, NAS iff IFBI2
(= ∀Y (Y infinite → FBI2(Y )).
(ii) ⌉EFU implies IFBI2. The converse fails in ZF.
(iii) For all m,n ∈ ω\2, m < n, FBIn(X) (: There exist free filterbases
Vi, i ≤ n of X such that for every i, j ≤ n, i ̸= j, there exists Vi ∈ Vi,
Vj ∈ Vj with Vi ∩ Vj = ∅) implies FBIm(X). The converse fails in ZF.
(iv) IFBI2 iff for all n ∈ ω\2, IFBIn (= ∀X(X infinite → FBIn(X)).

Proof. (ii) By part (i), it suffices to show that ⌉EFU implies NAS. Fix
X an infinite set. Since cof(X) is a free filter of X it follows, by our
hypothesis, that cof(X) is not an ultrafilter. Thus, there exists a subset
A of X such that A /∈ cof(X) and Ac /∈ cof(X). Hence, {A,Ac} is a
partition of X into infinite sets and X is not amorphous as required.

For the second assertion, we note that in the Second Fraenkel model
N2 in [1], NAS and EFU are both true and transferable to ZF.

(iii) The first part is obvious. For the second part we note that if M is
a ZF model including an amorphous set Y , and X = Y × {0} ∪ Y × {1}
then FBI2(X) holds true but FBI3(X) fails in M.

(iv) This is straightforward. �

Let X be an infinite set. Clearly, FBI(X) implies FBI2(X). Hence,
IFBI implies IFBI2. In view of Proposition 2.1 and the latter implication
one may ask whether any of the following implications IFBI2 → IFBI,
IFBI → ⌉EFU holds true in ZF. In Theorem 3.5 we show that none of
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these implications holds true and, in addition, in the Weglorz/Brunner
Model N51 in [1] there exists a set A having neither a free ultrafilter
nor a countable family V = {Vi : i ∈ ω} of free filterbases satisfying the
conclusion of FBI(A).

In Theorem 3.1 we show that FBI(X) is equivalent to each one of the
following topological statements:

• EIω(X) : TX
ω extends to a T2 topology T such that LimT (X ∪

ω) = ω,

• EIcof(X)
ω (X) : T

X,cof(X)
ω extends to a T2 topology T such that

LimT (X ∪ ω) = ω.

We would like to remark here that in EIω(X) and EIcof(X)
ω (X) we

need the set X to be disjoint from ω. Since X and X × {0} share the
same finiteness properties and X ×{0}, ω are disjoint we shall assume in
the sequel that whenever X and ω are not disjoint then X is replaced by
another set of equal cardinality disjoint from ω such as X × {0}.

In [3] it has been shown that

Lemma 2.2. [3] Let X be an infinite set. Then, the following are equiv-
alent:
(i) WDI(X).
(ii) (P(X),⊆) has infinite towers (subsets T of P(X) which are well-
ordered by ⊇).
(iii) X has a countable partition.
(iv) For every infinite set X there exists a metric d on X such that (X, d)
has at least one limit point.

From Lemma 2.2 it follows immediately that:

Proposition 2.3. WDI(X) implies FBI(X).

Proof. Fix an infinite set X and let P = {Xn : n ∈ ω} be a partition of
X. By partitioning ω into countably many infinite sets we can easily pass
to a countable partition of X into infinite sets. So, we assume that each
member of P is an infinite set. Then, {cof(Xn) : n ∈ ω} is the required
family of filterbases satisfying the conclusion of FBI(X). �

On the basis of Proposition 2.3 one may ask the following question.

Question 1. Does FBI(X) imply “X has a countable partition”?

It is known there exist compact T1 spaces (X,Q) such that the topology
Q cannot be enlarged to a compact T2 topology on X. As an example
consider the following:
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Example 1. Take X = {x ∈ R : x ≥ 0} with the topology it inherits
as a subspace of R with the usual topology. Let O (resp. E) be the set
of odd (resp. even) integers. Let S be the subspace topology X inherits
from R and embed X as an open subspace into the space (Y,W ) where,
Y = X ∪ {a, b} and W is the topology generated by S together with all
sets of the form

U(r) = {a} ∪ ({x ∈ X : r < x} −O), r ∈ X

V (r) = {b} ∪ ({x ∈ X : r < x} − E), r ∈ X.

