
Volume 49, 2017

Pages 135-152

http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

Hausdorff closedness in the
convergence settings

by

John P. Reynolds

Electronically published on September 11, 2016

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: (Online) 2331-1290, (Print) 0146-4124

COPYRIGHT c⃝ by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS
Volume 49 (2017)
Pages 135-152

http://topology.auburn.edu/tp/
http://topology.nipissingu.ca/tp/

E-Published on September 11, 2016

HAUSDORFF CLOSEDNESS IN THE
CONVERGENCE SETTING

JOHN P. REYNOLDS

Abstract. We use convergence theory as the framework for study-
ing H-closed spaces and H-sets in topological spaces. From this
viewpoint, it becomes clear that the property of being H-closed and
the property of being an H-set in a topological space are pretopo-
logical notions. Additionally, we define a version of H-closedness
for pretopological spaces and investigate the properties of such a
space.

1. Introduction and Preliminaries

The early development of general topology was guided in part by the
desire to develop a framework in which to discuss different notions of con-
vergence found in analysis. In 1948, G. Choquet [4] laid out the theory of
convergence spaces, general enough to contain the classes of topological
spaces and closure spaces while unifying the desired notions of conver-
gence.

Once an agreed-upon definition of topological space was arrived at,
the concept of compactness revealed itself to be deserving of much
study and subsequently of generalization. One of the most fruitful varia-
tions of compactness is that of a Hausdorff closed space, defined in [1] by
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136 JOHN P. REYNOLDS

P. Alexandroff and P. Urysohn in 1928. In this paper we use the common
abbreviation H -closed when discussing Hausdorff closed spaces. One par-
ticular advantage of considering H-closed spaces is that, in contrast with
compact spaces, every Hausdorff topological space can be densely em-
bedded in an H-closed space. Much later, in 1968, N. V. Veličko [17]
relativized H-closedness to subspaces by defining the H-sets of a topolog-
ical space X. In this same paper, Veličko gives us the tools needed to
consider H-closedness and H-sets as purely convergence-theoretic proper-
ties. In [5] R.F. Dickman and J.R. Porter use these tools to define the
particular convergence we will use to discuss H-closed spaces and H-sets
in the convergence setting.

Our first task here will be to place H-closed spaces and H-sets in the
convergence theoretic framework. In Section 2, we give preliminary defi-
nitions and results pertaining to H-closed spaces and H-sets in the usual
topological setting. This is followed in Section 3 by the basic defini-
tions and results necessary to consider the convergence theoretic point
of view. Particularly of interest will be the definition of pretopological
spaces, which is the subcategory of convergence spaces in which we will
mainly work. At this point we will frame H-closed spaces and H-sets as
pretopological notions. In particular, Theorem 3.12 points to the poten-
tial advantages of this point of view.

In Section 4, we define a purely convergence-theoretic notion which
parallels that of H-closedness for topological spaces. The basic properties
of the so-called PHC spaces (short for pretopologically H-closed spaces)
are investigated. Additionally, we develop a technique for constructing
new PHC spaces using images of compact pretopological spaces.

Lastly, we will discuss extensions of convergence spaces. Much work has
been done in this area, in particular by D.C. Kent and G.D. Richardson,
who catalogued much of the early progress in the field in [12]. In [12] an
axiom is used in the definition of a convergence space which we will not
assume. This axiom will be given in 4.2 under the name property (R)
and we will be explicit when making use of this axiom in the results of
that section. We investigate PHC extensions of a pretopological space
X. These extensions prove to be of interest in that for any pretopological
space X, there is a PHC extension of X which is projectively larger than
any compactification of X. This is not true of compactifications, as a
convergence space X does not in general have a largest compactification.

We now take a moment to normalize some notations and give pre-
liminary definitions to be used in the sequel. The Greek letters τ and
π will always represent a topology and a pretopology, respectively.



HAUSDORFF CLOSEDNESS IN THE CONVERGENCE SETTING 137

If (X, τ) is a topological space, then the closure operator with respect to
the topology will be denoted clτ and for x ∈ X, the family of neighbor-
hoods of x will be given by Nτ (x). A function f : (X, τ) → (Y, σ) between
topological spaces is θ-continuous if for each x ∈ X and V ∈ Nσ(f(x)),
there exists U ∈ Nτ (x) such that f [clτU ] ⊆ clσV . Every continuous
function is θ-continuous. If (Y, σ) is regular, then the notions coincide.

Let X be a set, and L ⊆ 2X a family of subsets of X such that (L,⊆)
is a lattice. An L-filter on X is an isotone family of elements of L closed
under finite meets. If L = 2X , then F is simply called a filter. If (X, τ)
is a topological space and L = τ , then F is called an open filter. If B is a
family of subsets of X with the finite intersection property, then we use
⟨B⟩ to denote the smallest filter on X generated by B. If F and G are
L-filters on X, we say that G is finer than F , written F ≤ G, if F ⊆ G.
An L-filter U which is maximal with respect to ≤ is called an L-ultrafilter.
Again, if L = 2X , we say simply that U is an ultrafilter and if L = τ , we
say that U is an open ultrafilter.

If (X, τ) is a topological space, x ∈ X and F is a filter on X, it is said
that F τ -converges to x if Nτ (x) ⊆ F . The adherence of F is defined to
be

∩
F∈F clτ F .

