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FURTHER STUDY OF SIMPLE SMALE FLOWS USING
FOUR BAND TEMPLATES

KAMAL M. ADHIKARI AND MICHAEL C. SULLIVAN

Abstract. In this paper, we discuss how to realize a nonsingular
Smale flow with a four band template on a 3-sphere. This extends
the work done by Michael C. Sullivan on Lorenz Smale flows and
by Bin Yu on realizing Lorenz like Smale flows on 3-manifolds,
and continues the work of Elizabeth L. Haynes and Sullivan on
realizing simple Smale flows with a different four band template on
a 3-sphere.

1. Introduction

A nonsingular Smale flow on a 3-manifold M is a structurally sta-
ble flow with a 1-dimensional chain recurrent set. A chain recurrent set
consists of a finite number of disjoint basic sets which are compact and
transitive. A basic set may be an attractor, a repeller, or a saddle set. We
study the realizations of a nonsingular Smale flow when the saddle set is
modeled by a four band template and this extends the work done in [13].
A template is a compact branched 2-manifold with boundary which has
a smooth semiflow and is built locally from two types of charts, joining
and splitting. The most popular template is a Lorenz template which was
introduced by R. F. Williams [20] to study the Lorenz attractor. Joan S.
Birman and Williams [2] proved the template theorem which says that in
Smale flow, the chaotic saddle set can be represented by a template and
any knot type of the periodic orbits can be studied within a template.

In the past, much work has been done to realize Smale flows using
templates. Michal C. Sullivan studied a special type of nonsingular Smale
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flow (NSF) on S3 by using a Lorenz template [17]. Bin Yu [22] discussed
the realizations of a nonsingular Smale flow by using Lorenz-like templates
and extended the work done by Sullivan in [17]. Elizabeth L. Haynes and
Sullivan studied the Smale flows on S3 modeled by a four band template
[13]. Here, we discuss how to realize nonsingular Smale flows on S3 when
the saddle set of the flow is modeled by a four band template different
from the template used in [13]. This makes a further extension of [13] and
we hope that this work will add one more point for the detailed study of
NSFs on 3-manifolds.

2. Background

Definition 2.1. A flow on a manifoldM is a continuous function φt:M×
R→M such that φt(p, 0) = p, for all p ∈M and φt(φt(p, s), t) = φt(p, s+
t), for all p ∈M, t ∈ R.

An orbit of a point p ∈M is given by O(p) = {q ∈M | q = φt (p, t), t ∈
R} where φt is a flow map. A set Λ ⊂ M is called an invariant set for a
flow φt if φt(Λ, t) = Λ for all t ∈ R. An invariant set Λ ⊂ M is said to
be hyperbolic or to have a hyperbolic structure if the tangent bundle of
M restricted to Λ splits into three sub-bundles, namely stable bundles,
unstable bundles, and center of the flow, each of which is invariant under
Dφt for all t.

Definition 2.2. Let X be a subset of a hyperbolic invariant set Λ of a
flow φt on M . Then the stable and unstable manifolds of X in M are
given by
W s(X) = {y ∈M | limt→∞ ||φt(x)− φ(y)|| = 0}
Wu(X) = {y ∈M | limt→−∞ ||φt(x)− φ(y)|| = 0} for all x ∈ X.

Definition 2.3. A point x ∈M is chain recurrent for a flow φt if, for any
ε > 0, there exists a sequence of points {x = x1, x2, ....., xn = x} and real
numbers{t1, t2, ....., tn − 1} such that ti > 1 and ||φti(xi)− xi+1|| < ε for
all 1 ≤ i ≤ n− 1. The chain recurrent set is the set of all chain recurrent
points on M .

According to Smale’s theorem, if the flow is hyperbolic on its chain re-
current set, the chain recurrent set is the disjoint union of basic sets where
each basic set is closed, invariant, contains a dense orbit, and the periodic
orbits form a dense subset. A basic set may be an attractor, repeller,
or saddle set. For a nonsingular Smale flow, attractors and repellers are
necessarily isolated closed orbits. A basic saddle set may be an isolated
closed orbit or the suspension of a non-trivial shift of finite type [3], [4].
For the latter case, we say the saddle set is chaotic. A chaotic saddle set
can be modeled by a template.
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Definition 2.4. A given flow φt on a manifoldM is called aMorse–Smale
flow if

(1) the chain recurrent set is hyperbolic,
(2) each basic set consists of a single closed orbit or fixed point, and
(3) the stable and unstable manifolds of basic sets meet transversally.