Then Y is a compact T1 space but W cannot be enlarged to a compact
T2 topology T . Indeed, let T be a compact topology on Y that enlarges
W . Because of the local compactness of (X,S), the subspace topology
TX which X inherits from T , coincides with S. The inclusion, S ⊆ TX is
clear. If S ̸= TX then there exists a set A ⊂ X which is TX -closed but
not S-closed. Hence, A has a limit point x ∈ X\A. Fix B a compact
neighborhood of x in (X,S). Clearly, B is closed in (Y, T ) and x is a
limit point of the T -closed set C = A ∩ B in (X,S). Let U be the trace
of the neigborhood filter of x in (X,S) on the set C. Since (X,S) is T2,
the filter U has no accumulation point in C. Hence, C is not T -compact
and consequently (Y, T ) is not compact which is a contradiction. Thus,
S = TX as required.

We show that T is not T2. Assume on the contrary and fix two disjoint
open neighborhoods Ua, Vb of a and b respectively. Clearly,

U = {Ua, Vb} ∪ {[0, r) : r ∈ X}

is a T -cover or Y . Hence, by the compactness of (R, T ), U has a finite
subcover. Hence, there exists x ∈ (0,∞) such that

Ua ∪ Vb ∪ [0, x) = Y .

Since (x,∞) is a connected subset of (X,S), it follows that (x,∞) ⊆ Ua

or (x,∞) ⊆ Vb. Contradiction! Thus, T fails to be T2 contradicting our
hypothesis.

In view of Example 1, one may ask:

Question 2. Given a set X, does every T1 topology Q on X extend to a
T2 topology T such that LimQ(X) = LimT (X)?

The answer to Question 2 is in the negative as the following Example
2 demonstrates:

Example 2. Let Y = P(P(P(ω))) and X = Y ∪ ω. We claim that
the T1 topology Q = T

ω,cof(ω)
Y on X does not extend to a T2 topology
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T on X with LimQ(X) = LimT (X) = Y . Assume the contrary and fix a
T2 topology T on X satisfying:

(2.1) Q ⊂ T and LimQ(X) = LimT (X).

In view of (2.1) we may assume that for every y ∈ Y,

(2.2) Vy = {V ∈ T : y ∈ V and V ∩ Y = {y}}
is a T -neighborhood base of y.

Since T is T2, it follows from (2.1) and (2.2), that the function F : Y →
P(P(ω)) given by

F (y) = {H : H ∈ [ω]ω and {y} ∪H ∈ Vy}
is one-to-one. Hence, |P(P(P(ω)))| ≤ |P(P(ω))|. Contradiction!

In view of Example 2, it follows that if we want to extend T1 topologies
to T2 while retaining the same set L of limit points then some bound on
the size of L must be imposed.

Even in case |LimQ(X)| < ℵ0, EI(X,T1, T2) fails in case X has free
ultrafilters as the next example shows:

Example 3. Let F be a free ultrafilter of ω\2. Clearly, (ω, Tω\2,F
2 ) is a

T1 space such that Lim
T

ω\2,F
2

(ω) = 2 = {0, 1} and the points 0, 1 have no

disjoint Tω\2,F
2 - neighborhoods. We claim that there is no T2 topology T

on ω extending T
ω\2,F
2 with LimT (ω) = 2. Indeed, if T is such a topology

and V0, V1 are disjoint T - neighborhoods of 0, 1 respectively, then both
{V0\{0}}∪F and {V1\{1}}∪F have the fip (finite intersection property).
So, V0\{0}, V1\{1} ∈ F contradicting the fact that F is a filter.

Example 3 shows that if we want EI(ω, T1, T2) to be true then ω must
have no free ultrafilters. Based on this observation we show in Theorem
3.3 that IEI(T1, T2) is equivalent to the negation of EFU.

3. Main results

Theorem 3.1. Let X be an infinite set. The following are equivalent:
(i) EIω(X).
(ii) EIcof(X)

ω (X).
(iii) FBI(X).
In particular, IEIω : ∀X(X infinite → EIω(X)), IEIcofω : ∀X(X infinite
→ E

cof(X)
ω ) and IFBI are equivalent and none is provable in ZF.