2. H-closed Spaces and H-sets

A Hausdorff topological space is H-closed if it is closed in every Haus-
dorff topological space in which it is embedded. The following well-known
characterizations of H-closed spaces are useful and will be used inter-
changeably as the definition of H-closed.

Theorem 2.1. Let X be a Hausdorff topological space. The following are
equivalent.

(1) X is H-closed,
(2) Whenever C is an open cover of X, there exist C1, ..., Cn ∈ C such

that X =
∪n

i=1 clτ Ci,
(3) Every open filter on X has nonempty adherence,
(4) Every open ultrafilter on X has a convergence point.

Veličko [17] relativized the concept of H-closed to subspaces in the
following way: If X is a Hausdorff topological space and A ⊆ X, we say
that A is an H-set if whenever C is a cover of A by open subsets of X, there
exist C1, ..., Cn ∈ C such that A ⊆

∪n
i=1 clτ Ci. We say that a filter F

meets a set A if F∩A ̸= ∅ for each F ∈ F . If F meets A we will sometimes
write F#A. We note the following well-known characterizations of H-sets
which mirror the above theorem.
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Proposition 2.2. Let X be a topological space and A ⊆ X. The following
are equivalent.

(1) A is an H-set in X,
(2) If F is an open filter on X which meets A, then adhX F ∩A ̸= ∅,
(3) If U is an open ultrafilter on X which meets A, then adhX U∩A ̸=

∅.

It is important to note that the property of H-closeness is not closed-
hereditary. Also, note that the definition of an H-set is dependent on
the ambient space being considered. In particular, not every H-set is H-
closed. The following example, due to Urysohn, points to this distinction.
Recall that a space X is semiregular if the regular-open subsets of X form
an open base.

Example 2.3. Let X = N× Z ∪ {−∞,+∞}. Define U ⊆ X to be open
if

+∞ ∈ U implies that there is nU ∈ N such that

{(n, k) ∈ N× Z : n > nU , k > 0} ⊆ U

−∞ ∈ U implies that there is nU ∈ N such that

{(n, k) ∈ N× Z : n > nU , k < 0} ⊆ U

(n, 0) ∈ U implies that there is some kU ∈ N such that

{(n, k) ∈ N× Z : |k| > kU} ⊆ U.

Then X is H-closed and semiregular. Let A = {(n, 0) ∈ N×Z : n ∈ N}∪
{+∞}. Notice that A is a closed discrete subset of X and that A is an
H-set in X. However, with the subspace topology, A ∼= N, and thus is not
H-closed.

3. Convergence Spaces

For a basic reference on convergence theory, see [9]. Given a relation
ξ between filters on X and elements of X, we write x ∈ limξ F whenever
(F , x) ∈ ξ and say that x is a ξ-limit point of F . If A ⊆ X, let ⟨A⟩
be the principal filter generated by A. We abbreviate ⟨{x}⟩ by ⟨x⟩. A
convergence space is a set X paired with a relation ξ between filters on X
and points of X satisfying

(1) x ∈ limξ⟨x⟩, and
(2) if F ⊆ G and x ∈ limξ F , then x ∈ limξ G.

The relation ξ is called a convergence on X. Notice that, thanks to (1),
the set X is equal to the range of the relation ξ. Therefore, the underlying
set is determined by the convergence.
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Clearly, a topological space (X, τ) paired with the usual topological
notion of convergence in which x ∈ limτ F if and only if Nτ (x) ⊆ F
is an example of a convergence space. Since topological convergence is
determined by the topology τ , we will abuse notation and use the symbol
τ for both the family of open subsets of X and the convergence determined
by τ . The class of convergence structures on a set X can be given a
lattice structure. We say that σ is coarser than ξ, written σ ≤ ξ if
limσ F ⊇ limξ F for each filter F on X. In this case we also say that ξ is
finer than σ.

Example 3.1. Throughout this paper, if X is a topological space, let θ
be the convergence on X defined by x ∈ limθ F if and only if clτ U ∈ F for
each U ∈ Nτ (x). If there is any possibility for confusion, we will write θX .
This type of convergence was studied extensively under the name “almost
convergence” in [5]. We will frequently come back to this example of a
convergence space.

Two filters F and G meet if F ∩ G ̸= ∅ for each F ∈ F and G ∈ G,
in which case we write F#G. Given a filter F on a convergence space
(X, ξ), the adherence of F is defined to be

adhξ F =
∪

{limξ G : G#F}.

For A ⊆ X, we write adhξ A to abbreviate adhξ⟨A⟩. We will also define
the inherence of a set A by

inhξ A = X \ adhξ(X \A).

These two concepts will function as versions of topological closure and
interior generalized to convergence spaces.

A convergence ξ is Hausdorff if every filter has at most one limit point.
Topological spaces are now seen as a particular instance of convergence

spaces. In fact, if (X, τ) is a topological space, then adhτ A = clτ A for
any A ⊆ X and adhτ F =

∩
F∈F clτ F . Two other important classes of

convergences are pseudotopologies and pretopologies. If F is a filter on X,
let βF denote the set of all ultrafilters on X containing F . A convergence
ξ is a pseudotopology if limξ F ⊇

∩
{limξ U : U ∈ βF}. In [10], Herrlich,

Lowen-Colebunders and Schwatz discuss the categorical advantages of
working in the category of pseudotopological spaces. We will discuss the
usefulness of working with pretopological spaces to characterize H-closed
space and H-sets in the next subsection.