Definition 2.5. A given flow φt on a manifold M is called a Smale flow
if

(1) the chain recurrent set is hyperbolic,
(2) the stable and unstable manifolds of any two orbits in the chain

recurrent set meet transversally, and
(3) each basic set is zero or one dimensional.

A Lorenz Smale flow is a Smale flow with three basic sets: an attracting
closed orbit, a repelling closed orbit, and a nontrivial saddle set modeled
by a Lorenz template. A Lorenz-like Smale flow is a Smale flow with an
attracting closed orbit, a repelling closed orbit, and a nontrivial saddle
set modeled by Lorenz-like templates. Similarly, we can study any Smale
flow by taking a template model of its saddle set.

Next we review some useful concepts of knot theory. Detail can be
found in [10] and [9]. Our intention is to study the knot type within a
template and to get the linking structure of the attractor and the repeller
for the flow. A knot is an embedding of S1 into S3. We can say it is a
curve in three-dimensional Euclidean space, R3, homeomorphic to a circle
S1. Two knots are said to be equivalent if there is an isotopy of S3 taking
one into another. All isotopic knots are of the same knot type. A knot
group is the fundamental group of complement of the knot in S3. The
core of a solid torus can be considered as an unknot and the knot group
of an unknot is infinite cyclic. A link of n components is an embedding
of n-disjoint copies of S1 into S3. A knot can be given an orientation
whenever it is necessary. For the link, we can assign a linking number
observing the orientations of the two knots at the crossing. A Hopf link
always has the linking number ±1.

For any Smale flow with single attracting and repelling orbits and with
a saddle set Λ, the linking number of the attractor-repeller link can be
determined by using a structure matrix of the saddle set [6] where the
structure matrix can be determined by using a Markov partition of the
saddle set Λ.

Theorem 2.6 ([17, Theorem 9]). For a Lorenz-Smale flow in S3, the
following and only the following configurations are realizable. The link
a ∪ r is either a Hopf link or a trefoil and meridian. In the latter case,
the saddle set is modeled by a standardly embedded Lorenz template; i.e.,
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both bands are unknotted, untwisted, and unlinked, with the core of each
band a meridian of the trefoil component of a ∪ r. In the former case
there are three possibilities: (1) The saddle set is standardly embedded.
(2) One band is twisted with n full-twists for any n but remains unknotted
and unlinked to the other band, which must be unknotted and untwisted.
(3) One band is a (p, q) torus knot for any pair of coprime integers with
twist p + q − 1. The other band is unknotted, untwisted, and unlinked to
the knotted one.

The proof for the above can be found in [17] and for the below in [22].

Theorem 2.7 ([22, Theorem 1]). For an L(0, 1) Lorenz-like Smale flow
on S3 the following and only the following configurations are realizable.
The link a∪r is either a Hopf link or a trefoil and meridian. In the latter
case the saddle set is modeled by a standard embedded L(0, 1) Lorenz-like
template; i.e., the saddle set is modeled by embedded L(0, 1) and the cores
of both bands are unknotted and unlinked to each other. In the former case,
there are three possibilities: (1) The saddle set is standardly embedded.
(2) The saddle set is modeled by embedded L(2p + 2q − 2, 2p + 2q − 1).
The cores of two bands are two parallel (p, q) torus knots where p and
q are any coprime integers. (3) The saddle set is modeled by embedded
L(0, 2p+ 2q − 1). The core of the twisted band is a (p, q) torus knot; the
core of the other band is unknotted and unlinked with the former one.

Theorem 2.8 ([22, Theorem 2]). For an L(1, 1) Lorenz-like Smale flow
on S3 the following and only the following configurations are realizable.
The link a ∪ r is a link which is composed of a trivial knot and a (p, 3)
torus knot in the boundary of a solid torus neighborhood of the trivial knot
where p is any integer such that p and 3 are coprime. The saddle set is
modeled by embedded L(2n+ 1, 4n+ 1) for any n. The linking number of
the cores of these two bands is 2n, the core of one knot is unknotted, and
the core of the other band is a (2, 2n+ 1) torus knot.

The Lorenz template and the Lorenz-like templates in theorems 2.6, 2.7,
and 2.8 are shown in Figure 1.

