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MINIMALITY OF THE SEMIDIRECT PRODUCT

MICHAEL MEGRELISHVILI, LUIE POLEV, AND MENACHEM SHLOSSBERG

Abstract. A topological group is minimal if it does not admit
a strictly coarser Hausdorff group topology. We provide a suffi-
cient and necessary condition for the minimality of the semidirect
product G⋋P, where G is a compact topological group and P is a
topological subgroup of Aut(G). We prove that G ⋋ P is minimal
for every closed subgroup P of Aut(G). In case G is abelian, the
same is true for every subgroup P ⊆ Aut(G). We show, in contrast,
that there exist a compact two-step nilpotent group G and a sub-
group P of Aut(G) such that G⋋P is not minimal. This answers a
question of Dikranjan. Some of our results were inspired by a work
of Gamarnik [12].

1. Introduction

A Hausdorff topological group G is minimal ([10], [24]) if it does not
admit a strictly coarser Hausdorff group topology or, equivalently, if ev-
ery injective continuous group homomorphism G → P into a Hausdorff
topological group is a topological group embedding. For information on
minimal groups we refer to the surveys [6], [7], [8] and the book [9].

In [20] the two first-named authors study the minimality of the group
H +(X), where X is a compact linearly ordered space and H +(X) is the
topological group of all order-preserving homeomorphisms of X. In gen-
eral, H +(X) need not be minimal. The first result in the present paper
is Theorem 3.1, which shows that for a compact (partially) ordered space
X the compact-open topology on H +(X,≤) is minimal within the class
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