http://topology.auburn.edu/tp/

# TOPOLOGY PROCEEDINGS 

Volume 50, 2017
Pages 21-37
http://topology.nipissingu.ca/tp/

Further Study of Simple Smale Flows<br>Using Four Band Templates<br>by<br>Kamal M. Adhikari and Michael C. Sullivan

Electronically published on May 27, 2016

Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
Department of Mathematics \& Statistics
Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: (Online) 2331-1290, (Print) 0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.
http://topology.auburn.edu/tp/
http://topology.nipissingu.ca/tp/

# TOPOLOGY PROCEEDINGS 

Volume 50 (2017)

Pages 21-37
E-Published on May 27, 2016

# FURTHER STUDY OF SIMPLE SMALE FLOWS USING FOUR BAND TEMPLATES 

KAMAL M. ADHIKARI AND MICHAEL C. SULLIVAN


#### Abstract

In this paper, we discuss how to realize a nonsingular Smale flow with a four band template on a 3-sphere. This extends the work done by Michael C. Sullivan on Lorenz Smale flows and by Bin Yu on realizing Lorenz like Smale flows on 3-manifolds, and continues the work of Elizabeth L. Haynes and Sullivan on realizing simple Smale flows with a different four band template on a 3 -sphere.


## 1. Introduction

A nonsingular Smale flow on a 3 -manifold $M$ is a structurally stable flow with a 1-dimensional chain recurrent set. A chain recurrent set consists of a finite number of disjoint basic sets which are compact and transitive. A basic set may be an attractor, a repeller, or a saddle set. We study the realizations of a nonsingular Smale flow when the saddle set is modeled by a four band template and this extends the work done in [13]. A template is a compact branched 2-manifold with boundary which has a smooth semiflow and is built locally from two types of charts, joining and splitting. The most popular template is a Lorenz template which was introduced by R. F. Williams [20] to study the Lorenz attractor. Joan S. Birman and Williams [2] proved the template theorem which says that in Smale flow, the chaotic saddle set can be represented by a template and any knot type of the periodic orbits can be studied within a template.

In the past, much work has been done to realize Smale flows using templates. Michal C. Sullivan studied a special type of nonsingular Smale

[^0]flow (NSF) on $S^{3}$ by using a Lorenz template [17]. Bin Yu [22] discussed the realizations of a nonsingular Smale flow by using Lorenz-like templates and extended the work done by Sullivan in [17]. Elizabeth L. Haynes and Sullivan studied the Smale flows on $S^{3}$ modeled by a four band template [13]. Here, we discuss how to realize nonsingular Smale flows on $S^{3}$ when the saddle set of the flow is modeled by a four band template different from the template used in [13]. This makes a further extension of [13] and we hope that this work will add one more point for the detailed study of NSFs on 3-manifolds.

## 2. BACKgRound

Definition 2.1. A flow on a manifold $M$ is a continuous function $\phi_{t}: M \times$ $\mathbb{R} \rightarrow M$ such that $\phi_{t}(p, 0)=p$, for all $p \in M$ and $\phi_{t}\left(\phi_{t}(p, s), t\right)=\phi_{t}(p, s+$ $t)$, for all $p \in M, t \in \mathbb{R}$.

An orbit of a point $p \in M$ is given by $O(p)=\left\{q \in M \mid q=\phi_{t}(p, t), t \in\right.$ $\mathbb{R}\}$ where $\phi_{t}$ is a flow map. A set $\Lambda \subset M$ is called an invariant set for a flow $\phi_{t}$ if $\phi_{t}(\Lambda, t)=\Lambda$ for all $t \in \mathbb{R}$. An invariant set $\Lambda \subset M$ is said to be hyperbolic or to have a hyperbolic structure if the tangent bundle of $M$ restricted to $\Lambda$ splits into three sub-bundles, namely stable bundles, unstable bundles, and center of the flow, each of which is invariant under $D \phi_{t}$ for all $t$.

Definition 2.2. Let $X$ be a subset of a hyperbolic invariant set $\Lambda$ of a flow $\phi_{t}$ on $M$. Then the stable and unstable manifolds of $X$ in $M$ are given by

$$
\begin{aligned}
& W^{s}(X)=\left\{y \in M \mid \lim _{t \rightarrow \infty}\left\|\phi_{t}(x)-\phi(y)\right\|=0\right\} \\
& W^{u}(X)=\left\{y \in M \mid \lim _{t \rightarrow-\infty}\left\|\phi_{t}(x)-\phi(y)\right\|=0\right\} \text { for all } x \in X .
\end{aligned}
$$

Definition 2.3. A point $x \in M$ is chain recurrent for a flow $\phi_{t}$ if, for any $\epsilon>0$, there exists a sequence of points $\left\{x=x_{1}, x_{2}, \ldots ., x_{n}=x\right\}$ and real numbers $\left\{t_{1}, t_{2}, \ldots . ., t_{n}-1\right\}$ such that $t_{i}>1$ and $\left\|\phi_{t_{i}}\left(x_{i}\right)-x_{i+1}\right\|<\epsilon$ for all $1 \leq i \leq n-1$. The chain recurrent set is the set of all chain recurrent points on $M$.