L(0,0) L(0,1) L(1,1)

Figure 1. Lorenz template L(0, 0) and Lorenz-like tem-
plates L(0, 1) and L(1, 1).
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Theorem 2.9 ([13, Theorem 4.1]). For a simple Smale flow on S3 with
saddle set modeled by U , the link a ∪ r is either a Hopf link or a figure-8
knot and meridian. In the latter case the bands are untwisted, unknotted,
and unlinked. In the Hopf link case, one or two bands may form (p, q)
torus knots about a or r; however, the two looped bands in the template
U cannot both be knotted, twisted, or linked.

Figure 2. Template U .

The proof of the above theorem is given in [13].
Observing the above theorems, there is an obvious question to ask if

we could use some more template models to study the Smale flow and
extend the existing theorems: What could the pair a∪ r be for the simple
Smale flow if we could model the saddle set with the thickened version of
some other possible templates? We can see in the proofs of all of the above
theorems that the isolating neighborhood of a saddle set is represented by
a thickened version of its respective templates. The exit set and entrance
set of the thickened template are glued, respectively, to the attractor and
repeller to obtain S3. To prove the following theorems we use a similar
concept which extends the previous theorems one step further.

3. Realizing an NSF with a Four Band Template

Theorem 3.1. For a simple Smale flow on S3 with the saddle set modeled
by H, the link a∪r is either a Hopf link or a figure-8 knot and its meridian.
In the latter case the saddle set is modeled by a standardly embedded
template H (see Figure 3) where the bands are untwisted, unlinked, and
unknotted. In the Hopf link case, either (a) the saddle set is a standardly
embedded template or (b) one or two bands may form a (p, q) torus knot
about a or r but none of the bands can be twisted, knotted, or linked.
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Figure 3. Template H

Proof. The thickened template is a genus 3 handlebody as shown in Figure
4. We still call this H throughout the proof. The exit set is shown in
Figure 4.

Figure 4. Thickened template and the exit set of H

We denote the exit set by Ex; from Figure 5, we can see that the exit
set is divided into three annuli and two rectangular strips. Let the annuli
be C1, C2, and C3 and the rectangular strips L1 and L2. Thus, the core
of the exit set is partitioned into three loops c1, c2, and c3 and two line
segments l1 and l2.

If we denote A as the tubular neighborhood of an attractor and R as
the tubular neighborhood of a repeller, the boundary of A is glued into
the exit set Ex and then the boundary ∂R is attached to the boundary of
A ∪H to get A ∪H ∪R which is S3.
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l2
c1

c2
c3

l1

Figure 5. Exit set configuration

If we look at the exit set in Figure 5, we can see that the only allowed
configuration, l1 and l2, must attach to opposite sides of c2 and the struc-
ture ©−©−© is not allowed. We look at various cases based on how many
ci’s are essential in ∂A. We can exchange the roles of c1 and c3 without
loss of generality. For the discussion now, we assume that c3 lies inside
the disk bounded by c2 and that c1 lies outside that disk.

Case 1: When all ci’s are inessential in ∂A
We can further divide this case into two subcases depending on whether

c2 and c3 both lie inside the disk bounded by c1 or not.
Case 1(a). If they don’t lie inside the disk bounded by c1, then they

lie on ∂A as shown in Figure 6. The loop c1 in this case bounds a different
disk in ∂A as does c3. We can slightly push the disks inside A to create
solid balls B1 and B3, respectively, such that if we take these balls out,
the closure of A− (B1 ∪B3) still remains a solid torus.

c1

c2

c3
l1

l2

c1

c2

c3
B1

B2

B3

Figure 6. Inessential curves on the surface of A

Let us denote A′ = Cl(A − (B1 ∪ B3)) and H ′ = H ∪ B3 where the
gluing is done in the annulus C3 and denote H ′′ = H ′ ∪ B1 where the
gluing is done in C1. Now H ′′ is a solid torus. We can further push down
the disk bounded by c2 to create a ball B2 by pushing down deeper than
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B3 such that Cl(A′ −B2) still remains a solid torus. Then if we glue B2

to C2 to get H ′′′, we will get H ′′′ as a solid 3 ball, the result of which
makes A ∪H a single solid torus where a can be taken as its core. Thus,
we get a ∪ r, a Hopf link.

Case 1(b). If c2 and c3 lie inside the disk bounded by c1, then they
lie in ∂A as shown in Figure 7.

c1

c2

c3

B1

B2

B3

c1
c2
c3

Figure 7. When c2 and c3 lie inside the disk bounded
by c1 on ∂A.

