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A STABILITY CONJECTURE FOR THE COLORED
JONES POLYNOMIAL

STAVROS GAROUFALIDIS AND THAO VUONG

Abstract. We formulate a stability conjecture for the coefficients
of the colored Jones polynomial of a knot when the color lies in
a fixed ray of a simple Lie algebra. Our conjecture is motivated
by a structure theorem for the degree and the coefficients of a q-
holonomic sequences given in [6] and by a stability theorem of the
colored Jones polynomial of an alternating knot given in [8]. We
prove our conjecture for all torus knots and all simple Lie algebras
of rank 2. Finally, we illustrate our results with a few explicit
q-series.

1. Introduction

1.1. The degree and coefficients of a q-holonomic sequence. Our
goal is to formulate a stability conjecture for the coefficients of q-holonomic
sequences that appear naturally in Quantum Knot Theory [7]. Our con-
jecture is motivated by

(a) a structure theorem for the degree and coefficients of a q-holonomic
sequence of polynomials given in [6],

(b) a stability theorem of the colored Jones polynomial of an alter-
nating knot [8].
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