According to Smale's theorem, if the flow is hyperbolic on its chain recurrent set, the chain recurrent set is the disjoint union of basic sets where each basic set is closed, invariant, contains a dense orbit, and the periodic orbits form a dense subset. A basic set may be an attractor, repeller, or saddle set. For a nonsingular Smale flow, attractors and repellers are necessarily isolated closed orbits. A basic saddle set may be an isolated closed orbit or the suspension of a non-trivial shift of finite type [3], [4]. For the latter case, we say the saddle set is chaotic. A chaotic saddle set can be modeled by a template.

Definition 2.4. A given flow $\phi_{t}$ on a manifold $M$ is called a Morse-Smale flow if
(1) the chain recurrent set is hyperbolic,
(2) each basic set consists of a single closed orbit or fixed point, and
(3) the stable and unstable manifolds of basic sets meet transversally.

Definition 2.5. A given flow $\phi_{t}$ on a manifold $M$ is called a Smale flow if
(1) the chain recurrent set is hyperbolic,
(2) the stable and unstable manifolds of any two orbits in the chain recurrent set meet transversally, and
(3) each basic set is zero or one dimensional.

A Lorenz Smale flow is a Smale flow with three basic sets: an attracting closed orbit, a repelling closed orbit, and a nontrivial saddle set modeled by a Lorenz template. A Lorenz-like Smale flow is a Smale flow with an attracting closed orbit, a repelling closed orbit, and a nontrivial saddle set modeled by Lorenz-like templates. Similarly, we can study any Smale flow by taking a template model of its saddle set.

Next we review some useful concepts of knot theory. Detail can be found in [10] and [9]. Our intention is to study the knot type within a template and to get the linking structure of the attractor and the repeller for the flow. A knot is an embedding of $S^{1}$ into $S^{3}$. We can say it is a curve in three-dimensional Euclidean space, $\mathbb{R}^{3}$, homeomorphic to a circle $S^{1}$. Two knots are said to be equivalent if there is an isotopy of $S^{3}$ taking one into another. All isotopic knots are of the same knot type. A knot group is the fundamental group of complement of the knot in $S^{3}$. The core of a solid torus can be considered as an unknot and the knot group of an unknot is infinite cyclic. A link of $n$ components is an embedding of $n$-disjoint copies of $S^{1}$ into $S^{3}$. A knot can be given an orientation whenever it is necessary. For the link, we can assign a linking number observing the orientations of the two knots at the crossing. A Hopf link always has the linking number $\pm 1$.

For any Smale flow with single attracting and repelling orbits and with a saddle set $\Lambda$, the linking number of the attractor-repeller link can be determined by using a structure matrix of the saddle set [6] where the structure matrix can be determined by using a Markov partition of the saddle set $\Lambda$.

Theorem 2.6 ([17, Theorem 9]). For a Lorenz-Smale flow in $S^{3}$, the following and only the following configurations are realizable. The link $a \cup r$ is either a Hopf link or a trefoil and meridian. In the latter case, the saddle set is modeled by a standardly embedded Lorenz template; i.e.,
both bands are unknotted, untwisted, and unlinked, with the core of each band a meridian of the trefoil component of $a \cup r$. In the former case there are three possibilities: (1) The saddle set is standardly embedded. (2) One band is twisted with n full-twists for any $n$ but remains unknotted and unlinked to the other band, which must be unknotted and untwisted. (3) One band is a $(p, q)$ torus knot for any pair of coprime integers with twist $p+q-1$. The other band is unknotted, untwisted, and unlinked to the knotted one.

