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ON HOMOGENEITY AND THE H-CLOSED PROPERTY

N.A. CARLSON, J.R. PORTER, AND G.J. RIDDERBOS

Abstract. We establish several results concerning topological ho-
mogeneity and the weakening of compactness known as the H-
closed property. First, it is shown that every Hausdorff space can
be embedded in a homogeneous space that is the countable union
of H-closed spaces. Second, it is shown that if X is an H-closed
Urysohn homogeneous space then for every H-set set A ⊆ X, x ∈ A,
and y /∈ A, there exists a homeomorphism h : X → X such that
h(y) ∈ A and h(x) /∈ A. This is an extension of Motorov’s result
that every compact homogeneous space is 1.5-homogeneous. Third,
we show that the cardinality bound 2t(X), shown to hold for a com-
pact homogeneous space X by De La Vega, does not hold in general
for H-closed homogeneous spaces. Last, we show the Katětov H-
closed extension κX is never homogeneous if X is non-H-closed,
and the remainder σX\X in the H-closed Fomin extension σX is
never power homogeneous if X is locally H-closed.

1. Introduction

A space X is homogeneous if for every x, y ∈ X there exists a home-
omorphism h : X → X such that h(x) = y. X is power homogeneous if
there exists a cardinal κ such that Xκ is homogeneous. Many intriguing
results have been obtained in the theory of compact homogeneous spaces;
for example, De la Vega [11] showed that the cardinality of such a space
X is at most 2t(X), where t(X) is the tightness of X. Motorov showed
that a compact homogeneous space has a stronger form of homogeneity
known as 11/2-homogeneity (see [2]). Many deep questions concerning
these spaces are still open (see, for example Jan van Mill’s survey in [17]).
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We focus here on questions of homogeneity of a space X in the case
where X has the weaker compactness-like property known as H-closed.
Recall that X is H-closed if every open cover of X has a finite subcover
whose union is dense in X. A natural question is to ask whether results
such as that of Motorov and De la Vega still hold in the case where
X is H-closed and homogeneous. We show in §3 that if an H-closed
homogeneous space is additionally Urysohn, then it exhibits a stronger
form of homogeneity we denote as 11/4-homogeneity (Theorem 3.4). This
result in fact generalizes Motorov’s result. The cardinality bound 2t(X)

given in De la Vega’s Theorem is shown not to hold in general for H-closed
homogeneous spaces. We demonstrate this in §4 by giving an example of
an H-closed, homogeneous, countably compact, countably tight, separable
space X such that |X| > 2t(X) (Theorem 4.4). In §1 an embedding
result is given. We show that every Hausdorff space X can be embedded
in a homogeneous space that is the countable union of H-closed spaces.
(Theorem 2.3). In §5 we focus on homogeneity questions concerning H-
closed extensions and their remainders. It is shown in Corollary 5.6 that
the Katětov H-closed extension κX and the Fomin H-closed extension σX
are never homogeneous for a non-H-closed space X.

Recall that the semiregularization of a space X is the space Xs with
underlying set X with the regular-open sets of X as a basis. If h : X → X
is a homeomorphism, it is not hard to show that h viewed as a function
from Xs to Xs is still a homeomorphism. (See the proof of Proposition
2.1 in [5]). It follows that if X is homogeneous so is Xs. However, it is not
necessarily the case that if Xs is homogeneous then X is homogeneous,
as is demonstrated in Example 1.1.

A simple process to generate examples of H-closed homogeneous spaces
that are not compact is to start with a compact homogeneous space Y
and uniformly modify the topology on Y to form a new space X such that
Y = Xs. As the semiregularization of X is compact, X remains H-closed
(see 4.8h(8) in [18], for example). The following example demonstrates
this process.

Example 1.1. Let Y be the unit circle with its usual compact, homoge-
neous topology. Let X be the space formed on the underlying set Y with
the following as a basis:

B = {U\C : U ∈ τ(Y ), C ∈ [Y ]ω}.

