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PRESERVATION OF COUNTABLE COMPACTNESS AND
PSEUDOCOMPACTNESS BY FORCING

AKIRA IWASA

Abstract. We study conditions under which countable compact-
ness and pseudocompactness are preserved by forcing that satisfies
the countable covering property.

1. Introduction

Let V be a ground model and let P be a forcing notion. Let VP denote
the forcing extension of V by P. For a topological space 〈X, τ〉 in V,
we define a topological space 〈X, τP〉 in VP such that τP is the topology
generated by τ in VP. Note that we have in general τ $ τP because new
open sets are introduced by P. Also note that by definition τ is a base
for τP.

We say that a forcing P preserves a topological property ϕ if, whenever
〈X, τ〉 satisfies ϕ, 〈X, τP〉 satisfies ϕ as well. (In other words, we say that
P preserves ϕ if, whenever X satisfies ϕ in V, X satisfies ϕ in VP.) Note
that Hausdorffness, regularity and Tychonoffness are preserved by any
forcing ([3] Lemma 22).

The following result is important for our study and it was noticed
independently by several people (see, for example, [8, Lemma 7] and [1,
Proposition 5.5]).

Theorem 1.1. For a compact Hausdorff space X, the following are equiv-
alent:

(1) The compactness of X is preserved by any forcing.
(2) The compactness of X is preserved by adjoining a Cohen real.
(3) X is scattered.
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2 A. IWASA

In this note, we replace “compactness” in Theorem 1.1 by “countable”
compactness (Theorem 2.11) and by “pseudocompactness” (Theorem 3.8),
and we focus on forcings that satisfy the countable covering property
(Definition 2.3).

In section 2, we study preservation of countable compactness. In sec-
tion 3, we study preservation of pseudocompactness. In section 4, we give
some examples.

2. Preservation of Countable Compactness

Recall that a topological space is countably compact if every countable
open cover of the space has a finite subcover. We often use the fact that
a T1 space X is countably compact if and only if every infinite subset of
X has an accumulation point ([12, 17F.2]).

The following proposition shows that a forcing can destroy the count-
able compactness of any space if the space is not compact.

Proposition 2.1. Suppose that a topological space 〈X, τ〉 is not compact.
Then there is a forcing P such that 〈X, τP〉 is not countably compact.

Proof. Assume that 〈X, τ〉 is not compact. Then there is an open cover
U of X with no finite subcover. Let |U| = κ. If κ = ℵ0, then 〈X, τ〉 is not
countably compact, and U witnesses the fact that 〈X, τP〉 is not countably
compact for any forcing P. So assume that κ > ℵ0. Let P = Fn(ω, κ),
which collapses the uncountable cardinal κ to a countable ordinal ([9,
VII, Lemma 5.2]). Then, in VP, U is a countable open cover of X with
no finite subcover. Hence, 〈X, τP〉 is not countably compact. �

Using Proposition 2.1, we obtain the following “countably compact”
version of Theorem 1.1.

Proposition 2.2. For a countably compact Hausdorff space X, the fol-
lowing are equivalent:

(1) The countable compactness of X is preserved by any forcing.
(2) X is compact and scattered.

Proof. (1) =⇒ (2). If X is not compact, then, by Proposition 2.1, X
is not countably compact in VP for some forcing P. So assume that X
is compact and is not scattered. By Theorem 1.1, X is not compact
in VFn(ω,2), where Fn(ω, 2) is the forcing that adjoins a Cohen real ([9,
VII, Definition 5.1]). Then, again by Proposition 2.1, there is an Fn(ω, 2)-
name Ṗ for a forcing such that X is not countably compact in VFn(ω,2)∗Ṗ.
(2) =⇒ (1). By Theorem 1.1, X remains compact in any forcing exten-
sion. �
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Proposition 2.2 is similar to Theorem 1.1 and is not very interesting.
Therefore, we decided to restrict ourselves to a subclass of forcings. In
Proposition 2.1, κ becomes a countable set in VP such that for every
countable set S ∈ V, we have κ * S. In other words, the forcing Fn(ω, κ)
produces a countable set that is not covered by any countable set in the
ground model. We consider this situation extreme and exclude it from our
study. We focus on forcings that satisfy the countable covering property.

