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ABsTrACT. We shall prove that the Hilbert cube cannot be sep-
arated by a weakly infinite dimensional subset. As a corollary we
obtain that the complement of a weakly infinite dimensional sub-
set of the space of complete nonnegatively curved metrics is contin-
uum connected. We can extend this result to the associated moduli
space when the set removed is a Hausdorff space with Haver’s prop-
erty C. These results are refinements of theorems proven by Igor
Belegradek and Jing Hu [3].

The spaces of Riemannian metrics with positive scalar curvature are
subjects of intensive study [10]. The connectedness properties of such
spaces on R? were studied recently by Igor Belegradek and Jing Hu [3].
They proved that in the space RY (R?) of complete Riemannian metrics
of nonnegative curvature on the plane equipped with the topology of C*
uniform convergence on compact sets, the complement RY (R?) \ X is
connected for every finite dimensional X. Note that the space R ,(R?) is
separable metric [3]. In this note we extend Belegradek-Hu’s result to the
case of infinite dimensional spaces X. We recall that infinite dimensional
spaces split in two disjoint classes: strongly infinite dimensional (like the
Hilbert cube) and weakly infinite dimensional (like the union U, ™). We
prove Belegradek—Hu’s theorem for weakly infinite dimensional X. This
extension is final since strongly infinite dimensional spaces can separate
the Hilbert cube.
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We note that in [3] there is a similar connectedness result with fi-
nite dimensional X for the moduli space M~ (R?), the quotient space
of RE(R?) by the Diff(R?)-action via pullback. In the case of the mod-
uli space we manage to extend its connectedness result to the subsets
X C M’%O(RQ) with Haver’s property C (called C-spaces in [5]). It is
known that the property C implies the weak infinite dimensionality [5].
There is an old open problem that asks if every weakly infinite dimen-
sional compact metric space has property C. For general spaces these two
classes are different [1].

1. INFINITE DIMENSIONAL SPACES

We denote the Hilbert cube by Q = [—1,1]*° = II$2,I,,. The pseudo
interior of @ is the set s = (—1,1)* and the pseudo boundary of Q) is the
set B(Q) = Q\s. The faces of Q are the sets W,” = {z € Q|a; = —1} and
Wit = {x € Q|x; = 1}. Every space under consideration is a separable
metric space.

A space S C X is said to separate X if X'\ S is disconnected. Let X be
a space and let A and B be two disjoint closed subsets of X; a separator
between A and B is a closed subset S C X such that X \ S can be written
as the disjoint union of open sets U and V with A C U and B C V.

Definition 1.1. Let X be a space and I' be an index set. A family of
pairs of disjoint closed sets 7 = {(4;,B;) : i € T'} of X is said to be
essential if, for every family {L; : i € I'} where L; is a separator between
A; and By, we have (. L; # 0.

If 7 is not essential, then it is called inessential.

We recall that the classical covering dimension can be defined in terms
of essential families.

Definition 1.2. For a space X, we define dimX € {-1,0,1, ---} U {occ}
by

dimX = —1 if and only if X = (J;

dimX < n if and only if every family of n + 1 pairs of disjoint

closed subsets is inessential;

dimX = n if and only if dimX <n and dimX £ n —1;

dimX = oo if and only if dimX # n for all n > —1.
A space X is called strongly infinite dimensional if there exists an infinite
essential family of pairs of disjoint closed subsets of X. X is called weakly
infinite dimensional if X is not strongly infinite dimensional.

We recall that a space X is continuum connected if every two points
xz,y € X are contained in a connected compact subset. Every continuum
connected space is connected, but the converse is not true.
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The following well-known theorem about subspaces of @) is the infinite
dimensional counterpart of [5, Lemma 1.8.16] and a proof can be found
in [5, Remark 1.8.17].

Proposition 1.3. Let S C @ such that S meets every continuum from
Wi to W . Then S is strongly infinite dimensional. O

The next theorem and the subsequent corollary are extensions of a
theorem of Mazurkiewicz (see [5, Theorem 1.8.18]) to weakly infinite di-
mensional subspaces of Q.

Theorem 1.4. Let z,y € Q \ S where S C Q is such that it intersects
every continuum from x toy. Then S is strongly infinite dimensional.

Proof. The quotient space Q/(W; UW;") = (Q/W, )/W;' is the suspen-
sion of @; hence, it is a compact, convex, infinite dimensional subspace
of /2. By Ott-Heinrich Keller [7], it is homeomorphic to the Hilbert cube
Q. Denote this homeomorphism by h : Q@ — Q/(W; U W;"), and let
h(W;) = w; and h(W;") = wi.