The proof for the above can be found in [17] and for the below in [22].
Theorem 2.7 ([22, Theorem 1]). For an $L(0,1)$ Lorenz-like Smale flow on $S^{3}$ the following and only the following configurations are realizable. The link $a \cup r$ is either a Hopf link or a trefoil and meridian. In the latter case the saddle set is modeled by a standard embedded L(0,1) Lorenz-like template; i.e., the saddle set is modeled by embedded $L(0,1)$ and the cores of both bands are unknotted and unlinked to each other. In the former case, there are three possibilities: (1) The saddle set is standardly embedded. (2) The saddle set is modeled by embedded $L(2 p+2 q-2,2 p+2 q-1)$. The cores of two bands are two parallel $(p, q)$ torus knots where $p$ and $q$ are any coprime integers. (3) The saddle set is modeled by embedded $L(0,2 p+2 q-1)$. The core of the twisted band is a $(p, q)$ torus knot; the core of the other band is unknotted and unlinked with the former one.

Theorem 2.8 ([22, Theorem 2]). For an $L(1,1)$ Lorenz-like Smale flow on $S^{3}$ the following and only the following configurations are realizable. The link $a \cup r$ is a link which is composed of a trivial knot and a $(p, 3)$ torus knot in the boundary of a solid torus neighborhood of the trivial knot where $p$ is any integer such that $p$ and 3 are coprime. The saddle set is modeled by embedded $L(2 n+1,4 n+1)$ for any $n$. The linking number of the cores of these two bands is $2 n$, the core of one knot is unknotted, and the core of the other band is a $(2,2 n+1)$ torus knot.

The Lorenz template and the Lorenz-like templates in theorems 2.6, 2.7, and 2.8 are shown in Figure 1.


Figure 1. Lorenz template $L(0,0)$ and Lorenz-like templates $L(0,1)$ and $L(1,1)$.

Theorem 2.9 ([13, Theorem 4.1]). For a simple Smale flow on $S^{3}$ with saddle set modeled by $U$, the link $a \cup r$ is either a Hopf link or a figure- 8 knot and meridian. In the latter case the bands are untwisted, unknotted, and unlinked. In the Hopf link case, one or two bands may form $(p, q)$ torus knots about a or $r$; however, the two looped bands in the template $U$ cannot both be knotted, twisted, or linked.


Figure 2. Template $U$.
The proof of the above theorem is given in [13].
Observing the above theorems, there is an obvious question to ask if we could use some more template models to study the Smale flow and extend the existing theorems: What could the pair $a \cup r$ be for the simple Smale flow if we could model the saddle set with the thickened version of some other possible templates? We can see in the proofs of all of the above theorems that the isolating neighborhood of a saddle set is represented by a thickened version of its respective templates. The exit set and entrance set of the thickened template are glued, respectively, to the attractor and repeller to obtain $S^{3}$. To prove the following theorems we use a similar concept which extends the previous theorems one step further.

## 3. Realizing an NSF with a Four Band Template

Theorem 3.1. For a simple Smale flow on $S^{3}$ with the saddle set modeled by $H$, the link $a \cup r$ is either a Hopf link or a figure- 8 knot and its meridian. In the latter case the saddle set is modeled by a standardly embedded template $H$ (see Figure 3) where the bands are untwisted, unlinked, and unknotted. In the Hopf link case, either (a) the saddle set is a standardly embedded template or (b) one or two bands may form a $(p, q)$ torus knot about a or $r$ but none of the bands can be twisted, knotted, or linked.


Figure 3. Template $H$

Proof. The thickened template is a genus 3 handlebody as shown in Figure 4. We still call this $H$ throughout the proof. The exit set is shown in Figure 4.


Figure 4. Thickened template and the exit set of $H$

We denote the exit set by $E_{x}$; from Figure 5, we can see that the exit set is divided into three annuli and two rectangular strips. Let the annuli be $C_{1}, C_{2}$, and $C_{3}$ and the rectangular strips $L_{1}$ and $L_{2}$. Thus, the core of the exit set is partitioned into three loops $c_{1}, c_{2}$, and $c_{3}$ and two line segments $l_{1}$ and $l_{2}$.

If we denote $A$ as the tubular neighborhood of an attractor and $R$ as the tubular neighborhood of a repeller, the boundary of $A$ is glued into the exit set $E_{x}$ and then the boundary $\partial R$ is attached to the boundary of $A \cup H$ to get $A \cup H \cup R$ which is $S^{3}$.