Proof. Fix an infinite set X.
(i) → (ii) Let, by EIω(X), W be a T2 topology on X ∪ω extending TX

ω

such that LimW (X) = ω. Clearly, the topology T on X ∪ω generated by

W ∪ {{n} ∪ F : F ∈ cof(X), n ∈ ω}
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is T2 such that T
X,cof(X)
ω ⊆ T . To complete the proof of (i) → (ii) it

suffices to show that LimT (X) = ω. Assume on the contrary that n ∈ ω
is not a T limit point of X. Fix a T neighborhood Vn of n such that
Vn ∩ X = ∅. Clearly, Vn = O ∩ ({n} ∪ F ) for some O ∈ W and
F ∈ cof(X). It follows that O ∩ F = ∅ and consequently O ∩ X is
finite. Thus, n /∈ LimW (X). Contradiction! Hence, LimT (X) = ω and
EIcof(X)

ω (X) holds true.

(ii) → (iii) Let, by EIcof(X)
ω (X), T be a T2 topology on X∪ω extending

T
X,cof(X)
ω such that LimT (X) = ω. Clearly, V = {Vn : n ∈ ω} where for

every n ∈ ω, Vn = {V ∈ T : n ∈ V } satisfies: For every i, j ∈ ω with i ̸= j
there exists V ∈ Vi, U ∈ Vj with V ∩ U = ∅.

(iii) → (i) Let, by our hypothesis, F = {Fi : i ∈ ω} be a family of free
filterbases of X such that for every i, j ∈ ω with i ̸= j there exists V ∈ Fi,
U ∈ Fj with V ∩U = ∅. It is straightforward to verify that the topology T
on X∪ω generated by the family {{x} : x ∈ X}∪{{i}∪V : i ∈ ω, V ∈ Fi}
satisfies the conclusion of EIω(X).

The second assertion, in view of (i)-(iii) and Proposition 2.1, is straight-
forward. �

Theorem 3.2. Let X be an infinite set.
(i) IWDI(X) implies EIω(X). In particular, IEIω lies in the hierarchy
of choice principles between the statements NAS and IWDI.
(ii) EI(X,T1, T2) implies “for all n ∈ ω, X has a partition {Xi : i ≤ n}
into infinite sets”.

Proof. (i) This follows at once from Proposition 2.1 and Theorem 3.1.

(ii) Fix an infinite set X and n ∈ ω, n > 1. By our hypothesis, there
exists a T2 topology T on Y = X ∪ (n+1) extending T

X,cof(X)
n+1 such that

LimQ(X) = LimT (X). Fix for every i ≤ n an open neighborhood Vi of i
such that for all i, j ≤ n, i ̸= j, Vi ∩ Vj = ∅. It follows that {Vi : i < n}∪
{X\

∪
{Vi : i < n}} is a partition of X into n infinite sets. �

Our next result shows that IEI(T1, T2) is equivalent to ⌉EFU.

Theorem 3.3. Let X be an infinite set. The following are equivalent:
(i) X has no free ultrafilter.
(ii) EI(X,T1, T2).
(iii) For every T1 topology Q on X with |LimQ(X)| = 2 there exists a T2

extension T of Q with LimT (X) = LimQ(X).
In particular, IEI(T1, T2) is equivalent to ⌉EFU.
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Proof. (i) → (ii) Fix (Y,Q) a T1 space and let {xi : i ∈ n} be an enumera-
tion of the set X = LimQ(Y ). We prove, via a straightforward induction,
that Q extends to a T2 topology T on Y such that LimQ(Y ) = LimT (Y ).
If n = 1 then the conclusion is straightforward. So assume that the con-
clusion holds true whenever X = {xi : i ≤ k} and show that it remains
true in case X = {xi : i ≤ k + 1}.

Let, by our hypothesis, Tk be a T2 topology on the open set Yk =
Y \{xk+1} of Y extending QYk

such that LimQYk
(Yk) = LimTk

(Yk) =

{xi : i ≤ k}. Let S be the topology on Y generated by Tk ∪ Q. Clearly,
Q ⊆ S and (Y, S) is a T1 space such that for all i, j ≤ k, i ̸= j, xi and xj

have disjoint open neighborhoods.

Claim. For every topology K ⊇ S on Y with LimK(Y ) = {xj : j ≤
k+1}, for every i ≤ k there exists a topology Si on Y such that: Si ⊇ K,
LimSi(Y ) = {xj : j ≤ k + 1} and xi, xk+1 have disjoint Si - neighbor-
hoods.