One can check that X remains homogeneous and that Y = Xs. Although
X is clearly not compact, it is still H-closed as its semiregularization is
compact. In addition, X has the Urysohn property as Xs is Urysohn.
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Now let Z be the space with the same set as Y but with the topology
generated by the following basis:

B′ = {U\C : U ∈ τ(Y ), C ∈ [Y ]ω, and C converges to (1, 0)}.

One can see that τ(X) ⊃ τ(Z) ⊃ τ(Y ), Zs = Y , and that Z is H-closed.
Let h : Y → Y be the rigid rotation that takes (−1, 0) to (1, 0). Then
h : Z → Z is not a homeomorphism as it is not continuous, although
h : X → X is a homeomorphism. This shows that Z is not homogeneous
even though Zs = Y is homogeneous. In general for a space W , a home-
omorphism f : Ws → Ws may not remain a homeomorphism viewed as
function f : W → W .

The above process of constructing non-compact H-closed homogeneous
spaces (such as the space X in Example 1.1) will always generate examples
that are Urysohn. In fact, all examples of H-closed homogeneous spaces
that the authors are aware of are also Urysohn, including the example
given in Theorem 4.4 in §2 below. In view of this, we ask Question 1.2. We
would be surprised, however, if the answer to this question were negative.

Question 1.2. Is there an example of an H-closed homogeneous space
that is not Urysohn?

However, many examples of non-Urysohn homogeneous spaces that are
the countable union of H-closed spaces can be generated by the embedding
result given in Theorem 2.3.

All spaces under consideration in this paper are Hausdorff. See [13] for
any notions not defined here.

2. An Embedding into a Homogeneous Space

In this section we construct an embedding of any Hausdorff space into
a homogeneous space which is the union of countably many H-closed
subspaces. Uspenskĭi’s showed in [20] that for any space X there exists
a cardinal κ and a nonempty subspace Y ⊆ Xκ such that X × Y is
homogeneous. The space Y is found by selecting a set A such that |A| =
|X| and letting Y = {f ∈ XA : for each x ∈ X, |f←(x)| = |A|}. Both Y
and X×Y are homogeneous and homeomorphic. (See [20] for details.) For
our construction we write H(X) = X × Y and consider X as a subspace
of H(X). We begin with the following lemma, the proof of which is
straightforward.

Lemma 2.1. Let X be a space and h : X → X be a homeomorphism
and let idY be the identity function on Y . Then the function h × idY :
H(X) → H(X) is also a homeomorphism that extends h.
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Recall that the Katětov H-closed extension of X is defined by κX =
X ∪ {U : U is a free open ultrafilter on X} with basis given by

{U : U is open in X} ∪ {U ∪ {U} : U ∈ U,U ∈ κX\X}.

κX is the projective maximum of all H-closed extensions of X.

Lemma 2.2. Let X be a Hausdorff space and h : X → X a homeomor-
phism. Then there is a homeomorphism κh : κX → κX that extends
h.

Proof. Let p ∈ κX\X. As p is a free open ultrafilter on X and h is
a homeomorphism, {h[U ] : U ∈ p} is also a free open ultrafilter on X;
denote this free open ultrafilter by κh(p). For x ∈ X, define κh(x) = h(x).
It is straightforward to verify that κh : κX → κX is a homeomorphism
that extends h. �

We arrive now at our embedding theorem.

Theorem 2.3. Let X be a Hausdorff space. Then X can be embedded
in a homogeneous space H such that H is the countable union of H-closed
spaces.