A convergence space (X, ξ) is compact if every filter on X has nonempty
adherence. The following notions of compactness for filters will allow us
to get at compactness of subspaces.
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Definition 3.2. Let (X, ξ) be a convergence space, F a filter on X and
A ⊆ X. We say that F is compact at A if whenever G is a filter on X and
G#F , adhξ G ∩ A ̸= ∅. In particular, a filter F is relatively compact if it
is compact at X.

If B is a family of subsets of X, then F is compact at B if whenever
G#F , adhξ G#B. A filter is compact if F is compact at itself.

Using this definition, A ⊆ X is compact if whenever G is a filter on X
which meets A, we have that adhξ G ∩A ̸= ∅. Notice that for topological
spaces this also characterizes the compact subspaces.

Let (X, ξ) and (Y, σ) be convergence spaces. A function f : (X, ξ) →
(Y, σ) is continuous if f [limξ F ] ⊆ limσ f(F) for each filter F on X, where
f(F) is the filter generated by {f [F ] : F ∈ F}. Notice that if X and Y
are topological spaces, then f : X → Y is θ-continuous if and only if
f : (X, θX) → (Y, θY ) is continuous in the sense of convergence spaces.

Given A ⊆ X and a convergence ξ on X, we can define the subcon-
vergence on A as follows: If F is a filter on A, let ⟨F⟩ be the filter on
X generated by F . Define limξ|A F = limξ⟨F⟩ ∩ A. This is also the
initial convergence of A generated by the inclusion map i : A → (X, ξ);
that is, the coarsest convergence making the inclusion map continuous.
Thus, A is a compact subset of (X, ξ) is equivlent to (A, ξ|A) is a compact
convergence space.

3.1. Pretopologies, H-closed Spaces and H-sets. For each x ∈ X,
the vicinity filter at x is defined

Vξ(x) =
∩

{F : x ∈ limξ F}.

If A ⊆ X, then
Vξ(A) = {V ⊆ X : A ⊆ inhξ V }.

A convergence ξ on X is a pretopology if x ∈ limξ Vξ(x) for each x ∈ X.
We take a moment to gather several well-known facts and definitions
pertaining to pretopological spaces here:

Proposition 3.3. If (X,π) is a pretopological space, then the adherence
operator satisfies each of the following

(1) adhπ ∅ = ∅,
(2) A ⊆ adhπ A for each A ⊆ X,
(3) adhπ(A ∪B) = adhπ A ∪ adhπ B for any A,B ⊆ X.

Additionally, U ∈ Vπ(x) if and only if x ∈ inhπ U and x ∈ adhπ F if
and only if Vπ(x)#F .

In particular, this proposition shows that the closure spaces of [3] and
pretopological spaces as defined above are equivalent.
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Proposition 3.4. If (X,π) is a pretopological space, then X is Hausdorff
if and only if whenever x1, x2 ∈ X and x1 ̸= x2, there exists Ui ∈ Vπ(xi)
(i = 1, 2) such that U1 ∩ U2 = ∅.

Proposition 3.5. Let f : (X,π) → (Y, σ). The following are equivalent
(1) f is continuous
(2) f [adhπ F ] ⊆ adhσ f(F) for each filter F on X
(3) f [adhπ A] ⊆ adhσ f [A] for each A ⊆ X
(4) f←[inhσ B] ⊆ inhπ f

←[B] for each B ⊆ Y
(5) For each x ∈ X, if V ∈ Vσ(f(x)), there exists U ∈ Vπ(x) such

that f [U ] ⊆ V .

Definition 3.6. A collection C of subsets of a pretopological space (X,π)
is a π-cover (or simply cover if there is no possible confusion) if for each
x ∈ X, C ∩ Vπ(x) ̸= ∅. For A ⊆ X, we say that C is a cover of A if for
each x ∈ A, C ∩ Vπ(x) ̸= ∅.

Proposition 3.7. Let (X,π) be a pretopological space, F a filter on X
and A ⊆ X. Then F is compact at A if and only if whenever C is a π-
cover of A, there exists F ∈ F and C1, ..., Cn ∈ C such that F ⊆

∪n
i=1 Ci.

The notion of covers has been studied before (see, for example, [9]) and
it is well known that this definition of a pretopological cover is a specific
case of the more general notion for convergence spaces. For pretopological
spaces – and more generally for convergence spaces – the characterization
of compact in terms of covers in Proposition 3.7 is weaker than the notion
of cover-compactness found in Definition 3.13. These characterizations
coincide for topological spaces.

For an example of a pretopology which is not in general a topology, we
return to Example 3.1. In this case, (X, θ) is a pretopological space and
Vθ(x) is the filter generated by {clτ U : U ∈ Nτ (X)}. For A ⊆ X, adhθ A
is the well-known θ-closure. Explicitly,

x ∈ adhθ A ⇔ ∀(U ∈ Nτ (X)) clτ U ∩A ̸= ∅.

To see why this convergence is not in general a topology, we make use of
Proposition 22 from [9].

Proposition 3.8. Let (X, ξ) be a convergence space. If ξ is a topology,
then the adherence operator adhξ is idempotent on subsets of X.

Now let X be the topological space defined in Example 2.3 equipped
with the pretopology θ described in Example 3.1. Consider the following
subset B of X :

B = {(n,m) ∈ N× Z : n ∈ N,m > 0}.
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Then
adhθ B = B ∪ {(n, 0) ∈ N× Z : n ∈ N} ∪ {+∞}.