Definition 2.3. A forcing P is said to satisfy the countable covering
property if, for every countable set A ∈ VP such that A ⊆ V, there is a
countable set B ∈ V such that A ⊆ B.

Fact 2.4. Proper forcings satisfy the countable covering property ([6,
Fact 3.13]). In particular, a forcing which has the countable chain condi-
tion satisfies the countable covering property.

We use a forcing defined by David Booth.

Definition 2.5 ([4]; [11, p. 20]). Let D be a countable infinite set and
let λ be a cardinal. Assume that F = {Fξ ⊆ D : ξ < λ} is a free filter on
D. Define a Booth forcing B(F) such that

B(F) = {〈s, E〉 : s ∈ [D]<ω and E ∈ [λ]<ω}.
Order B(F) by 〈s, E〉 ≤ 〈s′, E′〉 if and only if s ⊇ s′, E ⊇ E′, and
s− s′ ⊆

⋂
ξ∈E′ Fξ.

Fact 2.6. B(F) is σ-centered and so it satisfies the countable chain con-
dition. Forcing with B(F) adds an infinite set E ⊆ D such that E \ F is
finite for all F ∈ F .

Here is a crucial lemma.

Lemma 2.7. Suppose that X is a separable non-compact regular space.
Let D be a countable dense subset of X. Then there is a free filter F on
D such that in VB(F) there exists an infinite set E ⊆ D such that E is a
closed discrete subset of X.

Proof. Since X is a non-compact regular space, there is an open cover U
of X such that for every finite subset U ′ of U ,

⋃
U ′ is not dense in X.

For each x ∈ X, take an open neighborhood Ux of x such that Ux ⊆ U
for some U ∈ U . Then {Ux : x ∈ X} is an open cover of X such that for
every finite subset S of X,

⋃
{Ux : x ∈ S} is not dense in X. Let D be a

countable dense subset of X and let

F =
{
D \

⋃
{Ux : x ∈ S} : S ∈ [X]<ω

}
.

Then F is a free filter base defined on D. As in Fact 2.6, forcing with
B(F) adds an infinite set E ⊆ D such that E \ F is finite for all F ∈ F ,
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and so E ∩ Ux is finite for all x ∈ X. Thus, E is a closed discrete subset
of X. �

A Booth forcing can destroy countable compactness.

Corollary 2.8. Suppose that 〈X, τ〉 is a separable, non-compact, count-
ably compact regular space. Then there is a Booth forcing B(F) such that
〈X, τB(F)〉 is not countably compact.

Proof. Let D be a countable dense subset of 〈X, τ〉. By Lemma 2.7, there
is a free filter F on D such that in VB(F) D contains an infinite closed
discrete subset of X. Thus, 〈X, τB(F)〉 is not countably compact. �

We note the following fact.

Fact 2.9 ([5, 1.7.10]). A topological space is called perfect if it has no
isolated points. A topological space is called scattered if its every non-
empty subspace has an isolated point. Every topological space X can be
uniquely represented as X = P ∪ S, where P is perfect, S is scattered,
and P ∩S = ∅. P is a closed subset of X and it is called the perfect kernel
of X.

In the proof of Lemma 4.1 in [7], only regularity (rather than Ty-
chonoffness) is used, and so we can replace “Tychonoff” by “regular” in
the following proposition.

Proposition 2.10 ([7, Lemma 4.1]). Suppose that 〈X, τ〉 is a regular
space and that forcing with P adjoins a real. If 〈X, τ〉 is perfect, then
〈X, τP〉 is neither countably compact nor pseudocompact.

Here is the main theorem of this section.

Theorem 2.11. For a countably compact regular space X, the following
are equivalent:

(1) The countable compactness of X is preserved by any forcing that
satisfies the countable covering property.