Proof. Let H1 = H(κX). If Hn is defined, let Hn+1 = H(κHn) and
H =

∪
n Hn. A subset U ⊆ H is defined to be open in H iff U ∩ Hn ∈

τ(Hn) for all n. The space H is clearly the countable union of H-closed
spaces.To show that H is homogeneous, let p, q ∈ H. There is some n
such that p, q ∈ Hn. There is a homeomorphism h : Hn → Hn such
that h(p) = q. By applying Lemmas 2.1 and 2.2, h can be extended to a
homeomorphism h1 : Hn+1 → Hn+1. By induction, h can be extended to
a homeomorphism hk : Hn+k → Hn+k for k ∈ N. The function g = ∪khk :
H → H extends h and is a homeomorphism. Thus, H is homogeneous.

�

If we start with a space X that is not Urysohn then the homogeneous
space H constructed in Theorem 2.3 is also not Urysohn. This leads to
many examples of non-Urysohn homogeneous spaces that are the count-
ably union of H-closed spaces. Nevertheless, Question 1.2 remains open.

3. 11/2-homogeneity and 11/4-homogeneity

Definition 3.1. A space X is 2-homogeneous if for every (x1, y1) ∈ X2

and (x2, y2) ∈ X2 there exists a homeomorphism h : X → X such that
h(x1) = x2 and h(y1) = y2. X is 11/2-homogeneous if for every closed
subset A of X, x ∈ A, and y /∈ A, there is a homeomorphism h : X → X
such that h(x) /∈ A and h(y) ∈ A.
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We observe that a 2-homogeneous space is 11/2-homogeneous and that
a 11/2-homogeneous space is homogeneous. Motorov introduced the no-
tion of 11/2-homogeneity and established that if a homogeneous space is
compact it in fact has the stronger 11/2-homogeneous property. See [2]
and [19].

Theorem 3.2 (Motorov). Every compact homogeneous space is 11/2-
homogeneous.

We aim to establish an extension of this theorem for H-closed homoge-
neous spaces and to do so we work with the notion of an H-set. A subset
A of a space X is an H-set if every cover of A by sets open in X has a
finite subfamily whose closures cover A. It can be shown that an H-set is
always closed and clearly in a compact space every closed set is an H-set.
We define another form of homogeneity known as 11/4-homogeneity:

Definition 3.3. A space X is 11/4-homogeneous if for every H-set A of
X, x ∈ A, and y /∈ A, there is a homeomorphism h : X → X such that
h(x) /∈ A and h(y) ∈ A.

As singleton sets are H-sets, a 11/4-homogeneous space is homogeneous.
As H-sets are closed, a 11/2-homogeneous space is 11/4-homogeneous. The
proof of the following theorem is similar to the proof of Theorem 3.2 given
in [19, Theorem 4.1.2].

Theorem 3.4. Every H-closed, Urysohn, homogeneous space is 11/4-
homogeneous.

Proof. We will work in the semiregularization Xs of X. Since X is
Urysohn and H-closed, so is Xs by [18, 4K(7)] and [18, 4.8(h)(8)]. There-
fore Xs is compact by [18, 4.8(k)].

Let A be an H-set of X. As X is H-closed and Urysohn, A is compact
in Xs by [18, 4N(11)]. Recall that a homeomorphism h : X → X is still a
homeomorphism viewed as a function h : Xs → Xs. Let A = {h[A] : h ∈
H(X)}, where H(X) is the collection of homeomorphisms on X, and let B
be the collection of all non-empty intersections of subfamilies of A ordered
by inclusion. If C is a decreasing chain in B, then by compactness of Xs,
the intersection

∩
C is non-empty. Thus every decreasing chain in B has

a lower bound in B. It follows from Zorn’s Lemma that the collection E

which consists of minimal elements of B is non-empty. Note that if h is a
homeomorphism of X, and E ∈ E, then also h[E] ∈ E.