However,
adhθ adhθ B = adhθ B ∪ {−∞}

and by Proposition 3.8, (X, θ) is not a topological space.
We can now characterize both H-closed spaces and H-sets in the terms

of the pretopological convergence θ. The following theorem is well-known.
The first part is due to Veličko [17] and the second can be found in [5].

Theorem 3.9. Let X be a Hausdorff topological space and A ⊆ X. Then
(1) X is H-closed if and only if adhθ F ̸= ∅ for every filter F on X.
(2) A is an H-set in X if and only if adhθ F ∩ A ̸= ∅ for each filter

F which meets A.

We can restate Theorem 3.9 using Definition 3.2. The following then
characterizes both H-closed spaces and H-sets as pretopological notions.

Theorem 3.10. Let X be a Hausdorff topological space and A ⊆ X.
(1) X is H-closed if and only if (X, θX) is a compact pretopological

space.
(2) A is an H-set in X if and only if A is a compact subset of (X, θX).

Just as immediate, but perhaps more interesting, is the case of H-sets
in Urysohn spaces. Recall that a topological space X is Urysohn if distinct
points have disjoint closed neighborhoods. For every Hausdorff space X,
there exists an extremally disconnected, Tychonoff space EX, called the
absolute of X, and a perfect, irreducible, θ-continuous map kX : EX →
X. Explicitly, the space EX has as its points the open ultrafilters on X
and for an open ultrafilter U , kX(U) is the unique adherent point of U in
X. Moreover, the absolute of X is unique in a sense. For a full treatment
of absolutes, see [15]. The following theorem is due to Vermeer [18] and
makes use of this construction.

Theorem 3.11. Let X be H-closed and Urysohn and let A ⊆ X. Then
A is an H-set if and only if k←X [A] is a compact subset of EX.

In the same paper, Vermeer gives an example of an H-closed non-
Urysohn space X which has an H-set which is not the image under kX of
any compact subspace of EX. A more general phrasing of the above theo-
rem of Vermeer is that if A is an H-set in an H-closed Urysohn space, then
there exists a compact Hausdorff topological space K and a θ-continuous
function f : K → X such that f [K] = A. Vermeer then asked if this was
true for an H-set in any Hausdorff topological space; i.e. if X is a Haus-
dorff topological space and A is an H-set in X, does there exist a compact,
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Hausdorff topological space K and a θ-continuous function f : K → X
such that f [K] = A? The answer, it turns out, is no. This was shown
first by Bella and Yaschenko in [2]. Later, in [13], McNeill showed that it
is in addition possible to construct a Urysohn space containing an H-set
which is not the θ-continuous image of a compact, Hausdorff topological
space. This makes the following observation interesting.

Theorem 3.12. Let X be a Urysohn topological space. Then A is an
H-set if and only if (A, θ|A) is a compact, Hausdorff pretopological space,
where θ|A is the subconvergence on A inherited from (X, θ). In particular,
if X is a Urysohn topological space and A ⊆ X is an H-set, then there
exists a compact, Hausdorff pretopological space (K,π) and a continuous
function f : (K,π) → (X, θ) such that f [K] = A.

The question remains – if X is a Hausdorff topological space and A is
an H-set in X, is there a compact, Hausdorff pretopological space (K,π)
and a continuous function f : (K,π) → (X, θ) such that f [K] = A? More
broadly, is there a pretopological version of the absolute?

3.2. Perfect Maps. Much of the following can be seen as generalizing
the results of [5] to pretopological spaces. Throughout this subsection,
let (X,π) and (Y, σ) be pretopological spaces. The results below will be
used in the construction of the θ-quotient convergence in Section 4.

Definition 3.13. A function f : (X,π) → (Y, σ) is perfect if f←(F) is
compact at f←(y) whenever y ∈ limσ F .

In the case of topological spaces, this definition was shown by Why-
burn [20] to be equivalent to the usual definition of a perfect function for
topological spaces; that is, a function which is closed and has compact
fibers.

Proposition 3.14. A function f : (X,π) → (Y, σ) is perfect if and only
if f(adhπ F) ⊇ adhσ f(F) for each filter F on X.

Proof. Suppose that f is perfect. Let F be a filter on X and let y ∈
adhσ f(F). By way of contradiction, suppose that f←(y) ∩ adhπ F = ∅.
Since σ is a pretopology, y ∈ limσ Vσ(y) and since f is perfect, it follows
that f←(Vσ(y)) is compact at f←(y). Since y ∈ adhσ f(F), Vσ(y)#f(F).
It follows that f←(Vσ(y))#F . Thus, it must be that adhπ F∩f←(y) ̸= ∅,
a contradiction. Hence, y ∈ f(adhπ F).

Conversely, suppose F is a filter on Y and y ∈ limσ F . Let G be a filter
on X such that G#f←(F). Then f(G)#F . Since y ∈ limσ F , it follows
that y ∈ adhσ f(G) ⊆ f [adhπ G]. So, we can find x ∈ adhπ G such that
f(x) = y. In other words, adhπ G ∩ f←(y) ̸= ∅, and f←(F) is compact
at f←(y). �
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To get a similar characterization to that of perfect functions between
topological spaces for perfect functions between pretopological spaces we
need the concept of cover-compact sets, a strengthening of compact sets.
This characterization can be found in [6], but we feel it is worthwhile to
lay out the details in this less technical setting.

Definition 3.15. Let (X,π) be a pretopological space and A ⊆ X. Then
A is cover-compact if whenever C is a cover of A, there exist C1, ..., Cn ∈ C
such that A ⊆ inhπ (

∪n
i=1 Ci).