Figure 5．Exit set configuration

If we look at the exit set in Figure 5，we can see that the only allowed configuration，$l_{1}$ and $l_{2}$ ，must attach to opposite sides of $c_{2}$ and the struc－ ture 〇〇〇 is not allowed．We look at various cases based on how many $c_{i}$＇s are essential in $\partial A$ ．We can exchange the roles of $c_{1}$ and $c_{3}$ without loss of generality．For the discussion now，we assume that $c_{3}$ lies inside the disk bounded by $c_{2}$ and that $c_{1}$ lies outside that disk．

Case 1：When all $c_{i}$＇s are inessential in $\partial A$
We can further divide this case into two subcases depending on whether $c_{2}$ and $c_{3}$ both lie inside the disk bounded by $c_{1}$ or not．

Case 1（a）．If they don＇t lie inside the disk bounded by $c_{1}$ ，then they lie on $\partial A$ as shown in Figure 6．The loop $c_{1}$ in this case bounds a different disk in $\partial A$ as does $c_{3}$ ．We can slightly push the disks inside $A$ to create solid balls $B_{1}$ and $B_{3}$ ，respectively，such that if we take these balls out， the closure of $A-\left(B_{1} \cup B_{3}\right)$ still remains a solid torus．


Figure 6．Inessential curves on the surface of $A$
Let us denote $A^{\prime}=C l\left(A-\left(B_{1} \cup B_{3}\right)\right)$ and $H^{\prime}=H \cup B_{3}$ where the gluing is done in the annulus $C_{3}$ and denote $H^{\prime \prime}=H^{\prime} \cup B_{1}$ where the gluing is done in $C_{1}$ ．Now $H^{\prime \prime}$ is a solid torus．We can further push down the disk bounded by $c_{2}$ to create a ball $B_{2}$ by pushing down deeper than
$B_{3}$ such that $C l\left(A^{\prime}-B_{2}\right)$ still remains a solid torus. Then if we glue $B_{2}$ to $C_{2}$ to get $H^{\prime \prime \prime}$, we will get $H^{\prime \prime \prime}$ as a solid 3 ball, the result of which makes $A \cup H$ a single solid torus where $a$ can be taken as its core. Thus, we get $a \cup r$, a Hopf link.

Case $1(\mathrm{~b})$. If $c_{2}$ and $c_{3}$ lie inside the disk bounded by $c_{1}$, then they lie in $\partial A$ as shown in Figure 7.


Figure 7. When $c_{2}$ and $c_{3}$ lie inside the disk bounded by $c_{1}$ on $\partial A$.

As above, $c_{3}$ bounds a disk in $\partial A$. Push this disk slightly inside A to get a ball $B_{3}$. Attach $B_{3}$ to $H$ at $C_{3}$. While creating $B_{3}$, care is taken that the closure of $A-B_{3}$ still remains a solid torus. Once we attach $B_{3}$ to $C_{3}$, denote $H^{\prime}=H \cup B_{3}$ which is a genus 2 handlebody and denote $A^{\prime}=C l\left(A-B_{3}\right)$ which is a solid torus. Now we choose $c_{2}$. There is a disk bounded by the inner half of $c_{2}, l_{2}$, and the region outside of $c_{3}$. Push this disk inside A slightly deeper than $B_{3}$ to get another 3 ball, $B_{2}$, such that $A^{\prime \prime}=C l\left(A^{\prime}-B_{2}\right)$ still remains a solid torus. Then we glue $B_{2}$ to $H^{\prime}$ to get a solid torus $H^{\prime \prime}=H^{\prime} \cup B_{2}$.

Now in a similar manner, $\operatorname{dig} B_{1}$ deeper than $B_{2}$ so that $A^{\prime \prime \prime}=C l\left(A^{\prime \prime}-\right.$ $B_{1}$ ) remains a solid torus and glue $B_{1}$ to $H^{\prime \prime}$ to get $H^{\prime \prime \prime}$ as a solid 3 ball. Thus, these attachments make $H^{\prime \prime \prime} \cup A^{\prime \prime \prime}$ a single solid torus where $a$ can be considered as its core. Thus, when $A$ and $R$ are glued together to form $S^{3}, a \cup r$ forms a Hopf link.

Case 1 (c). In Case 1, we can always switch the roles of $c_{1}$ and $c_{3}$. Thus, if $c_{2}$ and $c_{1}$ are both inside the disk bounded by $c_{3}$, we will get the same result as in $1(\mathrm{~b})$.

Case 2: When one $c_{i}$ is essential and the others inessential
When one $c_{i}$ is an essential curve on $\partial A$, the essential loop $c_{i}$ may be any $(p, q)$ curve on the surface of $A$. In this situation we further get the following subcases depending on which $c_{i}$ is essential and which $c_{i}$ 's are
inessential. In this case, too, we can switch the roles of $c_{1}$ and $c_{3}$ without affecting the result.