Since H(X) acts transitively on Xs, it follows that E forms a cover
of X. Also, since B is closed under taking non-empty intersections, the
collection E forms a partition of X.
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Now let x ∈ A and y ̸∈ A be arbitrary. For z ∈ X, we let Ez be the
unique element of E that contains z. Note that Ex ⊆ A and hence y ̸∈ Ex

and therefore x ̸∈ Ey. Since x ̸∈ Ey there is some h ∈ H(X) such that
x ̸∈ h[A] and y ∈ h[A]. But then we have h−1(x) ̸∈ A and h−1(y) ∈ A.
So h−1 is the required homeomorphism. �

Since in a compact space every closed set is an H-set, Theorem 3.4
generalizes Motorov’s Theorem 3.2.

The Urysohn condition in Theorem 3.4 is required to ensure that Xs

is compact. We ask if this condition can be dropped.

Question 3.5. Is every H-closed homogeneous space 11/4-homogeneous?

Definition 3.6. We call a space X weakly 11/4-homogeneous if for every
H-set A of X, and x ∈ A and y ̸∈ A, there is a continuous function
h : X → X such that h(y) ∈ A and h(x) ̸∈ A.

We have the following corollary to Theorem 3.4.

Corollary 3.7. If X × Y is H-closed, Urysohn, and homogeneous, then
X is weakly 11/4-homogeneous.

Proof. Note that X is H-closed by [18, 4.8(l)] and is also Urysohn. Let
f : X×Y → X be the projection map, let A be an H-set in X, x ∈ A and
y ̸∈ A. By [18, 4N(11)] A is compact in Xs. As f is continuous viewed as
a function from the compact space (X ×Y )s to Xs, we see that f−1[A] is
compact in (X × Y )s. Therefore f−1[A] is an H-set in X × Y , again by
[18, 4N(11)]. Now fix p ∈ Y . Then (x, p) ∈ f−1[A] and (y, p) ̸∈ f−1[A].
Since X×Y is 11/4-homogeneous by Theorem 3.4 and f−1[A] is an H-set,
there is a homeomorhpism h of X × Y such that h(x, p) ̸∈ f−1[A] and
h(y, p) ∈ f−1[A].

Now we define g : X → X by g(z) = f(h(z, p)). Then g is continuous
and has the desired properties. �

An immediate corollary of Corollary 3.7 is the following “reflection”
property of power homogeneity:

Corollary 3.8. If X is H-closed, Urysohn, and power homogeneous, then
X is weakly 11/4-homogeneous.

4. A Counterexample to a Cardinality Bound

A celebrated result in the theory of compact homogeneous spaces is
that any such space X has cardinality at most 2t(X), where t(X) is the
tightness of X. This was shown by De la Vega in [11] and answered a
long-standing question of Arhangel′skĭı. It was generalized to compact
power homogeneous spaces in [3]. It has also been generalized in various
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ways to the Hausdorff setting in [8] and [9], and the Urysohn setting
in [10]. A natural question is whether the cardinality bound 2t(X) can
be generalized to all H-closed homogeneous spaces. This question was
asked by Jeffrey Norden in a personal communication to Jack Porter in
1992. In this section we use the countable tightness modification of the
Cantor cube 2c to demonstrate that the cardinality bound 2t(X) does
not necessarily hold even for an H-closed, countably compact, Urysohn,
separable homogeneous space X.

Definition 4.1. Let (X, τ) be a space and κ a cardinal. Define a topology
σ on X by declaring the closure of any set A ⊆ X to be as follows:

clσA =
∪

B∈[A]≤κ

clτB.

Denote the space (X,σ) by Xτ
κ , or by Xκ when τ is understood. We call

Xτ
κ the κ-tightness modification of (X, τ).

It is clear that the tightness of Xκ is at most κ, and for κ < t(X), the
space Xκ has a finer topology than X. Thus for a compact space X that
is not countably tight, the countable-tightness modification Xω will no
longer be compact as it is not minimal Hausdorff. That is, the topology
on Xω is not minimal in the partial order of all Hausdorff topologies on
X and so cannot be compact. However, by the following theorem if X is
compact and additionally separable, the space Xω will still be H-closed
and countably compact. This is Lemma 3.6 in [6].