(2) The countable compactness of X is preserved by Booth forcing
B(F) for any free filter F .

(3) X is scattered and every countable subset of X has a compact
closure.

Proof. (1) =⇒ (2). B(F) satisfies the countable covering property (Fact
2.4, Fact 2.6).

(2) =⇒ (3). First assume to the contrary that X is not scattered. Let P
be the perfect kernel of X as in Fact 2.9; then P is nonempty. Let F be
any free ultrafilter on ω. Then B(F) adjoins a real and in VB(F) P is not
countably compact by Proposition 2.10. Since P is a closed subset of X
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and countable compactness is hereditary with respect to closed subsets,
we can conclude that X is not countably compact in VB(F).

Next assume to the contrary that there exists a countable set D ⊆
X such that D is not compact. Then D is a separable, non-compact,
countably compact regular space. By Corollary 2.8, there is a Booth
forcing B(F) such that, in VB(F), D is not countably compact. Since D
remains a closed subset of X in VB(F), we can conclude that X is not
countably compact in VB(F).
(3) =⇒ (1). Suppose that a forcing P satisfies the countable covering
property. In VP, take a countable infinite subset A of X. We will show
that A has an accumulation point. Take a countable set B ∈ V such that
A ⊆ B. By the assumption, B is compact (and scattered), so B remains
compact in VP by Theorem 1.1. Since A is an infinite subset of B, A has
an accumulation point. �

Remark 2.12. Condition (3) of Theorem 2.11 implies that X is count-
ably compact (assuming that X is T1).

Recall that a topological space is sequentially compact if every sequence
in the space has a convergent subsequence. Below is a proposition re-
garding sequential compactness, which says that a forcing satisfying the
countable covering property cannot destroy sequential compactness while
preserving countable compactness.

Proposition 2.13. Let 〈X, τ〉 be a sequentially compact regular space and
let P be a forcing that satisfies the countable covering property. Then the
following are equivalent:

(1) 〈X, τP〉 is sequentially compact.
(2) 〈X, τP〉 is countably compact.

Proof. (1) =⇒ (2). Sequentially compact spaces are countably compact
([12, 17G.2]).

(2) =⇒ (1). Suppose that 〈X, τP〉 is countably compact. Note that
scatteredness is preserved by any forcing ([8, Lemma 5]) and scattered
countably compact regular spaces are sequentially compact ([2, Propo-
sition 1]). Therefore, if 〈X, τ〉 is scattered, then 〈X, τP〉 remains scat-
tered (and is countably compact), and so 〈X, τP〉 is sequentially com-
pact. So assume that 〈X, τ〉 is not scattered. In VP, take a sequence
A = {an : n ∈ ω} ⊆ X. We will show that A contains a convergent
subsequence. Let P be the perfect kernel of 〈X, τ〉 as in Fact 2.9; then P
is nonempty. In VP, P is a closed subset of the countably compact space
〈X, τP〉 so P is countably compact in VP, which means that the countable
compactness of P is preserved by the forcing P. By Proposition 2.10, P
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does not adjoin a real. Since P satisfies the countable covering property,
there is a countable set B ∈ V such that A ⊆ B. Since P does not adjoin
a real, it does not add a new subset of B; therefore, A must be in V. Since
〈X, τ〉 is sequentially compact, A contains a convergent subsequence. �

3. Preservation of Pseudocompactness

Now let us study preservation of pseudocompactness. Recall that a
topological space X is pseudocompact if X is a Tychonoff space and
every continuous real-valued function defined on X is bounded. Note that
countably compact Tychonoff spaces are pseudocompact ([5, Theorem
3.10.20]). Using [5, Theorem 3.10.22], it is not difficult to prove the
following two lemmas.

Lemma 3.1. Let X be a pseudocompact space. If A is an infinite set of
isolated points of X, then A is not a closed subset of X.