Case 2(a). Suppose $c_{1}$ is essential and $c_{2}$ and $c_{3}$ inessential. In this case, $c_{3}$ bounds a disk in $\partial A$. As before, we create a small ball, $B_{3}$, pushing down the disk a little bit such that the closure of $A-B_{3}$ is still a solid torus. We glue this ball to $H$ to get $H^{\prime}$ which will be a genus 2 handlebody. Now push the disk bounded by $c_{2}$ slightly deeper than $B_{3}$ and get another ball, $B_{2}$. We will create this ball taking care that the closure of $A^{\prime}-B_{2}$ is still a solid torus $A^{\prime \prime}$ where $A^{\prime}=C l\left(A-B_{3}\right)$. Then we glue $B_{2}$ to $H^{\prime}$ in the boundary of $C_{2}$ to get $H^{\prime \prime}$ which will become a solid torus now. Since $c_{1}$ in this solid torus is a $(p, q)$ curve on $\partial A$, we create a tubular neighborhood $B_{1}$ of $c_{1}$ in $A^{\prime \prime}$ such that $C l\left(A^{\prime \prime}-B_{1}\right)$ still remains a solid torus. Then we can glue two solid tori, ( $H^{\prime \prime}$ and $A^{\prime \prime \prime}=$ $\left.\operatorname{cl}\left(A^{\prime \prime}-B_{1}\right)\right)$, together along a longitudinal annulus in their boundaries to get another solid torus. Thus, in this new solid torus, we can take $a$ as its core and hence we get $a \cup r$, a Hopf link.


Figure 8. When $c_{1}$ is an essential curve on $\partial A$

Case 2(b). Suppose $c_{2}$ is essential and $c_{1}$ and $c_{3}$ inessential. Then both $c_{1}$ and $c_{3}$ bound a disk in $\partial A$. We create balls $B_{1}$ and $B_{3}$ inside $A$ from $c_{1}$ and $c_{3}$, respectively, through these disks and attach them to $H$ one by one in $C_{1}$ and $C_{3}$, respectively. Then we get $H^{\prime \prime}=H \cup B_{1} \cup B_{3}$ which will be a solid torus with $c_{2}$ as its longitude and $A^{\prime \prime}=C l\left(A-\left(B_{1} \cup B_{3}\right)\right)$ a solid torus if we create $B_{1}$ and $B_{3}$ thin enough to leave $A$ as a solid torus after we take them out.

Now creating a small tubular neighborhood of $c_{2}$ in $A^{\prime \prime}$ and gluing it to $H^{\prime \prime}$ through this neighborhood (which is a solid torus), we see that $A \cup H$ is a solid torus because the gluing of two solid tori together along their longitudes always gives a solid torus and the attractor $a$ can be considered as its core. Therefore, $a \cup r$ is a Hopf link.

Case 2(c). Suppose $c_{3}$ is essential and $c_{1}$ and $c_{2}$ are inessential, but $c_{3}$ lies inside the disk bounded by $c_{2}$. This case cannot happen.

## Case 3: When two $c_{i}$ 's are essential and one inessential

We consider the following three subcases here.
Case 3(a). If $c_{1}$ and $c_{2}$ are essential and $c_{3}$ inessential, then $c_{3}$ bounds a disk. We push the disk inside $A$ to make a ball, $B_{3}$, and attach this ball to the annulus, $C_{3}$, as we did in the previous cases. Then $H \cup B_{3}$ becomes a genus 2 handlebody, whereas $A-B_{3}$ still remains a solid torus. Also $c_{1}, c_{2}$, and $l_{1}$ on the two sides form (bound) a disk in $\partial A$. Now we will take this disk and shrink it a little bit away from $l_{1}$ such that its closure remains a disk. Push this new disk slightly inside $A$ and create a thin solid ball, $B_{1}$, such that $A-\left(B_{1} \cup B_{3}\right)$ still remains a solid torus. Then we glue $B_{1}$ to $H \cup B_{3}$ and get $H^{\prime \prime}=H \cup B_{3} \cup B_{1}$, a solid torus. Now from the $(p, q)$ curve $c_{2}$ in $\partial A$, we take out the tubular neighborhood of $c_{2}$ which is a solid torus such that $A^{\prime \prime}=A-\left(B_{1} \cup B_{2} \cup B_{3}\right)$ still remains a solid torus. Here $B_{2}$ is the tubular neighborhood of $c_{2}$. Then we glue $A^{\prime \prime}$ and $H^{\prime \prime}$ to get $A^{\prime \prime} \cup H^{\prime \prime}$, a solid torus. Thus, we get $A \cup H$, a solid torus where $a$ can be considered as its core. Therefore, $a \cup r$ is a Hopf link.