Proof of the claim. Let Vi,Vk+1 denote the neighborhood bases of all
K - open sets of Y including xi and xk+1 respectively. Let A = Y \{xj :
j ≤ k + 1}. Since (Y,K) is T1, it follows that

Hi = {V ∩A : V ∈ Vi} and Hk+1 = {V ∩A : V ∈ Vk+1}

are free filters of A. We consider the following two cases:
(a) U = Hi ∪ Hk+1 does not have the fip. In this case there exists a

finite subset V = {V1, V2...Vs} of U such that V1 ∩ V2 ∩ ... ∩ Vs ∩ A = ∅.
Clearly, Oi = {xi} ∪

∩
(Hi ∩ V) and Ok+1 = {xk+1} ∪

∩
(Hk+1 ∩ V) are

disjoint K - neighborhoods of xi and xk+1 respectively. Hence, Si = K is
the required extension of K.

(b) U = Hi∪Hk+1 has the fip. Since, by our hypothesis, A has no free
ultrafilters it follows that the free filter F of A generated by U is not an
ultrafilter of A. Hence, there exists a subset D of A such that {D} ∪ F
has the fip and {Dc} ∪ F has the fip. Let Si be the topology generated
by the collection:

Ci,k+1 = K ∪{{xi}∪D\L : L ∈ [D]<ω}∪{{xk+1}∪Dc\L : L ∈ [Dc]<ω}.

Clearly, K ⊆ Si and Vi = {xi} ∪D, Vk+1 = {xk+1} ∪Dc are disjoint Si -
neighborhoods of xi and xk+1 respectively.

We show next that LimSi(Y ) = {xj : j ≤ k + 1}. Fix j ≤ k + 1 and
consider the following two cases:

(c) j ∈ {i, k + 1}. Assume j = i and fix

V = U ∩W,U ∈ K,W = {xi} ∪D\L,L ∈ [D]<ω
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an Si - neighborhood of xi. Since {D} ∪ F has the fip, U ∩ A ∈ F and
F is free it follows that V ∩ A = U ∩ A ∩ D\L is infinite. Hence, xi

∈ LimSi(Y ).
Similarly we can show that xk+1 ∈ LimSi(Y ).
(d) j /∈ {i, k+1}. Since Si adds no new neighborhoods of xj it follows

that xj ∈ LimSi(Y ).
From cases (c) and (d) it follows that LimSi(Y ) = {xj : j ≤ k + 1} as

required finishing the proof of the claim.

Using the claim, we construct iteratively extensions

S0 ⊆ S1 ⊆ ... ⊆ Sk

of S such that S0 is a topology on Y satisfying: LimS0(Y ) = {xj : j ≤
k + 1} and the points of x0, xk+1 have disjoint neighborhoods in (Y, S0).

In general, for every 0 < j ≤ k, Sj is an extension of Sj−1 satisfying:
LimSj (Y ) = {xi : i ≤ k + 1} and the points of xj , xk+1 have disjoint
neighborhoods in (Y, Sj). Evidently, T = Sk is the required T2 extension
of Q.

(ii) → (iii) This is straightforward.
(iii) → (i) Fix an infinite set X and let Y = {a, b} be a subset of X.

Assume, aiming for a contradiction, that there exists a free ultrafilter H
on A = X\Y . Arguing as in Example 3 we end up in a contradiction.
Thus, X has no free ultrafilter as required. �

As a corollary to Theorem 3.3 we get the following characterizations
of EFU and SPI whose proof is left as an easy exercise for the reader.

Corollary 3.4. (i) EFU iff there exists a T1 space (X,Q) with |LimQ(X)|
< ℵ0 such that for every T2 topology T on X extending Q, LimT (X) ̸=
LimQ(X).
(ii) SPI iff for every infinite set X there exists a T1 topology Q on X
with |LimQ(X)| < ℵ0 such that for every T2 topology T on X extending
Q, LimT (X) ̸= LimQ(X).

Remark. A natural strengthening of EI(X,T1, T2) is the proposition:
• EIℵ0(X,T1, T2) : Every T1 topology Q on X with |LimQ(X)| ≤
ℵ0 can be extended to a T2 topology T on X such that LimQ(X) =
LimT (X).