Theorem 4.2 (Carlson). If X is an H-closed, countably compact, sepa-
rable space then the countable-tightness modification Xω is an H-closed,
countably compact, countably tight, separable space.

Proposition 4.3. If a space X is homogeneous then the κ-tightness mod-
ification Xκ is homogeneous for any cardinal κ.

Proof. We simply need to show that a homeomorphism h : X → X is still
a homeomorphism h : Xκ → Xκ. Towards showing that h : Xκ → Xκ

is an open map, pick U open in Xκ and consider a set A ∈ [X]≤κ. As
h←[A] ∈ [X]≤κ, by Proposition 3.3 in [6] there exists an open set V in
X such that U ∩ h←[A] = V ∩ h←[A]. Hence h[U ] ∩ A = h[V ] ∩ A. As
h[V ] is open in X it follows that h[U ] is open in Xκ. Establishing that
h← : Xκ → Xκ is open is similar. �

Theorem 4.4. There exists an H-closed, countably compact, Urysohn,
separable, countably tight, homogeneous space X such that |X| = 2c >
2t(X).
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Proof. Let Y be the Cantor Cube 2c with its usual topology and let
X = Yω. Now Y is compact and separable and hence X is H-closed,
countably compact, countably tight, and separable by Theorem 4.2. Since
Y is compact, by Lemma 3.5 in [6] Y is the semiregularization of X. Since
Y is Urysohn it follows that X is also Urysohn by 4K(7) in [18]. �

Given Theorem 4.4, the question remains as to what may be a suit-
able cardinality bound for H-closed homogeneous spaces. A fundamental
generalization of De la Vega’s Theorem to the Hausdorff setting is the car-
dinality bound 2L(X)t(X)pct(X) for power homogeneous Hausdorff spaces
X, given in Corollary 3.11 in [8]. Here pct(X) is the point-compactness
type of X, defined to be the least cardinal κ for which X can be cov-
ered by compact subsets K such that χ(K,X) ≤ κ. (Note every com-
pact space X has pct(X) = 1). This bound was improved to the bound
2aLc(X)t(X)pct(X) for power homogeneous Hausdorff spaces X, given in
Theorem 3.10 in [9], where aLc(X) is the almost Lindelöf degree with re-
spect to closed sets. (See [9] for the definitions of aLc(X) and aL(X)).
It is clear that aL(X) ≤ aLc(X) ≤ L(X). However, despite the fact
that H-closed spaces have finite aL(X), there are H-closed spaces X with
arbitrarily large aLc(X) and so this cardinality bound does not give any
improvement in the H-closed setting. Nevertheless, the following question
suggests a possible cardinality bound for H-closed homogeneous spaces.

Question 4.5. Is the cardinality of an H-closed homogeneous space at
most 2t(X)pct(X)?

De la Vega’s Theorem is closely related to Arhangel’skii’s Theorem
that a compact space has cardinality at most 2χ(X). Both results fol-
low from a generalized result given by Arhangel′skĭı in [4]. Dow and
Porter [12] showed that the bound 2χ(X) holds for all H-closed spaces us-
ing remainders of H-closed extensions of discrete spaces. Hodel [15] gave
another proof of this bound for H-closed spaces using κ-nets. We conjec-
ture that if one wishes to generalize De la Vega’s Theorem to the H-closed
setting by answering Question 4.5 in the affirmative, then a proof may
hinge upon using the techniques Dow/Porter or Hodel used in generalizing
Arhangel’skii’s Theorem to the H-closed setting.

5. Non-homogeneity of H-closed Extensions and
Remainders

For Tychonoff spaces X, the homogeneity of βX and the remainder
βX\X has been extensively studied. For example, if X is an F-space,
that is every cozero set of X is C∗-embedded, then no power of βX is
homogenous. This follows from the fact that no compact F-space is power



ON HOMOGENEITY AND THE H-CLOSED PROPERTY 161

homogeneous (Kunen [16]) and that X is an F-space iff βX is an F-space.
If X is a locally compact F-space we recall the following well-known result.