Lemma 3.2. Let X be a Tychonoff space such that the set of all isolated
points is dense in X. If every infinite set of isolated points of X has an
accumulation point, then X is pseudocompact.

We prove the following lemma.

Lemma 3.3. Let X be a Tychonoff space such that the set of all isolated
points is dense in X. If every countable set of isolated points of X has a
scattered compact closure, then X is scattered.

Proof. Let X∗ be a compactification of X; that is, X∗ is compact and
X is dense in X∗. It suffices to show that X∗ is scattered. Assume
to the contrary that X∗ is not scattered. The Main Theorem [10, p.
214]states that a compact Hausdorff space is scattered if and only if it
cannot be continuously mapped onto [0, 1]. So there is a continuous onto
map f : X∗ → [0, 1]. Observe that by Lemma 3.2, X is pseudocompact.
Since the continuous image of a pseudocompact space is pseudocompact
([5, 3.10.24]) and pseudocompactness is equivalent to compactness for
subsets of the real line ([5, 3.10.21; 3.10.1] ), we can conclude that f(X)
is compact. Since X is dense in X∗, f(X) is dense in f(X∗) = [0, 1], and
so f(X) = [0, 1]. Let I0 be the set of all isolated points in X. By the
assumption, we have I0 = X. Since f(I0) is a subset of [0, 1], f(I0) is
separable, so there is a countable set A ⊆ I0 such that f(A) = f(I0). We
have [0, 1] = f(X) = f(I0) ⊆ f(I0) so f(A) = [0, 1]. By the assumption,
A has a (scattered) compact closure, and so it is easy to see that f(A) =
f(A). Hence, we have f(A) = [0, 1]. This is a contradiction because, as
mentioned before, the scattered compact Hausdorff space A cannot be
continuously mapped onto [0, 1] ([10, p. 214]). �
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We define a forcing which we use in the main theorem of this section.
This forcing is essentially the same as the one in the proof of Lemma 4.2
in [7], except that a sequence of discrete points {xi}i is replaced by a
countable discrete set C.

Definition 3.4. Let X be a regular space and let C be a countable
discrete subset of X. Suppose that there is a countable closed discrete
subset D of X such that

D ⊆ C \ C.
Let D = {dn : n ∈ ω}. For each n ∈ ω, let Un be a neighborhood base
of dn. Define a forcing Q(C,D) as follows. A condition p = (sp, Up) in
Q(C,D) has the form
• sp ∈

⋃
n∈ω

nC, where nC is the set of all sequences in C of length n.
• Up ∈

∏
n∈ω Un.

For p = (sp, Up) and q = (sq, Uq), define p ≤Q(C,D) q if
• sp ⊇ sq,
• (∀n ∈ ω)(Up(n) ⊆ Uq(n)), and
• (∀n ∈ dom(sp) \ dom(sq))(sp(n) ∈ Uq(n)).

Here are properties of Q(C,D).

Proposition 3.5. Let Q(C,D) be as in Definition 3.4. Q(C,D) is σ-
centered so it satisfies the countable chain condition, and, in VQ(C,D), C
contains an infinite closed (discrete) subset of X.

Proof. (The proof is essentially the same as that of Lemma 4.2 in [7].)
It is easy to see that Q(C,D) is σ-centered. Let G be a Q(C,D)-generic
filter over V. Let S =

⋃
{sp : p ∈ G} and let S̃ = {S(n) : n ∈ ω}. For

each n ∈ ω, {p ∈ Q(C,D) : |sp| ≥ n} is a dense subset of Q(C,D), so S̃ is
an infinite subset of the discrete set C. To show that S̃ is a closed subset
of X, fix x ∈ X \ S̃. We will find an open set containing x and missing
S̃. Since D is a closed discrete subset of X, there is an open set V such
that x ∈ V and |V ∩D| ≤ 1. For each n ∈ ω with dn /∈ V , pick Hn ∈ Un
such that Hn ∩ V = ∅; if dn ∈ V , then choose any Hn ∈ Un. The set
{p ∈ Q(C,D) : (∀n ∈ ω)(Up(n) ⊆ Hn)} is a dense subset of Q(C,D). So
there is p ∈ G such that Up(n) ⊆ Hn for all n ∈ ω, which implies that
S(n) ∈ Hn for all but finitely many n ∈ ω. Thus, S̃ ∩ V is finite. Let
V ′ = V \ S̃; then V ′ is an open set such that x ∈ V ′ and V ′ ∩ S̃ = ∅. �

Fn(ω, 2) is the forcing that adjoins a Cohen real ([9, VII, Definition
5.1]). We use the lemma below to prove the main theorem of this section.
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Lemma 3.6. Suppose that C is a countable discrete subset of a regular
space X such that C is not scattered. Then there is a two-stage iterated
forcing

P := Fn(ω, 2) ∗ Q̇(C, Ḋ)

such that P satisfies the countable chain condition and, in VP, C contains
an infinite closed (discrete) subset of X.

Proof. Let P be the perfect kernel of C as in Fact 2.9; then P ⊆ C \ C.
By Lemma 2.10, P is not countably compact in VFn(ω,2), and so there is
a countable closed discrete subset D of P in VFn(ω,2). Since P is a closed
subset of C, P is closed in X, and so D is a closed (and discrete) subset
of X. In VFn(ω,2), force with Q(C,D); by Proposition 3.5, C gets an
infinite closed discrete subset of X. Since 1 Fn(ω,2) “Q̇(C, Ḋ) satisfies
the countable chain condition,” P satisfies the countable chain condition
([9, VIII, Lemma 5.7]). �

Remark 3.7. In Lemma 3.6, Fn(ω, 2) can be replaced by any forcing
that adjoins a real and satisfies the countable chain condition.

Here is a preservation theorem for pseudocompact spaces.

Theorem 3.8. For a pseudocompact space X, the following are equiva-
lent:

(1) The pseudocompactness of X is preserved by any forcing that sat-
isfies the countable covering property.

(2) The pseudocompactness of X is preserved both by Booth forcing
B(F) for any free filter F and by Fn(ω, 2) ∗ Q̇(C, Ḋ) for any
countable discrete set C ∈ V and any Fn(ω, 2)-name Ḋ.

(3) X is scattered and every countable set of isolated points of X has
a compact closure.

Proof. (1) =⇒ (2). By Fact 2.6 and Lemma 3.6, both B(F) and Fn(ω, 2)∗
Q̇(C, Ḋ) satisfy the countable covering property.

(2) =⇒ (3). Let I0 be the set of all isolated points of X. First we show
the following claim:

Claim 1. I0 is dense in X.
Proof: Assume to the contrary that I0 is not dense in X; then X is not

scattered. Let X = P ∪S, where P is perfect and S is scattered as in Fact
2.9. Since I0 ⊆ S and I0 is dense in S, we have S ⊆ I0. Since X \ I0 6= ∅
andX\I0 ⊆ P , we have int(P ) 6= ∅, where int(P ) is the interior of P . It is
easy to see that int(P ) is a perfect set. Let F be any free ultrafilter on ω.
In VB(F), int(P ) is not pseudocompact by Proposition 2.10. The closure
of the interior of a set is called a closed domain and pseudocompactness
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is hereditary with respect to closed domains ([5, 3.10.F.(d)]). Therefore,
X is not pseudocompact in VB(F). This completes the proof of Claim 1.

Here is another claim
Claim 2. Every countable subset of I0 has a scattered compact closure.
Proof: First assume to the contrary that there is a countable set C ⊆ I0

such that C is not compact. By Lemma 2.7, a Booth forcing B(F) for
some filter F adds an infinite set E ⊆ C such that E is a closed subset of
C. Since C is closed in X, E is a closed subset of X. By Lemma 3.1, X
is not pseudocompact in VB(F).

