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ON SEPARATORS OF THE SPACE OF
NONNEGATIVELY CURVED PLANES

A. K. AMARASINGHE

Abstract. We shall prove that the Hilbert cube cannot be sep-
arated by a weakly infinite dimensional subset. As a corollary we
obtain that the complement of a weakly infinite dimensional sub-
set of the space of complete nonnegatively curved metrics is contin-
uum connected. We can extend this result to the associated moduli
space when the set removed is a Hausdorff space with Haver’s prop-
erty C. These results are refinements of theorems proven by Igor
Belegradek and Jing Hu [3].

The spaces of Riemannian metrics with positive scalar curvature are
subjects of intensive study [10]. The connectedness properties of such
spaces on R2 were studied recently by Igor Belegradek and Jing Hu [3].
They proved that in the space Rk≥0(R2) of complete Riemannian metrics
of nonnegative curvature on the plane equipped with the topology of Ck
uniform convergence on compact sets, the complement Rk≥0(R2) \ X is
connected for every finite dimensional X. Note that the space Rk≥0(R2) is
separable metric [3]. In this note we extend Belegradek–Hu’s result to the
case of infinite dimensional spaces X. We recall that infinite dimensional
spaces split in two disjoint classes: strongly infinite dimensional (like the
Hilbert cube) and weakly infinite dimensional (like the union ∪nIn). We
prove Belegradek–Hu’s theorem for weakly infinite dimensional X. This
extension is final since strongly infinite dimensional spaces can separate
the Hilbert cube.
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14 A. K. AMARASINGHE

We note that in [3] there is a similar connectedness result with fi-
nite dimensional X for the moduli space Mk

≥0(R2), the quotient space
of Rk≥0(R2) by the Diff(R2)-action via pullback. In the case of the mod-
uli space we manage to extend its connectedness result to the subsets
X ⊂ Mk

≥0(R2) with Haver’s property C (called C-spaces in [5]). It is
known that the property C implies the weak infinite dimensionality [5].
There is an old open problem that asks if every weakly infinite dimen-
sional compact metric space has property C. For general spaces these two
classes are different [1].

1. Infinite Dimensional Spaces

We denote the Hilbert cube by Q = [−1, 1]∞ = Π∞n=1In. The pseudo
interior of Q is the set s = (−1, 1)∞ and the pseudo boundary of Q is the
set B(Q) = Q\s. The faces of Q are the setsW−i = {x ∈ Q|xi = −1} and
W+
i = {x ∈ Q|xi = 1}. Every space under consideration is a separable

metric space.
A space S ⊆ X is said to separate X if X \S is disconnected. Let X be

a space and let A and B be two disjoint closed subsets of X; a separator
between A and B is a closed subset S ⊆ X such that X \S can be written
as the disjoint union of open sets U and V with A ⊆ U and B ⊆ V .

Definition 1.1. Let X be a space and Γ be an index set. A family of
pairs of disjoint closed sets τ = {(Ai, Bi) : i ∈ Γ} of X is said to be
essential if, for every family {Li : i ∈ Γ} where Li is a separator between
Ai and Bi, we have

⋂
i∈Γ Li 6= ∅.

If τ is not essential, then it is called inessential.

We recall that the classical covering dimension can be defined in terms
of essential families.

Definition 1.2. For a space X, we define dimX ∈ {−1, 0, 1, · · · } ∪ {∞}
by

dimX = −1 if and only if X = ∅;
dimX ≤ n if and only if every family of n + 1 pairs of disjoint

closed subsets is inessential;
dimX = n if and only if dimX ≤ n and dimX � n− 1;
dimX =∞ if and only if dimX 6= n for all n ≥ −1.

A space X is called strongly infinite dimensional if there exists an infinite
essential family of pairs of disjoint closed subsets of X. X is called weakly
infinite dimensional if X is not strongly infinite dimensional.

We recall that a space X is continuum connected if every two points
x, y ∈ X are contained in a connected compact subset. Every continuum
connected space is connected, but the converse is not true.
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The following well-known theorem about subspaces of Q is the infinite
dimensional counterpart of [5, Lemma 1.8.16] and a proof can be found
in [5, Remark 1.8.17].

Proposition 1.3. Let S ⊆ Q such that S meets every continuum from
W+

1 to W−1 . Then S is strongly infinite dimensional. �

The next theorem and the subsequent corollary are extensions of a
theorem of Mazurkiewicz (see [5, Theorem 1.8.18]) to weakly infinite di-
mensional subspaces of Q.

Theorem 1.4. Let x, y ∈ Q \ S where S ⊆ Q is such that it intersects
every continuum from x to y. Then S is strongly infinite dimensional.