Theorem 5.1. If a Tychonoff space X is a non-compact locally compact
F-space then the remainder βX\X is not power homogeneous.

Proof. As X is locally compact the remainder βX\X is compact. In
addition βX\X is an F -space. (See, for example, Exercise 14O(3) in
[14]). Finally, no compact F-space can be power homogeneous. �

In this section we seek to establish similar results for the Katětov H-
closed extension κX and the Fomin H-closed extension σX for non-H-
closed Hausdorff spaces X. σX is the strict extension (κX)# of X. See
[18] for the construction of σX. We will need the following definition.

Definition 5.2. A maximal point of a space X is a point p ∈ X such
that if p ∈ clU for an open set U ⊆ X, then {p} ∪ U is open in X.

Proposition 5.3. Let X be a space with a maximal point p such that
the semiregularization Xs is homogeneous. Then Xs is extremally discon-
nected.

Proof. Let U and V be disjoint open subsets of Xs. We wish to show
clXs

U ∩ clXs
V = ∅. Suppose there exists x ∈ clXs

U ∩ clXs
V . As Xs

is homogeneous, there exists a homeomorphism h : Xs → Xs such that
h(x) = p. Then, as h[U ] and h[V ] are open in Xs and also X, we have

p = h(x) ∈ h[clXsU ∩ clXsV ]

= clXs [h[U ]] ∩ clXs [h[V ]]

= clX [h[U ]] ∩ clX [h[V ]].

As p is a maximal point of X and h[U ] is open in X, it follows that
{p} ∪ h[U ] is open in X. As p ∈ clX [h[V ]], we have that ({p} ∪ h[U ]) ∩
h[V ] ̸= ∅. But h[U ] ∩ h[V ] = ∅ so p ∈ h[V ]. Likewise, p ∈ h[U ]. This is
a contradiction so clXsU ∩ clXsV = ∅. �

Corollary 5.4. If X is an H-closed space with a maximal point, then
neither Xs nor X is homogeneous.

Proof. The semiregularization of an H-closed space is H-closed, and by
Proposition 5.3, Xs is also extremally disconnected. It was shown in
Theorem 3.3 in [5] that no H-closed extremally disconnected space is
homogeneous, thus Xs is not homogeneous. Finally, by Proposition 2.1
in [5] X cannot be homogeneous. �

We note, however, that if the H-closed space in Corollary 5.4 is in fact
compact, it cannot have a maximal point at all. Alas and Wilson [1]
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showed that no compact space can contain a maximal point, and this
was extended in [7] to any locally countably compact space. Yet H-closed
spaces may have maximal points. The following characterization of max-
imal points given in [1] shows that every point of κX\X is a maximal
point of the H-closed space κX.

Theorem 5.5 (Alas and Wilson). A point p ∈ X is a maximal point if
and only if the trace of its open neighborhood filter on X\{p} is an open
ultrafilter.

Corollary 5.6. κX, (κX)s, and σX are never homogeneous for any
non-H-closed space X.

Proof. Each point p of κX\X is an open ultrafilter on X and furthermore
the trace of its open neighborhood filter on κX\{p} is an open ultrafilter.
By Theorem 5.5, p is a maximal point of κX. By Corollary 5.4, neither
κX nor (κX)s are homogeneous. Finally, as (σX)s = (κX)s, it follows
that σX is not homogeneous by Proposition 2.1 in [5]. �

The above corollary should be contrasted with the fact that every
homeomorphism on a space X can be extended to a homeomorphism
on κX. (Lemma 2.2). We ask the following question.

Question 5.7. Can κX be power homogeneous for a non-H-closed space
X?