Figure 9. When $c_{1}$ and $c_{2}$ are essential curves on $\partial A$
Case 3(b). If $c_{1}$ and $c_{3}$ are essential and $c_{2}$ inessential, then the essential curve $c_{3}$ cannot be placed inside the disk bounded by $c_{2}$. Thus, this case cannot happen.

Case 3(c). If $c_{2}$ and $c_{3}$ are essential and $c_{1}$ inessential, we can switch the roles of $c_{1}$ and $c_{3}$ in $3(\mathrm{a})$. Therefore, the result will be same as in case 3(a).

Case 4: When all $c_{i}$ 's are essential
If all $c_{i}$ 's are essential, they must be the parallel $(p, q)$ curves. In this case we will try to find the fundamental group of $A \cup H$ by using the Seifert-van Kampen theorem (see [15]). Since the gluing work is done between $\partial A$ and the exit set of $H$, we will use the generators of the
exit set and $H$ to compute the fundamental group. Figure 10 gives the generators for the exit set and for $H$.


Figure 10. Generators of the exit set and $H$

By using the Seifert-van Kampen theorem, the fundamental group of $A \cup H$ is given by

$$
\pi_{1}(A \cup H)=\left\{a, x, y, z \mid a^{p}=z, a^{p}=y z x^{-1}, a^{p}=x y^{-1} x^{-1} y x^{-1}\right\}
$$

Using a Tietze transformation (see [10]), we can get

$$
\begin{equation*}
\pi_{1}(A \cup U)=\left\{a, x \mid a^{p} x a^{p} x^{-1} a^{-p} x a^{p} x a^{-p} x^{-1}=1\right\} \tag{1}
\end{equation*}
$$

Now we use R. H. Fox's free differential calculus [5] (see also [10]) and find the Alexander polynomial of (1) which is given by $\Delta(t)=2 t^{p}-t^{2 p}-$ $1+t^{-1}$.

But this can only be the Alexander polynomial of a knot when $p=0$. Thus, $\pi_{1}(A \cup H)$ is infinite cyclic. Hence, the repeller $r$ is an unknot and $A \cup H$ is a solid torus.

Next we see what we will get if we glue $H$ to the tubular neighborhood $R$ of the repeller through the entrance set of $H$. This will give us an idea about the attractor.

The generators of the entrance set are shown in Figure 11.
Using the Seifert-van Kampen theorem we can find the fundamental group of $R \cup H$ as follows:

$$
\pi_{1}(R \cup H)=\left\{r, x, y, z \mid r=x, r=z^{-1} y z, r=z^{-1} y^{-1} x^{-1} y z^{-1} y^{-1} x y z\right\}
$$

A calculation shows that $\pi_{1}(H \cup R)$ is isomorphic to the knot group of a figure-8 knot.


Figure 11. Generators of entrance set $E_{n}$
In Figure 12 we construct a realization where indeed the attractor $a$ is a figure- 8 knot. By the Gordon-Luecke theorem [11] this is the only possibility for $a$. Since $p=0, r$ is a meridian of $A$. It follows that the three boundary orbits in the saddle set are unknotted and unlinked. Of course the roles of $a$ and $r$ can be switched by flow reversal.


Figure 12. Realization of Case 4 with figure- 8 knot attractor

Theorem 3.2. For a simple Smale flow on $S^{3}$ with the saddle set modeled by $H^{+}$, the link $a \cup r$ is a Hopf link.
Proof. Let $H^{+}$denote the template shown in Figure 13. Let us also denote by $H^{+}$the thickened template as we did in the previous theorem. In this case, too, the exit set $E_{x}$ is divided into three annuli and two rectangular strips. The thickened template is shown in Figure 13 and the exit sets are shown in Figure 14.


Figure 13. Template $H^{+}$and thickened template


Figure 14. Exit set and exit set configuration
Let $C_{1}, C_{2}$, and $C_{3}$ denote the three annuli and $L_{1}$ and $L_{2}$ the two rectangular strips. The core of the exit set is thus partitioned into three loops $c_{1}, c_{2}$, and $c_{3}$ and two line segments $l_{1}$ and $l_{2}$. Let $A$ be the tubular neighborhood of the attractor $a$ and let $R$ be the tubular neighborhood of the repeller $r$. As in the previous case, we glue the boundary of $A$ into
the exit set $E_{x}$ and get $A \cup H^{+}$. Then we glue it to $R$ to get $S^{3}$. The only configuration for the exit set is $l_{1}$, and $l_{2}$ must attach to the same side of $c_{2}$ and the only allowed structure is $\bigcirc$.

Exactly the way we did in the previous theorem, we divide the proof into different cases depending on how many $c_{i}$ 's are essential in $\partial A$.