One might think that working as in Theorem 3.3 can prove that the
conjunction of ⌉EFU and some weak form of the axiom of choice such as
the axiom of dependent choice DC, implies the statement: IEIℵ0(T1, T2)
: ∀X(X infinite → EIℵ0(X,T1, T2) is relatively consistent with ZF. How-
ever, there exist countable T1 spaces (X,Q) without isolated points and
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the proof of Theorem 3.3 does not apply to these cases. We do not know
whether the statement: Every dense-in-itself T1 topology Q on ω extends
to a dense-in-itself T2 topology on ω is consistent with ZF. This explains
why we preferred the condition |LimQ(X)| < ℵ0 over |LimQ(X)| ≤ ℵ0.

Theorem 3.5. (i) IEIω 9 IEI(T1, T2), IEIω 9 IDI, IDI 9 IEI(T1, T2)
and IWDI 9 IEI(T1, T2) in ZF.
(ii) EI(X,T1, T2) 9 EIω(X) in ZFA (= ZF plus the existence of a set
of atoms).
(iii) IFBI2 9 IFBI in ZF.

Proof. (i) IEIω 9 IEI(T1, T2), IWDI 9 IEI(T1, T2), IEIω 9 IDI in
ZF. It is known that in Cohen’s basic model M1 in [1] SPI and IWDI
hold true but IDI fails. Hence, by Corollary 3.4, IEI(T1, T2) fails in M1
and by Theorem 3.2 IEIω holds true in M1. Thus, IEIω 9 IEI(T1, T2),
IWDI 9 IEI(T1, T2) and IEIω 9 IDI in ZF.

IDI 9 IEI(T1, T2). It is known that in the Pincus’ Model IX, Model
M47(n,M) in [1], IDI holds true and ω has a free ultrafilter. Hence, by
Example 3, there exists a T1 topology Q on ω with just two limit points
which does not extent to a T2 topology with the same set of limit points.
Thus, EI(ω, T1, T2) fails in M47(n,M). Hence, IEI(T1, T2) fails also and
IDI 9 IEI(T1, T2) in ZF.

(ii) We note that in the Weglorz/Brunner Model N51 in [1] (the set
of atoms A is countably infinite, the group of permutations G is the set
of all permutations ϕ of A and the normal filter H is generated by the
set of all subgroups GB , where B ⊆ A and GB = {π ∈ G : π(B) = B})
the set of atoms A has no free ultrafilters. So, ⌉UF(A) and consequently
by Theorem 3.3, EI(A, T1, T2) holds true. We show that EIω(A) fails
in N51. To this end it suffices by Theorem 3.1 to show that FBI(A)
fails. Assume, aiming for a contradiction, that FBI(A) holds true and let
F = {Fn : n ∈ ω} be a family of free filters of X such that:

(3.1) For every n,m ∈ ω, n ̸= m there exists U ∈ Fn, V ∈ Fm with
U ∩ V = ∅.

Let H ∈ H satisfy H ⊆ SymG(F). Assume

H =
∩
i≤n

GBi , Bi ∈ P(A), i ≤ n, n ∈ N.

Clearly, the relation ∼ on X =
∪
i≤n

Bi given by:

x ∼ y iff for all i ≤ n, x ∈ Bi ↔ y ∈ Bi
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is an equivalence. Clearly, for every Y ∈ X/ ∼, if x ∈ Y and Kx =
{i ≤ n : x ∈ Bi} then Y =

∩
i∈Kx

Bi ∩
∩

i∈Kc
x

Bc
i . Thus,

(3.2) (∀Y ∈ X/ ∼)( ∃ ∅ ̸= KY ⊆ n+ 1)(Y =
∩

i∈KY

Bi ∩
∩

i∈Kc
Y

Bc
i ).

We claim that:

(3.3) π ∈ H iff for all Y ∈ X/ ∼, π(Y ) = Y .

Indeed, if π ∈ H and Y ∈ X/ ∼ then, in view of (3.2), Y =
∩

i∈KY

Bi ∩∩
i∈Kc

Y

Bc
i for some ∅ ̸= KY ⊆ n + 1. Hence, π(Y ) = π(

∩
i∈KY

Bi ∩
∩

i∈Kc
Y

Bc
i ) =

π(
∩

i∈KY

Bi)∩π(
∩

i∈Kc
Y

Bc
i ) =

∩
i∈KY

π(Bij )∩
∩

i∈Kc
Y

π(Bc
i ) =

∩
i∈KY

Bij∩
∩

i∈Kc
Y

Bc
i = Y .