Proposition 3.16. Let (X,π) be a pretopological space and A ⊆ X. The
following are equivalent,

(1) For any filter F on X, adhπ F ∩ A = ∅ implies that there exists
some F ∈ F such that adhπ F ∩A = ∅,

(2) A is cover-compact,
(3) adhπ F ∩A = ∅ implies there exists V ⊆ X and F ∈ F such that

A ⊆ inhπ V and V ∩ F = ∅ for any filter F on X.

Proof. Suppose that A is cover-compact and let C be a cover of A.
Suppose that no finite subcollection exists as needed. Then F =
{X \ (C1 ∪ ... ∪ Cn) : Ci ∈ C, i ∈ N} is a filterbase on X. Note that
adhπ F ⊆ X \

∪
C∈C inhπ C and as such adhπ F ∩ A = ∅. Since A is

cover-compact, we can find F ∈ F such that adhπ F ∩ A = ∅. How-
ever, F = X \ (C1 ∪ ... ∪ Cn) for some C1, ..., Cn ∈ C, so we have that
A ⊆ inhπ(C1 ∪ ... ∪ Cn), a contradiction.

Suppose that F is a filter on X and adhπ F ∩ A = ∅. Then, for
each x ∈ A, fix Vx ∈ Vπ(x) and Fx ∈ F such that Vx ∩ Fx = ∅. Then
{Vx : x ∈ A} is a cover of A. By assumption, we can choose x1, ..., xn ∈ A
such that A ⊆ inhπ (

∪n
i=1 Vxi). Therefore, V =

∪n
i=1 Vxi ∈ Vπ(A) and

V ∩ (Fx1 ∩ ... ∩ Fxn) = ∅. Since Fx1 ∩ ... ∩ Fxn ∈ F , we have shown that
(c) holds.

Lastly, let F be a filter on X such that adhπ F∩A = ∅. By assumption,
we can find V ∈ Vπ(A) and F ∈ F such that V ∩F = ∅. For each x ∈ A,
V ∈ Vπ(x), so x /∈ adhπ F . It follows immediately that A ∩ adhπ F ̸=
∅. �

It is useful to note that if A ⊆ X is cover-compact, then adhπ A = A.

Theorem 3.17. Let f : (X,π) → (Y, σ) be a map between pretopological
spaces satisfying (a) f [adhπ A] ⊇ adhσ f [A] for any A ⊆ X and (b) f←(y)
is cover-compact for each y ∈ Y . Then f is perfect.

Proof. Let F be a filter on Y which σ-converges to some y ∈ Y . Let G
be a filter on X which meets f←(F). Then f(G) meets F . Since y ∈
limσ F , F is compact at y. Therefore, y ∈ adhσ f(G) =

∩
G∈G adhσ f [G].
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By assumption (a), for each G ∈ G, f [adhπ G] ⊇ adhσ f [G]. Therefore,
adhπ G∩ f←(y) ̸= ∅ for each G ∈ G. By assumption (b), f←(y) is cover-
compact, so adhπ G ∩ f←(y) ̸= ∅. In other words, f←(F ) is compact at
f←(y) and f is perfect. �
Theorem 3.18. Let f : (X,π) → (Y, σ) be perfect and continuous. Then
f satisfies (a) and (b) of 3.17.

Proof. By Proposition 3.5(3) and Proposition 3.14, f [adhπ A] = adhσ f [A]
for each A ⊆ X. Thus, a property stronger than (a) holds. To see that (b)
holds, fix y ∈ Y and let F be a filter on X such that adhπ F∩f←(y) = ∅.
By Proposition 3.14, y /∈ f [adhπ F ] ⊇ adhσ f(F). Thus, we can find
V ∈ Vσ(y) and F ∈ F such that V ∩ f(F ) = ∅. It follows that
f←[V ]∩F = ∅. Since f is a continuous function, for each x ∈ f←(y), fix
Ux ∈ Vπ(x) such that f [Ux] ⊆ V . Then

∪
x∈f←(y) Ux ⊆ f←[V ] and thus∪

x∈f←(y) Ux ∩ F = ∅. So, adhπ F ∩ f←(y) = ∅, as needed. �

Corollary 3.19. A continuous function f : (X,π) → (Y, σ) is perfect if
and only if it satisfies (a) and (b) of 3.17.

4. PHC Spaces

In this section we will define a variation of H-closed spaces for pretopo-
logical spaces. After establishing some basic facts about the so-called PHC
spaces, we will describe a method for constructing PHC pretopologies and
PHC extensions.

The following definition appears in [7].

Definition 4.1. Let (X,π) be a pretopological space. The partial reg-
ularization rπ of π is the pretopology determined by the vicinity filters
Vrπ(x) = {adhπ U : U ∈ Vπ(x)}.

Notice that if (X, τ) is a topological space, then rτ is the usual θ-
convergence on X. Thus, a Hausdorff topological space (X, τ) is H-closed
if and only if (X, rτ) is compact. This inspires the following definition,
aiming to generalize the notion of H-closed spaces to pretopological spaces.

Definition 4.2. Let (X,π) be a Hausdorff pretopological space. The
pretopology π is PHC (pretopologically H-closed) if (X, rπ) is compact.
Without the assumption of Hausdorff, we will use the term quasi PHC.