Next assume to the contrary that there is a countable set C ⊆ I0 such
that C is not scattered. Note that C is a discrete set because so is I0. By
Lemma 3.6, we can define a forcing P := Fn(ω, 2) ∗ Q̇(C, Ḋ) such that in
VP C contains an infinite closed subset of X. By Lemma 3.1, X is not
pseudocompact in VP. This completes the proof of Claim 2.

By Claim 1, Claim 2, and Lemma 3.3, we can conclude that X is
scattered.
(3) =⇒ (1). Let P be a forcing which satisfies the countable covering
property. We use Lemma 3.2 to show that X is pseudocompact in VP.
Since X is scattered, the set of all isolated points of X is dense in X. In
VP, take an infinite set A of isolated points of X; we will show that A has
an accumulation point. Since P satisfies the countable covering property,
there exists a countable set B ∈ V such that A ⊆ B. We may assume
that B consists of isolated points of X. By the assumption, B is compact
(and scattered), and so it remains compact in VP by Theorem 1.1. Since
A is an infinite subset of B, A has an accumulation point. �

Remark 3.9. Condition (3) in Theorem 3.8 implies that X is pseudo-
compact by Lemma 3.2 (assuming that X is Tychonoff).

4. Examples

We give an example of a space whose countable compactness is de-
stroyed by a Booth forcing.

Example 4.1. There is a countably compact space 〈Y, τ〉 such that 〈Y, τB(F)〉
is not countably compact for some Booth forcing B(F).

Proof. Let Y = γ′N \ {δ} be the space in [5, 3.12.17.(d)], which is a
scattered, separable, non-compact, countably compact, locally compact
(regular) space. By Corollary 2.8, Y is not countably compact in VB(F)

for some Booth forcing B(F). �

Here is a well-known space.
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Example 4.2 ([5, 3.12.20.(a)]). There is a non-countably compact pseu-
docompact space 〈T, τ〉 such that 〈T, τP〉 remains pseudocompact for any
forcing P that satisfies the countable covering property.

Proof. The Tychonoff Plank T = (ω1 + 1)× (ω + 1) \ {(ω1, ω)} is a non-
countably compact pseudocompact space and it satisfies condition (3) in
Theorem 3.8. Therefore, T remains pseudocompact in VP for any forcing
P that satisfies the countable covering property. {(ω1, n) : n ∈ ω} is an
infinite closed discrete subspace of T , which witnesses the fact that T is
not countably compact. �

Combining Example 4.1 and Example 4.2, we can construct a countably
compact space whose countable compactness is destroyed by forcing but
pseudocompactness is preserved.

Example 4.3. There is a countably compact Tychonoff space 〈X, τ〉 such
that for some Booth forcing B(F), 〈X, τB(F)〉 is not countably compact
but is pseudocompact.

Proof. Let Y be the space in the proof of Example 4.1 and let T be the
Tychonoff Plank in the proof of Example 4.2. Since Y is separable, the
set of all isolated points in Y is countable; let D = {dn : n ∈ ω} be
the set of all isolated points in Y . Since the set of all isolated points in a
scattered space is dense, we have D = Y . Let 〈X, τ〉 be the quotient space
of the topological sum of Y and T obtained by identifying dn ∈ Y and
(ω1, n) ∈ T for each n ∈ ω. It is easy to see that X is still scattered and
locally compact; in particular, it is Tychonoff ([5, 3.3.1]). X is countably
compact because every infinite subset of {(ω1, n) : n ∈ ω} = {dn : n ∈ ω}
now has an accumulation point in X. Since D

X
= Y (here we regard

D and Y as subspaces of X) and Y is not compact, X does not satisfy
condition (3) of Theorem 2.11. Therefore, 〈X, τB(F)〉 is not countably
compact for some Booth forcing B(F). Let I0 be the set of all isolated
points in X. Then I0 ⊆ T and every countable subset of I0 has a compact
closure (which is a subset of T ). So X satisfies condition (3) of Theorem
3.8. Hence, 〈X, τB(F)〉 remains pseudocompact. �
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