Since the Hilbert cube is n-homogeneous, there is a homeomorphism
g : Q — Q such that g(z) = w] and g(y) = wi. The map h™lg = f:
Q — Q is a homeomorphism such that f(z) = W, and f(y) = W;".

Note that for S € Q \ {z,y}, we have f(S) homeomorphic to S and
f(S) c Q\{W; UW,"}. If C is any continuum from W~ to W;" in Q, then
f~1(C) is a continuum from x to y, and by hypothesis, f~*(C)N S # 0.
We have f(f~1(C)NS) = CNf(S) # 0 so f(S) intersects every continuum
from W, to W,". Hence, by Proposition 1.3, f(S) is strongly infinite
dimensional, and so is S. O

Corollary 1.5. If S C Q is a weakly infinite dimensional subspace, then
Q\ S is continuum connected, and further, if S is closed, then Q\ S is
path connected.

Proof. The second statement follows from the fact that any open con-
nected subspace of a locally path connected space is path connected. [J

Clearly, some strongly infinite dimensional compacta can separate the
Hilbert cube. One such example is the subspace @ x {0} which separates
the Hilbert cube @ x [—1,1].

Definition 1.6. A topological space X has property C (is a C-space) if,
for every sequence Gy, Go, ... of open covers of X, there exists a sequence
Hi,Ho, ... of families of pairwise disjoint open subsets of X such that,
for i = 1,2,..., each member of H; is contained in a member of G; and
the union |J;2, H; is a cover of X.
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The following is a theorem on dimension lowering mappings, the proof
can be found in [5, Theorem 6.3.9].

Theorem 1.7. If f : X — Y is a closed mapping of space X to C-space Y
such that, for everyy € Y, the fiber f~1(y) is weakly infinite dimensional,
then X is weakly infinite dimensional.

If one uses weakly infinite dimensional spaces instead of C-spaces, the
situation is less clear even in the case of compact Y.

Problem 1.8. Suppose that a Lie group G admits a free action by isome-
tries on a metric space X with compact metric weakly infinite dimensional
orbit space X/G. Does it follow that X is weakly infinite dimensional?

This is true for compact Lie groups in view of the slice theorem [2]. It
also true for countable discrete groups [9, Theorem 3.9].

2. APPLICATIONS

Now we proceed to generalize two theorems by Belegradek and Hu. We
use the following result proven in [3, Theorem 1.3].

Theorem 2.1. If K is a countable subset of RE (R?) and X is a separable
metric space, then, for any distinct points x1,x2 € X and any distinct
metrics g1, ga € RE(R2)\ K, there is an embedding of X into RE j(R?)\ K
that takes x1 and x5 to g, and g, respectively. B

Here is our extension of the first Belegradek—Hu theorem.

Theorem 2.2. The complement of every weakly infinite dimensional sub-
space S of R%((R?) is continuum connected. If S is closed, RE(R?)\ S
s path connected.

Proof. Let S be a weakly infinite dimensional subspace of RE (R?). Fix
two metrics g1,92 € RE(R?). Theorem 2.1 implies that g; and g lie
in a subspace Q of RE,(R?) that is homeomorphic to Q. Since SN Q
is at most weakly infinite dimensional, Q \ S is continuum connected by
Theorem 1.4. Then g; and g, lie in a continuum in @ that is disjoint
from S. Hence, RE(R?)\ S is continuum connected. If S is closed, from
Corollary 1.5, we can conclude that RE,(R?)\ S is path connected. O

In view of Theorem 1.4, we can state that if a subset S separates an
open subset of the separable Hilbert space ¢2, then S is strongly infinite
dimensional. From this fact we derive the following theorem.

Theorem 2.3. The complement of every weakly infinite dimensional sub-
space S of R, (R?) is locally connected. If S is closed, RS, (R?)\ S is
locally path connected. -
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Proof. Let R%"O(Rz) be Rgo(Rz) re-topologized with the C°° topology,
the space R, (R?) is homeomorphic to £2, the separable Hilbert space [3].

Let x € £2; then there is a neighborhood U of 2 homeomorphic to £2, and
the set U \ S is connected and path connected if S is closed. O

We do not know if the space Rgo( 2) is locally path connected for
k < oo.

We prove a result similar to Theorem 2.2 for the associated moduli
space ./\/11;8 (R?), when the subspace removed is a Hausdorff space having
property C. This is a generalization of another Belegradek—Hu theorem.