Conversely, assume that for all Y ∈ X/ ∼, π(Y ) = Y and show that
π ∈ H. To this end, it suffices to show that for all i ≤ n, π ∈ GBi

. Fix
i ≤ n and let y ∈ Bi. Since X =

∪
X/ ∼, it follows that y ∈ Y for some

Y ∈ X/ ∼ with Y ⊆ Bi. By our hypothesis, π(Y ) = Y and consequently
π(y) ∈ Bi and π(z) = y for some z ∈ Y (⊆ Bi). Thus, π(Bi) ⊆ Bi and
Bi ⊆ π(Bi) meaning that π(Bi) = Bi. Hence, π ∈ GBi as required.

We will be needing the following claim.

Claim. Let Y ∈ X\ ∼, L = {k ∈ ω : {Y } ∪ Fk has the fip} and for
all k ∈ L let F ′

k denote the filter of A generated by {Y } ∪ Fk. Then,
H ⊆ SymG(F

′) where, F′ = {Fn : n ∈ ω\L} ∪ {F ′
k : k ∈ L}.

Proof of the claim. Fix π∈H. It suffices to show that π({F ′
k :k∈L})=

{F ′
k : k ∈ L} and π({Fn : n ∈ ω\L}) = {Fn : n ∈ ω\L}.
To see that π({F ′

k : k ∈ L}) ⊆ {F ′
k : k ∈ L} fix k ∈ L and let

π(Fk) = {π(F ) : F ∈ Fk} = Fm for some m ∈ L. Since Fk ∪{Y } has the
fip and, by (3.3), π(Y ) = Y we see that Fm ∪ {Y } has the fip. Indeed, if
π(Fj) ∈ Fm, j = 1, 2, ..., v then

∩
j≤v

Fj ∩ Y ̸= ∅ and consequently

(3.4) ∅ ̸= π(
∩
j≤v

Fj ∩ Y ) =
∩
j≤v

π(Fj ∩ Y ) =
∩
j≤v

π(Fj) ∩ π(Y ) =
∩
j≤v

π(Fj) ∩ Y

meaning that Fm ∪ {Y } has the fip. Hence, m ∈ L and (3.4) shows that
π(F ′

k) = F ′
m. Thus,

π({F ′
k : k ∈ L}) ⊆ {F ′

k : k ∈ L}.

For the reverse inclusion, fix k ∈ L and let m ∈ ω be such that π(Fm) =
Fk. It is easy to see that, m ∈ L and π(F ′

m) = F ′
k. Thus, {F ′

k : k ∈ L} ⊆
π({F ′

k : k ∈ L}) and π({F ′
k : k ∈ L}) = {F ′

k : k ∈ L}.
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To see that π({Fn : n ∈ ω\L}) ⊆ {Fn : n ∈ ω\L} we note that
if n ∈ ω\L then Fn ∪ {Y } does not have the fip. Thus, there exists
Fi ∈ Fn, i = 1, 2, ..., k such that F1 ∩ F2 ∩ ... ∩ Fk ∩ Y = ∅. Hence,
π(F1) ∩ π(F2) ∩ ... ∩ π(Fk) ∩ Y = ∅ meaning that π(Fn) ∪ Y does not
have the fip. Thus, π(Fn) ∈ {Fv : v ∈ ω\L} and consequently π({Fn :
n ∈ ω\L}) ⊆ {Fn : n ∈ ω\L}.

For the reverse inclusion, fix n ∈ ω\L. Since π(F) = F we see that
there exists m ∈ ω such that π(Fm) = Fn. Clearly, m ∈ ω\L (if m ∈ L
then n ∈ L) and Fn ∈ π({Fn : n ∈ ω\L}). Thus, {Fn : n ∈ ω\L} ⊆
π({Fn : n ∈ ω\L}) and π({Fn : n ∈ ω\L}) = {Fn : n ∈ ω\L} finishing
the proof of the claim.