Proof. The quotient space Q/(W−1 ∪W
+
1 ) ∼= (Q/W−1 )/W+

1 is the suspen-
sion of Q; hence, it is a compact, convex, infinite dimensional subspace
of `2. By Ott-Heinrich Keller [7], it is homeomorphic to the Hilbert cube
Q. Denote this homeomorphism by h : Q → Q/(W−1 ∪ W

+
1 ), and let

h(W−1 ) = w−1 and h(W+
1 ) = w+

1 .
Since the Hilbert cube is n-homogeneous, there is a homeomorphism

g : Q → Q such that g(x) = w−1 and g(y) = w+
1 . The map h−1g = f :

Q→ Q is a homeomorphism such that f(x) = W−1 and f(y) = W+
1 .

Note that for S ⊂ Q \ {x, y}, we have f(S) homeomorphic to S and
f(S) ⊂ Q\{W−1 ∪W

+
1 }. If C is any continuum fromW−1 toW+

1 inQ, then
f−1(C) is a continuum from x to y, and by hypothesis, f−1(C) ∩ S 6= ∅.
We have f(f−1(C)∩S) = C∩f(S) 6= ∅ so f(S) intersects every continuum
from W−1 to W+

1 . Hence, by Proposition 1.3, f(S) is strongly infinite
dimensional, and so is S. �

Corollary 1.5. If S ⊂ Q is a weakly infinite dimensional subspace, then
Q \ S is continuum connected, and further, if S is closed, then Q \ S is
path connected.

Proof. The second statement follows from the fact that any open con-
nected subspace of a locally path connected space is path connected. �

Clearly, some strongly infinite dimensional compacta can separate the
Hilbert cube. One such example is the subspace Q×{0} which separates
the Hilbert cube Q× [−1, 1].

Definition 1.6. A topological space X has property C (is a C-space) if,
for every sequence G1,G2, . . . of open covers of X, there exists a sequence
H1,H2, . . . of families of pairwise disjoint open subsets of X such that,
for i = 1, 2, . . . , each member of Hi is contained in a member of Gi and
the union

⋃∞
i=1Hi is a cover of X.
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The following is a theorem on dimension lowering mappings, the proof
can be found in [5, Theorem 6.3.9].

Theorem 1.7. If f : X → Y is a closed mapping of space X to C-space Y
such that, for every y ∈ Y , the fiber f−1(y) is weakly infinite dimensional,
then X is weakly infinite dimensional.

If one uses weakly infinite dimensional spaces instead of C-spaces, the
situation is less clear even in the case of compact Y .

Problem 1.8. Suppose that a Lie group G admits a free action by isome-
tries on a metric spaceX with compact metric weakly infinite dimensional
orbit space X/G. Does it follow that X is weakly infinite dimensional?

This is true for compact Lie groups in view of the slice theorem [2]. It
also true for countable discrete groups [9, Theorem 3.9].

2. Applications

Now we proceed to generalize two theorems by Belegradek and Hu. We
use the following result proven in [3, Theorem 1.3].

Theorem 2.1. If K is a countable subset of Rk≥0(R2) and X is a separable
metric space, then, for any distinct points x1, x2 ∈ X and any distinct
metrics g1, g2 ∈ Rk≥0(R2)\K, there is an embedding of X into Rk≥0(R2)\K
that takes x1 and x2 to g1 and g2, respectively.

Here is our extension of the first Belegradek–Hu theorem.

Theorem 2.2. The complement of every weakly infinite dimensional sub-
space S of Rk≥0(R2) is continuum connected. If S is closed, Rk≥0(R2) \ S
is path connected.

Proof. Let S be a weakly infinite dimensional subspace of Rk≥0(R2). Fix
two metrics g1, g2 ∈ Rk≥0(R2). Theorem 2.1 implies that g1 and g2 lie
in a subspace Q̂ of Rk≥0(R2) that is homeomorphic to Q. Since S ∩ Q̂
is at most weakly infinite dimensional, Q̂ \ S is continuum connected by
Theorem 1.4. Then g1 and g2 lie in a continuum in Q̂ that is disjoint
from S. Hence, Rk≥0(R2) \ S is continuum connected. If S is closed, from
Corollary 1.5, we can conclude that Rk≥0(R2) \ S is path connected. �

In view of Theorem 1.4, we can state that if a subset S separates an
open subset of the separable Hilbert space `2, then S is strongly infinite
dimensional. From this fact we derive the following theorem.

Theorem 2.3. The complement of every weakly infinite dimensional sub-
space S of R∞≥0(R2) is locally connected. If S is closed, R∞≥0(R2) \ S is
locally path connected.
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Proof. Let R∞≥0(R2) be Rk≥0(R2) re-topologized with the C∞ topology,
the space R∞≥0(R2) is homeomorphic to `2, the separable Hilbert space [3].
Let x ∈ `2; then there is a neighborhood U of x homeomorphic to `2, and
the set U \ S is connected and path connected if S is closed. �

We do not know if the space Rk≥0(R2) is locally path connected for
k <∞.

We prove a result similar to Theorem 2.2 for the associated moduli
spaceMk,c

≥0(R2), when the subspace removed is a Hausdorff space having
property C. This is a generalization of another Belegradek–Hu theorem.