Theorem 2.4. If S C MgO(Rg) is a closed Hausdorff space with property
C, then M’go(Rz) \ S is path connected.

Proof. Denote by S the set of smooth subharmonic functions with a(u) <
1, where
sup{u(z) : |2| =7
a) T S o =)
T—00 logr

Note that S; is closed in the Frechét space C*°(R?), it is not locally
compact, and it is equal to the set of smooth subharmonic functions «
such that the metric e =2% g is complete where gq is the standard Euclidean
metric [3]. Let ¢ : S1 — M¥%,(R?) denote the continuous surjection

sending u to the isometry class of e=2%gy. Let § = ¢~1(S5). Fix two
points g1,92 € M~ (R?) \ S, which are ¢ images of u; and uy in S,
respectively. By Theorem 2.1, we may assume that u; and us lie in an
embedded copy Q of Hilbert cube. It suffices to show that Q \ S is path
connected.

The set Q NS is compact; hence, ¢, the restriction of ¢ to Q N S’, is a
continuous surjection. The map ¢ : Q ns — q(@) N .S is a map between
compact spaces and, in particular, it is a closed map. The set Q(Qﬂg ) has
property C. We have each fiber ¢=!(y) to be finite dimensional [3], and
hence Q N S is weakly infinite dimensional by Theorem 1.7. Therefore,
Q\ S is path connected by Corollary 1.5, and so is ME(RH)\ S. O

It should be noted that the Hausdorff condition is essential in The-
orem 2.4. If S is not Hausdorff, the map ¢ above ceases to be a map
between compact metric spaces. In [3] the authors did not require the
Hausdorff condition in the formulation of their Theorem 1.6 when S is
finite dimensional.

Suppose that Problem 1.8 has an affirmative answer for the Lie group
G = conf(R?), the groups of conformal transformations on the plane.
Then in Theorem 2.4 one can replace the property-C condition with the
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weak infinite dimensionality of S. Assuming that Problem 1.8 has an affir-
mative answer for the Lie group G = C* x C, we can say that Problem 1.8
has an affirmative answer for the Lie group conf(R?).

Proposition 2.5. If S is a closed Hausdorff weakly infinite dimensional
subspace of Mgo(Rz) and Problem 1.8 has an affirmative answer in the

case of G = conf(R?), then MgO(RQ) \ S is path connected.

Proof. We use the same setting as in the proof of Theorem 2.4. As stated
in the proof of Theorem 1.6 in [3], two functions u and v of S; lie in
the same isometry class if and only if v = u o ¢ — log |a| for some ¢ €
conf(R?); i.e., they lie in the same orbit under the action of conf(R?) on
the space C°°(R?) given by (u,%) — w o1 — log|a|. The subspace S;
of C*°(R?) is invariant under this action. Let 7 : S; — Si/conf(R?) be
the projection onto the orbit space of this action. Also we note that the
action of conf(R?) on S is a free action by isometries.

Let S be a closed, weakly infinite dimensional Hausdorff subset of
ME (R?). Let f and g be two elements in the complement of S. Then
there are functions v and v mapping to f and g, respectively, by ¢. As
noted above, v and v land in the same class if and only if v = uoy —log |al
for some 1 € conf(R?). As shown in [3, Theorem 1.4 |, v and v lie in an
embedded copy Q of Hilbert cube. Denote ¢~*(S) = S. It suffices to
prove that QN S is weakly infinite dimensional, so we would have a path
joining w and v in @ \ S, which transforms to a path joining ¢ and f in
MEo(R2)\ S,

The set S is closed; hence, @ N S is compact. So the restriction of ¢ to
QﬁS' is a continuous surjection § : Qﬂg — ¢(Q)NS of compact separable
metric spaces. Define the map 7 : Sy /conf(R?) by uG +— u*, the isometry
class of e~2%gy. This map is injective by definition, and the diagram

S1 l S1/conf(R?)

N A

k
M3,

commutes. Let Y be the n preimage of ¢(Q) NS in S;/conf(R?). The
action restricted to the preimage 7=1(Y) of S; is an action of conf(R?)
on 7 1(Y) with orbit space Y, QNS C 7~ (Y), and the set Y is weakly
infinite dimensional. By the hypothesis, we can conclude that 7=1(Y) is
weakly infinite dimensional. Hence, ¢(Q) N S is weakly infinite dimen-
sional; therefore, M%,(R?)\ S is path connected. O
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