For n ∈ N and A ⊆ X, let inhnπ A be the nth iteration of the inherence
operator on A. Given a filter F on a pretopological space (X,π) let

iπF = {F : inhπ F ∈ F}.
Inductively, define

inπF = {H : inhnπ H ∈ F},
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and finally
iωπF =

∩
n∈N

inπF .

We use the convention i0πF = F and i1πF = iπF . Notice then that
inπF = iπ

(
in−1π F

)
for each n ∈ N.

Lemma 4.3. Let (X,π) be a pretopological space and let F be a filter on
X such that iπF = F . Then adhπ F = adhrπ F .

Proof. To begin, since rπ ≤ π, adhπ F ⊆ adhrπ F . Now, x /∈ adhπ F if
and only if we can find F ∈ F and U ∈ Vπ(x) such that U ∩ F = ∅.
Since U ∩ F = ∅, if y ∈ inhπ F , then y /∈ adhπ U . In other words,
adhπ U ∩ inhπ F = ∅. Since F = iπF , inhπ F ∈ F and by definition
x /∈ adhrπ F , as needed. �

Lemma 4.4. Let (X,π) be a pretopological space and let F be a filter on
X. Then adhrπ i

n
πF = adhπ i

n+1
π F for each n ∈ N.

Proof. We begin by showing the lemma holds for n = 0. Recall that
i0πF = F . Suppose that x /∈ adhrπ F . Then there exists U ∈ Vπ(x) and
there exists F ∈ F such that adhπ U ∩ F = ∅. So, F ⊆ X \ adhπ U =
inhπ(X \U). By definition, it follows that X \U ∈ iπF . Since U∩X \U =
∅, we have that x /∈ adhπ iπF . Conversely, if x /∈ adhπ iπF , then there
exists U ∈ Vπ(x) and F ∈ iπF such that U ∩ F = ∅. As we have seen
before, it follows that adhπ U ∩ inhπ F = ∅. Since F ∈ iπF , we know
that inhπ F ∈ F . It follows that x /∈ adhrπ F , as needed.

The remainder of the lemma follows easily by setting F = inπF , in
which case iπF = in+1

π F . �

Definition 4.5. A filter F on a pretopological space is inherent if inhπ F ̸=
∅ for each F ∈ F . If U is maximal with respect to the property of being
inherent, we say that U is an inherent ultrafilter.

Theorem 4.6. For a Hausdorff pretopological space (X,π), the following
are equivalent.

(1) X is PHC
(2) whenever C is a π-cover of X, there exists C1, ..., Cn ∈ C such

that X =
∪n

i=1 adhπ Ci

(3) each inherent filter F on X has nonempty adherence
(4) adhπ iπF ̸= ∅ for each filter F on X.

Proof. Let C be a π-cover of X. Without loss of generality, assume that
C = {Ux : x ∈ X} where each Ux ∈ Vπ(x). Suppose no such finite
subcollection exists. Then A = {X \ adhπ Ux : x ∈ X} has the finite
intersection property. Let F be the filter generated by A. For each
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x ∈ X, x ∈ inhrπ adhπ U if and only if there exists V ∈ Vπ(x) such that
adhπ V ⊆ adhπ U . Therefore, for each x ∈ X, x ∈ inhrπ adhπ Ux. Thus,
adhrπ F = X \

∪
x∈X inhrπ adhπ Ux = ∅, a contradiction.

Next, let F be a filter on X such that inhπ F ̸= ∅ for each F ∈ F .
Suppose that adhπ F = ∅. Then C = {X \ F : F ∈ F} is a π-cover of X.
By assumption, there exist F1, ..., Fn ∈ F such that adhπ(X \ F1 ∪ ... ∪
X \ Fn) = X \ inhπ(F1 ∩ ... ∩ Fn) = X. However, F1 ∩ ... ∩ Fn ∈ F and
thus by assumption F1∩ ...∩Fn has nonempty inherence, a contradiction.

Let F be a filter on X. Notice that iπF is a filter on X such that
inhπ F ̸= ∅ for each F ∈ iπF . Then by assumption, adhπ iπF ̸= ∅.

Let F be a filter on X. Then adhrπ F = adhπ iπF ≠ ∅ by Lemma
4.4. Thus, we have shown that (X, rπ) is compact and the theorem is
proven. �

4.1. θ-quotient Convergence. Let (X,π) be a compact Hausdorff
pretopological space, Y a set and f : (X,π) → Y a surjection such
that f←(y) is cover-compact for each y ∈ Y . For A ⊆ X, let f#[A] =
{y ∈ Y : f←(y) ⊆ A}. Define the θ-quotient convergence f#π on Y
as follows: a filter F on Y f#π-converges to y if and only if f←(F) is
compact at f←(y).

Lemma 4.7. Let F be a filter on Y . Then y ∈ limf#πF if and only if
f←(F) ⊇ Vπ(f

←(y)).

Proof. Suppose that f←(F) is compact at f←(y). Then whenever C is a
cover of f←(y), there exists F ∈ F and C1, ..., Cn ∈ C such that f←[F ] ⊆∪n

i=1 Ci. Let V ∈ Vπ(f
←(y)). By definition, f←(y) ⊆ inhπ V . In other

words, {V } is a one-element cover of f←(y). Thus, V ∈ f←(F), as
needed.