We continue with the proof by considering the following two cases:
(a) There exists Y ∈ X/ ∼ such that |L| ≥ 2, where L is the set

given in the claim. Replace F with F′ where F′ is given as in the claim.
Without loss of generality we may assume that F = F′ and for every
k ∈ L, Y ∈ Fk. Assume, for our convenience, that 0, 1 ∈ L and fix by
(3.1) F0 ∈ F0, F1 ∈ F1, F0, F1 ⊆ Y such that F0 ∩ F1 = ∅. Since F0,F1

are not free ultrafilters of A (recall that A has no free ultrafilters), it
follows that there exists partitions {F00, F01} of F0 and {F10, F11} of F1

into infinite sets such that F00 /∈ F0, F01 /∈ F0, F10 /∈ F1, F11 /∈ F1 and
{F00} ∪ F0, {F01} ∪ F0, {F10} ∪ F1, {F11} ∪ F1 have the fip. Let π be a
permutation of A given by:

π(F01) = F10, π(F10) = F01 and for all a ∈ A\(F01 ∪ F10), π(a) = a.

By (3.3), π ∈ H. Since, π(F0) = F00 ∪ F10 and π(F0) ∩ F0 = F00 /∈ F0,
π(F0) ∩ F1 = F10 /∈ F1 it follows that π(F0) ̸= F0 and π(F0) ̸= F1.
Assume, aiming for a contradiction, that π(F0) = Fk for some k > 1.
Since π(Y ) = Y ∈ F0, it follows that Y ∈ Fk and consequently k ∈ L.
Fix W0 ∈ F0,Wk ∈ Fk such that W0 ⊆ F0, Wk ⊆ Y and W0 ∩Wk = ∅.
Fix F ∈ F0 such that π(F ) = Wk. Clearly, U = F ∩W0 ∈ F0 satisfies:

π(U) = π(F ) ∩ π(W0) = Wk ∩ π(W0) ⊆ Wk.

Since {F00} ∪ F0, {F01} ∪ F0 have the fip and U ∈ F0 it follows that
U0 = F00 ∩ U ̸= ∅ and U1 = F01 ∩ U ̸= ∅. We have:

π(U) = π(U0 ∪ U1) = π(U0) ∪ π(U1) = U0 ∪ π(U1) ⊆ Wk.

Since W0 ∩Wk = ∅ and U ⊆ W0 we see that U0 = (U0 ∪π(U1))∩U = ∅.
Contradiction! So (a) cannot be the case.

(b) For all Y ∈ X/ ∼, |L| < 2. If this is the case then it is easy to see
that there exists a k ∈ ω such that for all n ≥ k,Xc ∈ Fn. Without loss
of generality we may assume that Xc ∈ F0 ∩ F1. As in case (a) we fix
F0 ∈ F0, F1 ∈ F1, F0, F1 ⊆ Xc such that F0 ∩ F1 = ∅. Let {F00, F01},
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{F10, F11} and π be as in the proof of case (a). Similarly with the proof
of case (a) we can show (b) cannot be the case.

Since one of the cases (a) and (b) must hold true, we have arrived at a
contradiction. Hence, there is no H ∈ H with H ⊆ sym(F) meaning that
F /∈ N51.

(iii) This follows at once from part (ii). NAS, hence by Proposition 2.1
IFBI2 also holds true in N51 but by part (ii) IFBI fails. An application
of the Jech-Sochor Embedding Theorem (Theorem 6.1 in [4]) at this point
yields a ZF model satisfying IFBI2 and the negation of IFBI.

The following diagram summarizes the web of implications and non-
implications between the principles, as well as the questions left open. �

IDI
→
8 IWDI

(↑?) ̸↓ (↗?) ̸↙ ↓ (↑?)

IEI(T1, T2)
⌉EUF

8
(→?)

IEIω
IEIcofω

IFBI

→
8 IFBI2 ↔ NAS

Diagram 1

References

[1] P. Howard and J. E. Rubin, Consequences of the axiom of choice, Math. Surveys
and Monographs, 59 A.M.S. Providence R.I., 1998.

[2] H. Herrlich, K. Keremedis, Extending compact topologies to compact Hausdorff
topologies in ZF, Topology and its applications 158 (2011), 2279–2286.

[3] K. Keremedis, Non-discrete metrics in ZF and some notions of finiteness, to
appear in MLQ.

[4] T. Jech, The Axiom of Choice. North-Holland Publishing Co., (1973)

Department of Mathematics, University of the Aegean, Karlovassi, Samos
83200, Greece

E-mail address: kker@aegean.gr