## Case 1: When all $c_{i}$ 's are inessential in $\partial A$

If we look at the exit set of $H^{+}$, we can see that $c_{2}$ in $\partial A$ cannot bound a disk in $\partial A$ because it links a closed orbit of the saddle set. Hence, we cannot attach any disk or ball to it. Thus, this case cannot happen.

Case 2: When one $c_{i}$ is essential and the other two inessential
If only one $c_{i}$ is essential, it must be $c_{2}$ because only $c_{2}$ cannot bound a disk and thus $c_{1}$ and $c_{3}$ must be inessential curves on $\partial A$. So $c_{1}$ and $c_{3}$ bound a disk in $\partial A$. Push these disks inside $A$ a little bit to get two balls, $B_{1}$ and $B_{3}$, such that $A-\left(B_{1} \cup B_{3}\right)$ still remains a solid torus. Then attach these balls to annuli $C_{1}$ and $C_{3}$, respectively. Then $H^{+\prime \prime}=\left(H^{+} \cup B_{1}\right) \cup B_{3}$ becomes a solid torus and $A^{\prime \prime}=C l\left(A-\left(B_{1} \cup B_{3}\right)\right)$ also becomes a solid torus. Then we can take the tubular neighborhood of $c_{2}$ in $H^{+\prime \prime}$ which is a solid torus and attach this solid torus to $A^{\prime \prime}$ along the $(p, q)$ annulus $C_{2}$. This will give us $A^{\prime \prime} \cup H^{+\prime \prime}$, a solid torus where $a$ can be considered as its core. Thus, $a \cup r$ is a Hopf link.

Case 3: When two $c_{i}$ 's are essential and one inessential
Suppose two $c_{i}$ 's are essential. Then we will have the following subcases.

Case 3(a). Suppose $c_{1}$ and $c_{2}$ are essential and $c_{3}$ inessential. Since $c_{3}$ is inessential, create a thin solid ball, $B_{3}$, as before and attach it to $C_{3}$. Thus, $H^{+\prime}=H^{+} \cup B_{3}$ becomes a genus 2 handlebody. Now choose the disk bounded by the curves $c_{1}, l_{1}$, and $c_{2}$ and shrink it a little bit so that its closure is still a disk. Push this disk inside $A^{\prime}=A-B_{3}$ slightly to create a thin solid ball, $B_{1}$. Attach this solid ball to $C_{1}$ such that the resulting $H^{+\prime \prime}=H^{+} \cup B_{3} \cup B_{1}$ becomes a solid torus. Now since $c_{2}$ is a $(p, q)$ curve, take the tubular neighborhood of $c_{2}$ and attach it to the annulus $C_{2}$ to make $A \cup H^{+}$a solid torus at the end. Thus, we get $a \cup r$, a Hopf link.

Case 3(b). Suppose $c_{2}$ and $c_{3}$ are essential and $c_{1}$ inessential. We can exchange the roles of $c_{1}$ and $c_{3}$ in $3(\mathrm{a})$. This does not make any difference. We will get $a \cup r$, a Hopf link, in this case, too. The proof exactly follows the same process as in $3(\mathrm{a})$.

Case 3(c). Suppose $c_{1}$ and $c_{3}$ are essential and $c_{2}$ inessential. But $c_{2}$ cannot bound a disk. So this case cannot happen.

Case 4: When all $c_{i}$ 's are essential

If all $c_{i}$ 's are essential on $\partial A$, then all of these are parallel $(p, q)$ curves on $\partial A$. We find the fundamental group of $A \cup H^{+}$using the Seifert-van Kampen theorem as we did in Theorem 3.1. Since the gluing of the exit set is done with $\partial A$, we find the generators of the exit set and then glue $H^{+}$and $A$ together through the exit set. The generators of $H^{+}$and the exit set are given in Figure 15.


Figure 15. Generators of the exit set and $H^{+}$
The diagram of the exit set is the same as in Theorem 3.1 except for the crossing. So we get the same set of generators for $H^{+}$and for the exit set. This gives us the same fundamental group of $A \cup H^{+}$when we apply the Seifert-van Kampen theorem. As before, using Fox's free differential calculus, the Alexander polynomial of $A \cup H^{+}$is $\Delta(t)=2 t^{p}-t^{2 p}-1+t^{-1}$ which gives a knot structure only when $p=0$.

But when $p=0$, we get $c_{2}$ an $(0, q)$ curve and, similarly, two other essential curves. Since $c_{2}$ cannot bound a disk, $c_{2}$ cannot be a $(0, q)$ curve. Because of this, the case cannot exist. Thus, the only possible cases for the Smale flows on $S^{3}$ with the saddle set modeled by $H^{+}$are cases 2 and 3 where the only possible structure for $a \cup r$ is a Hopf link.