Conversely, let C be a cover of f←(y). Since f←(y) is cover-compact, we
can find C1, ..., Cn ∈ C such that f←(y) ⊆ inhπ (

∪n
i=1 Ci). By definition,

C =
∪n

i=1 Ci ∈ Vπ(f
←(y)). Thus, C ∈ f←(F) and there exists F ∈ F

such that f←[F ] ⊆
∪n

i=1 Ci and f←(F) is compact at f←(y). �

Lemma 4.8. Let (X,π) be a Hausdorff pretopology. If A,B ⊆ X are
disjoint cover-compact subsets of X, then there exist disjoint vicinities
U ∈ Vπ(A), V ∈ Vπ(B).

Proof. First we show this holds for B = {x}. For each z ∈ A, choose dis-
joint Uz ∈ Vπ(z) and Vz ∈ Vπ(x). Since A is cover-compact, we can choose
z1, ..., zn ∈ A such that A ⊆ inhπ (

∪n
i=1 Uzi). Thus, U =

∪n
i=1 Uzi ∈

Vπ(A). Also, V =
∩n

i=1 Vzi ∈ Vπ(x) and U ∩ V = ∅. It is a straight-
forward exercise to now show this holds for disjoint cover-compact sets,
A and B. �
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Proposition 4.9. (Y, f#π) is a Hausdorff pretopology. Furthermore, for
each y ∈ Y ,

Vf#π(y) = ⟨{f#[W ] : W ∈ Vπ(f
←(y))}⟩.

Proof. We first show that f#π is indeed a pretopology. Notice that for
y ∈ Y ,∩

{F : y ∈ limf#π F} =
∩

{F : V ∈ Vπ(f
←(y)) implies f#[V ] ∈ F}.

It follows that Vf#π(y) is the filter generated by {f#[U ] : U ∈ Vπ(f
←(y))}.

For any A ⊆ X, f←[f#[A]] ⊆ A. It follows easily that f←(Vf#π(y)) ⊇
Vπ(f

←(y)). By Lemma 4.7, then, y ∈ limf#π Vf#π(y) and f#π is a pre-
topology with the stated vicinity filters.

Now, if y1 ̸= y2, by Lemma 4.8, for i = 1, 2, we can find Ui ∈
Vπ(f

←(yi)) such that U1∩U2 = ∅. It is immediate that f#[U1]∩f#[U2] =
∅ and f#π is Hausdorff. �
Definition 4.10. Let (X,π) and (Y, σ) be pretopological spaces. A func-
tion f : (X,π) → (Y, σ) is strongly irreducible if there exists y ∈ Y such
that f←(y) ⊆ U ∩V for any subsets U and V of X with nonempty inher-
ence such that U ∩ V ̸= ∅.

The function f is weakly θ-continuous (wθ-continuous for short) if
f : (X,π) → (Y, rσ) is continuous.

Theorem 4.11. If (X,π) is a compact, Hausdorff pretopological space,
f : (X,π) → Y a strongly irreducible surjection such that f←(y) is cover-
compact for each y ∈ Y and f#π is the θ-quotient pretopology on Y , then
f : (X,π) → (Y, f#π) is wθ-continuous and (Y, f#π) is a PHC Hausdorff
pretopological space.

Proof. For x ∈ X, let V ∈ Vf#π(f(x)). Without loss of generality, we
can assume that V = f#[W ] for some W ∈ Vπ(f

←(f(x))). Note that in
this case x ∈ inhπ W . Supose that w ∈ W and f(w) ∈ f#[U ] for some
U ∈ Vπ(f

←(f(w))). Notice that w ∈ W ∩ U , so W ∩ U ̸= ∅. Since
f is strongly irreducible, we can find y ∈ f#[U ] ∩ f#[W ]. Therefore,
f(w) ∈ adhπ f

#[W ]. In particular, f [W ] ⊆ adhπ f
#[W ] and f is wθ-

continuous.
Since the continuous image of a compact space is again compact,

(Y, rf#π) is compact and by definition (Y, f#π) is PHC. �
4.2. PHC Extensions of X. Let (X,π) be a pretopological space. By
an extension of π, we mean a convergence ξ on a set Y such that (X,π)
is a subspace of (Y, ξ) and adhξ X = Y . There is an ordering on the
family extensions of X. If ξ and ζ are extensions of π, we say that ξ
is projectively larger than ζ, written ξ ≥π ζ if there exists a continuous
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map f : (Y, ξ) → (Z, ζ) which fixes the points of X. In the comment
following the definition of a convergence, we noted that the underlying
set of a convergence space is determined by the convergence itself. For
coherence of notation, when discussing extensions of convergence spaces
we will often refer to the convergence without reference to the underlying
set. This is not a problem thanks to the aforementioned comment.

We borrow from topology the concepts of strict and simple extensions.
If ξ is an extension of π, we define ξ+ a new extension of π on the same
underlying set as ξ. For p ∈ Y ,

Vξ+(p) = ⟨{{p} ∪ U : ∃W ∈ Vξ(p),W ∩X = U}⟩.

If ξ = ξ+, then we say ξ is a simple extension of π.
In a similar way, we define ξ#, an extension of π on the same set as Y .

If A ⊆ X, let

oA = {p ∈ Y : ∃W ∈ Vξ(p),W ∩X = A}.

If p ∈ Y , then Vξ#(p) is the filter generated by {oA : ∃V ∈ Vξ(p), V ∩X =

A}. If ξ = ξ#, then we sy that ξ is a strict extension of π.

Lemma 4.12. If ξ is an extension of π, then ξ# ≤ ξ ≤ ξ+.