Theorem 2.4. If S ⊂Mk
≥0(R2) is a closed Hausdorff space with property

C, thenMk
≥0(R2) \ S is path connected.

Proof. Denote by S1 the set of smooth subharmonic functions with α(u) ≤
1, where

α(u) = lim
r→∞

sup{u(z) : |z| = r}
log r

.

Note that S1 is closed in the Frechét space C∞(R2), it is not locally
compact, and it is equal to the set of smooth subharmonic functions u
such that the metric e−2ug0 is complete where g0 is the standard Euclidean
metric [3]. Let q : S1 → Mk

≥0(R2) denote the continuous surjection
sending u to the isometry class of e−2ug0. Let Ŝ = q−1(S). Fix two
points g1, g2 ∈ Mk

≥0(R2) \ S, which are q images of u1 and u2 in S,
respectively. By Theorem 2.1, we may assume that u1 and u2 lie in an
embedded copy Q̂ of Hilbert cube. It suffices to show that Q̂ \ Ŝ is path
connected.

The set Q̂ ∩ Ŝ is compact; hence, q̂, the restriction of q to Q̂ ∩ Ŝ, is a
continuous surjection. The map q̂ : Q̂ ∩ Ŝ → q(Q̂) ∩ S is a map between
compact spaces and, in particular, it is a closed map. The set q̂(Q̂∩Ŝ) has
property C. We have each fiber q−1(y) to be finite dimensional [3], and
hence Q̂ ∩ Ŝ is weakly infinite dimensional by Theorem 1.7. Therefore,
Q̂ \ Ŝ is path connected by Corollary 1.5, and so isMk

≥0(R2) \ S. �

It should be noted that the Hausdorff condition is essential in The-
orem 2.4. If S is not Hausdorff, the map q̂ above ceases to be a map
between compact metric spaces. In [3] the authors did not require the
Hausdorff condition in the formulation of their Theorem 1.6 when S is
finite dimensional.

Suppose that Problem 1.8 has an affirmative answer for the Lie group
G = conf(R2), the groups of conformal transformations on the plane.
Then in Theorem 2.4 one can replace the property-C condition with the
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weak infinite dimensionality of S. Assuming that Problem 1.8 has an affir-
mative answer for the Lie group G = C∗oC, we can say that Problem 1.8
has an affirmative answer for the Lie group conf(R2).

Proposition 2.5. If S is a closed Hausdorff weakly infinite dimensional
subspace of Mk

≥0(R2) and Problem 1.8 has an affirmative answer in the
case of G = conf(R2), thenMk

≥0(R2) \ S is path connected.

Proof. We use the same setting as in the proof of Theorem 2.4. As stated
in the proof of Theorem 1.6 in [3], two functions u and v of S1 lie in
the same isometry class if and only if v = u ◦ ψ − log |a| for some ψ ∈
conf(R2); i.e., they lie in the same orbit under the action of conf(R2) on
the space C∞(R2) given by (u, ψ) 7→ u ◦ ψ − log |a|. The subspace S1

of C∞(R2) is invariant under this action. Let π : S1 → S1/conf(R2) be
the projection onto the orbit space of this action. Also we note that the
action of conf(R2) on S1 is a free action by isometries.

Let S be a closed, weakly infinite dimensional Hausdorff subset of
Mk
≥0(R2). Let f and g be two elements in the complement of S. Then

there are functions u and v mapping to f and g, respectively, by q. As
noted above, u and v land in the same class if and only if v = u◦ψ−log |a|
for some ψ ∈ conf(R2). As shown in [3, Theorem 1.4 ], u and v lie in an
embedded copy Q of Hilbert cube. Denote q−1(S) = Ŝ. It suffices to
prove that Q∩ Ŝ is weakly infinite dimensional, so we would have a path
joining u and v in Q \ Ŝ, which transforms to a path joining g and f in
Mk
≥0(R2) \ S.
The set Ŝ is closed; hence, Q∩ Ŝ is compact. So the restriction of q to

Q∩Ŝ is a continuous surjection q̂ : Q∩Ŝ → q(Q)∩S of compact separable
metric spaces. Define the map η : S1/conf(R2) by uG 7→ u∗, the isometry
class of e−2ug0. This map is injective by definition, and the diagram

S1
π //

q
!!

S1/conf(R2)

η
yy

Mk
≥0

commutes. Let Y be the η preimage of q(Q) ∩ S in S1/conf(R2). The
action restricted to the preimage π−1(Y ) of S1 is an action of conf(R2)

on π−1(Y ) with orbit space Y , Q ∩ Ŝ ⊆ π−1(Y ), and the set Y is weakly
infinite dimensional. By the hypothesis, we can conclude that π−1(Y ) is
weakly infinite dimensional. Hence, q(Q) ∩ Ŝ is weakly infinite dimen-
sional; therefore,Mk

≥0(R2) \ S is path connected. �
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