## References

[1] Joan S. Birman and R. F. Williams, Knotted periodic orbits in dynamical systems I: Lorenz's equations, Topology 22 (1983), no. 1, 47-82.
[2] __ Knotted periodic orbits in dynamical system II: Knot holders for fibered knots in Low-dimensional Topology (San Francisco, Calif., 1981). Ed. Samuel J. Lomonaco, Jr. Contemporary Mathematics, 20. Providence, RI: Amer. Math. Soc., 1983. 1-60.
[3] Robert L. Devaney, An Introduction to Chaotic Dynamical Systems. 1989. Studies in Nonlinearity. Boulder, CO: Westview Press, 2003.
[4] Douglas Lind and Brian Marcus, An Introduction to Symbolic Dynamics and Coding. Cambridge: Cambridge University Press, 1995.
[5] R. H. Fox, A quick trip through knot theory in Topology of 3-Manifolds and Related Topics (Proc. The Univ. of Georgia Institute, 1961). Ed. M. K. Fort, Jr. Englewood Cliffs, N.J.: Prentice-Hall, 1962. 120-167.
[6] John M. Franks, Non-singular flows on $S^{3}$ with hyperbolic chain-recurrent set, Rocky Mountain J. Math. 7 (1977), no. 3, 539-546.
[7] John Franks and Michael C. Sullivan, Flows with knotted closed orbits in Handbook of Geometric Topology. Ed. R. J. Daverman and R. B. Sher. Amsterdam: North-Holland, 2002. 471-497.
[8] Robert W. Ghrist, Branched two-manifolds supporting all links, Topology 36 (1997), no. 2, 423-448.
[9] Robert W. Ghrist, Philip J. Holmes, and Michael C. Sullivan, Knots and Links in Three-Dimensional Flows. Lecture Notes in Mathematics, 1654. Berlin: SpringerVerlag, 1997.
[10] N. D. Gilbert and T. Porter, Knots and Surfaces. Oxford Science Publications. New York: The Clarendon Press, Oxford University Press, 1994.
[11] C. McA. Gordon and J. Luecke, Knots are determined by their complements, Bull. Amer. Math. Soc. (N.S.) 20 (1989), no. 1, 83-87.
[12] Allen Hatcher, Notes on basic 3-manifold topology. Course notes available at http://www.math.cornell.edu/ hatcher/3M/3Mdownloads.html
[13] Elizabeth L. Haynes and Michael C. Sullivan, Simple Smale flows with a four band template, Topology Appl. 177 (2014), 23-33.
[14] John W. Morgan, Nonsingular Morse-Smale flows on 3-dimensional manifolds, Topology 18 (1979), no. 1, 41-53.
[15] James R. Munkres, Topology. 2nd. ed. Upper Saddle River, NJ: Prentice Hall, 2000.
[16] Michael C. Sullivan, The prime decomposition of knotted periodic orbits in dynamical systems, J. Knot Theory Ramifications 3 (1994), no. 1, 83-120.
[17] , Visually building Smale flows in $S^{3}$, Topology Appl. 106 (2000), no. 1, 1-19.
[18] _, Nonsingular Smale flows in the 3-sphere with one attractor and one repeller, Topology Proc. 38 (2011), 17-27.
[19] Masaaki Wada, Closed orbits of nonsingular Morse-Smale flows on $S^{3}$, J. Math. Soc. Japan 41 (1989), no. 3, 405-413.
[20] R. F. Williams, The structure of Lorenz attractors in Turbulence Seminar (Univ. Calif., Berkeley, Calif., 1976/1977). Ed. Peter Bernard and Tudor Ratiu. Lecture Notes in Mathematics, Vol. 615. Berlin: Springer, 1977. 94-112.
[21] , The universal templates of Ghrist, Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 2, 145-156.
[22] Bin Yu, Lorenz like Smale flows on three-manifolds, Topology Appl. 156 (2009), no. 15, 2462-2469.

Department of Mathematics (4408); Southern Illinois University; Carbondale, IL 62901

E-mail address, Adhikari: kadhikari@siu.edu
E-mail address, Sullivan: msulliva@math.siu.edu


[^0]:    2010 Mathematics Subject Classification. Primary 37D20; Secondary 37D05, 37D45, 57M $25,57 \mathrm{M} 05$.

    Key words and phrases. attractors, flows, knots, repellers, template.
    © 2016 Topology Proceedings.