Proof. In both cases it is straight-forward to check that the identity map
is continuous and fixes X. �

Proposition 4.13. Suppose that (X,π) is a Hausdorff pretopological
space and ξ is a pretopology and a compactification of π. Then ξ+ is
PHC.

Proof. Recall that by compactification, we mean a compact extension.
Fix p ∈ Y and let {p}∪U ∈ Vξ+(p). Then adhξ+({p}∪U) = oU ∪adhπ U .
So, in the partial regularization of ξ+, the vicinity filters are generated by
sets of the form oU ∪ adhπ U for U ⊆ X. In particular, this shows that
Vrξ+(p) ⊆ Vξ#(p) for each p ∈ Y . Since ξ# is a coarser pretopology than
ξ, it follows that the partial regularization of ξ+ is coarser than ξ. Since
(Y, ξ) is compact, so is (Y, rξ+) and by definition, ξ+ is PHC. �

For any Hausdorff convergence space (X,σ), Richardson [16] constructs
a compact, Hausdorff convergence space (X∗, σ∗) in which X is densely
embedded. It should be noted that Richardson’s definition of a conver-
gence includes the following third axiom in addition to the two in our
definition:

(R) If x ∈ limσ F , then x ∈ limσ(⟨x⟩ ∩ F).
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We will make use of assumption (R) in Theorem 4.16. Note that if
σ is a pretopology, then σ already satisfies (R). If σ is a pretopology,
then so is σ∗. It is said that (X, ξ) is regular if x ∈ limξ F implies that
x ∈ limξ{adhξ F : F ∈ F}. Richardson [16] proves the following:

Theorem 4.14. If (X,σ) is a Hausdorff convergence space, (Y, ξ) is a
compact, Hausdorff, regular convergence space and f : (X,σ) → (Y, ξ) is
continuous, then there exists a unique continuous map F : (X∗, σ∗) →
(Y, ξ) extending f .

We seek to circumvent the assumption of regularity on (Y, ξ). For a
Hausdorff pretopological space (X,π), let (κπX,κπ) = (X∗, (π∗)+). By
the above proposition, κπ is PHC. Additionally, κπ has the following
property.

Theorem 4.15. Let (X,π) and (Y, ξ) be Hausdorff pretopological spaces
spaces. If f : (X,σ) → (Y, ξ) is continuous, then there exists a continuous
function F : (κπX,κπ) → (κξY, κξ) which extends f .

Proof. For each free ultrafilter U on X, f(U) is an ultrafilter on Y . Define
F (U) as follows:

• If y ∈ limξ f(U) for some y ∈ Y , let F (U) = y.
• If f(U) is free in (Y, ξ), let F (U) = f(U).

We show that F is continuous. Since f is continuous, if x ∈ X and
F (x) ∈ Vκπ(f(x)) = ⟨Vπ(f(x))⟩, then we can find U ∈ Vπ(x) such that
f [U ] ⊆ V . Suppose U ∈ κX \ X. If F (U) ∈ Y , let V ∈ Vπ(F (U)).
Since y ∈ limξ f(U), V ∈ f(U). Therefore, for some U ∈ U , f(U) ⊆ V .
It follows that F [{U} ∪ U ] ⊆ V . Lastly, suppose that F (U) ∈ κY \ Y
and fix V ∈ F (U) = f(U). Then for some U ∈ U , f [U ] ⊆ V . So,
F [{U} ∪ U ] ⊆ {F (U)} ∪ V and F is continuous. �

The pretopological space κπX is a variation on the Katětov extension
of a topological space. However, the corresponding version of Theorem
4.15 does not hold for topological spaces. What we mean to say is that
it is possible to find topological spaces X and Y and a continuous func-
tion f : X → Y which does not extend to the (topological) Katětov
extensions of X and Y . See 5A in [15] for an example. Thus, Theorem
4.15 is surprising in much the same way as Theorem 3.12 and shows the
value of broadening our perspective to include pretopological spaces when
considering problems usually thought of as topological.

In [12], it is shown that a convergence ξ has a projective maximum
compactification if and only if ξ has only finitely many free ultrafilters.
In contrast with this, we have the following facts:
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Theorem 4.16. If (X,π) is a Hausdorff pretopological space, (Y, ξ) is
a compact Hausdorff convergence space satisfying (R) and f : (X,π) →
(Y, ξ) is continuous, then there exists a continuous map F : (κπX,κπ) →
(Y, ξ) extending f .

Proof. We define F : (κπX,κπ) → (Y, ξ) as we did in the proof of Theo-
rem 4.15. However since (Y, ξ) is compact, for each free ultrafilter U on
X, there exists yU ∈ Y such that yU ∈ limξ f(U). Let F (U) = yU . Since
π is a pretopology, to show that F is continuous it is enough to show that
for each p ∈ κπX, F (p) ∈ limξ F (Vκπ(p)).

If x ∈ X, then F (Vκπ(x)) ⊇ F (Vπ(x)) = f(Vπ(x)). Since f is continu-
ous by assumption, we have that F (x) ∈ limξ F (Vκπ(x)).

If U ∈ κπX \ X, then F (Vκπ(U)) = ⟨{F (U) ∪ F [H] : H ∈ U}⟩ =
⟨F (U)⟩ ∩ f(U). By construction, F (U) ∈ limξ f(U) and thus by (R),
F (U) ∈ limξ F (Vκπ(U)), as needed. �

Corollary 4.17. If (X,π) is a pretopological space, then κπ ≥π ξ for any
Hausdorff compactification ξ of π.
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