We turn now to the question of homogeneity of remainders in H-closed
extensions. First we note that κX\X is always a discrete space and so
is trivially homogeneous. We investigate here the homogeneity of σX\X.
We will use the Iliadis absolute EX and the Gleason space ΘX (see [18])
in the following proposition. Recall that a Hausdorff space X is locally
H-closed if every point has a neighborhood that is H-closed.

Proposition 5.8. If X is locally H-closed then EX is locally compact.

Proof. If X is locally H-closed then σX\X is compact by 7.3(c) in [18].
As the absolute ΘX ≈ β(EX) by 6.6(e)(1) in [18], σX\X ≈ β(EX)\EX
by 7.2(c)(1) in [18], it follows that σX\X ≈ ΘX\EX. Thus ΘX\EX is
compact and hence closed in ΘX. As EX is dense in ΘX, this makes
EX open in its extension ΘX. Thus EX is locally compact. �

We now give an analogue to Theorem 5.1 above.

Theorem 5.9. If X is locally H-closed then σX\X is not power homo-
geneous.

Proof. As X is locally H-closed, by Proposition 5.8 EX is locally compact.
Additionally, EX is an F -space as it is extremally disconnected. Thus,
β(EX)\EX ≈ σX\X is not power homogeneous by Theorem 5.1. �
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We note that in contrast to Theorem 5.1, in Theorem 5.9 X is not
required to be an F-space or any variation of an F-space suitably defined
for Hausdorff spaces.
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[4] A. V. Arhangel′skĭı, Gδ-modification of compacta and cardinal invariants, Com-
ment. Math. Univ. Carolinae 47 (2006), no. 1, 95–101.

[5] N. A. Carlson, Non-regular Power Homogeneous Spaces, Top. and its Appl. 154
(2007), no. 2, 302-308.

[6] N. A. Carlson, Lower and upper topologies in the Hausdorff partial order on a fixed
set, Topology Appl. 154 (2007), 619–624.

[7] N. A. Carlson and J. R. Porter, On open ultrafilters and maximal points, Topology
Appl. 156 (2009), 2317–2325.

[8] N. A. Carlson, G.J. Ridderbos, On several cardinality bounds on power homoge-
neous spaces, Houston Journal of Mathematics, 38 (2012), no. 1, 311-332.

[9] N. A. Carlson, J.R. Porter, G.J. Ridderbos, On cardinality bounds for homogeneous
spaces and the Gκ-modification of a space, Topology Appl. 159 (2012), no. 13,
2932–2941.

[10] N. A. Carlson, The weak Lindelöf degree and homogeneity, Topology Appl. 160
(2013), no. 3, 508–512.

[11] R. de la Vega, A new bound on the cardinality of homogeneous compacta, Topology
Appl. 153 (2006), 2118-2123.

[12] A. Dow, J.R. Porter, Cardinalities of H-closed spaces, Topology Proc. 7 (1982),
no. 1, 27–50.

[13] R. Engelking, General Topology, Heldermann Verlag, Berlin, second ed., 1989.

[14] L. Gillman, M. Jerison, Rings of Continuous Functions, Springer-Verlag, New
York, 1960.

[15] R.E. Hodel, Arhangel’skii’s solution to Alexandroff’s problem: A survey, Top.
and its Appl. 153 (2006) 2199-2217.

[16] K. Kunen,Large Homogeneous Compact Spaces, Open Problems in Topology,
North-Holland, Amsterdam (1990), 261-270.

[17] J. van Mill, Homogeneous compacta, Open Problems in Topology II, Elsevier
(2007), 189–193.

[18] J. R. Porter, G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer,
Berlin, 1988.



164 N.A. CARLSON, J.R. PORTER, AND G.J. RIDDERBOS

[19] G.J. Ridderbos, Power homogeneity in topology (2007), Doctoral Thesis, Vrije
Universiteit, Amsterdam.
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