As above, c3 bounds a disk in ∂A. Push this disk slightly inside A to
get a ball B3. Attach B3 to H at C3. While creating B3, care is taken
that the closure of A−B3 still remains a solid torus. Once we attach B3

to C3, denote H ′ = H ∪ B3 which is a genus 2 handlebody and denote
A′ = Cl(A−B3) which is a solid torus. Now we choose c2. There is a disk
bounded by the inner half of c2, l2, and the region outside of c3. Push
this disk inside A slightly deeper than B3 to get another 3 ball, B2, such
that A′′ = Cl(A′ − B2) still remains a solid torus. Then we glue B2 to
H ′ to get a solid torus H ′′ = H ′ ∪B2.

Now in a similar manner, dig B1 deeper than B2 so that A′′′ = Cl(A′′−
B1) remains a solid torus and glue B1 to H ′′ to get H ′′′ as a solid 3 ball.
Thus, these attachments make H ′′′ ∪A′′′ a single solid torus where a can
be considered as its core. Thus, when A and R are glued together to form
S3, a ∪ r forms a Hopf link.

Case 1(c). In Case 1, we can always switch the roles of c1 and c3.
Thus, if c2 and c1 are both inside the disk bounded by c3, we will get the
same result as in 1(b).

Case 2: When one ci is essential and the others inessential
When one ci is an essential curve on ∂A, the essential loop ci may be

any (p, q) curve on the surface of A. In this situation we further get the
following subcases depending on which ci is essential and which ci’s are
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inessential. In this case, too, we can switch the roles of c1 and c3 without
affecting the result.

Case 2(a). Suppose c1 is essential and c2 and c3 inessential. In this
case, c3 bounds a disk in ∂A. As before, we create a small ball, B3,
pushing down the disk a little bit such that the closure of A−B3 is still
a solid torus. We glue this ball to H to get H ′ which will be a genus 2
handlebody. Now push the disk bounded by c2 slightly deeper than B3

and get another ball, B2. We will create this ball taking care that the
closure of A′ −B2 is still a solid torus A′′ where A′ = Cl(A−B3). Then
we glue B2 to H ′ in the boundary of C2 to get H ′′ which will become a
solid torus now. Since c1 in this solid torus is a (p, q) curve on ∂A, we
create a tubular neighborhood B1 of c1 in A′′ such that Cl(A′′−B1) still
remains a solid torus. Then we can glue two solid tori, (H ′′ and A′′′ =
cl(A′′ − B1)), together along a longitudinal annulus in their boundaries
to get another solid torus. Thus, in this new solid torus, we can take a as
its core and hence we get a ∪ r, a Hopf link.

c2
c3

c1

A

B1

B2

B3

Figure 8. When c1 is an essential curve on ∂A

Case 2(b). Suppose c2 is essential and c1 and c3 inessential. Then
both c1 and c3 bound a disk in ∂A. We create balls B1 and B3 inside A
from c1 and c3, respectively, through these disks and attach them toH one
by one in C1 and C3, respectively. Then we get H ′′ = H ∪B1 ∪B3 which
will be a solid torus with c2 as its longitude and A′′ = Cl(A− (B1 ∪B3))
a solid torus if we create B1 and B3 thin enough to leave A as a solid
torus after we take them out.

Now creating a small tubular neighborhood of c2 in A′′ and gluing it to
H ′′ through this neighborhood (which is a solid torus), we see that A∪H
is a solid torus because the gluing of two solid tori together along their
longitudes always gives a solid torus and the attractor a can be considered
as its core. Therefore, a ∪ r is a Hopf link.
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Case 2(c). Suppose c3 is essential and c1 and c2 are inessential, but
c3 lies inside the disk bounded by c2. This case cannot happen.

Case 3: When two ci’s are essential and one inessential
We consider the following three subcases here.

Case 3(a). If c1 and c2 are essential and c3 inessential, then c3 bounds
a disk. We push the disk inside A to make a ball, B3, and attach this ball
to the annulus, C3, as we did in the previous cases. Then H∪B3 becomes
a genus 2 handlebody, whereas A − B3 still remains a solid torus. Also
c1, c2, and l1 on the two sides form (bound) a disk in ∂A. Now we will
take this disk and shrink it a little bit away from l1 such that its closure
remains a disk. Push this new disk slightly inside A and create a thin
solid ball, B1, such that A − (B1 ∪ B3) still remains a solid torus. Then
we glue B1 to H ∪ B3 and get H ′′ = H ∪ B3 ∪ B1, a solid torus. Now
from the (p, q) curve c2 in ∂A, we take out the tubular neighborhood of
c2 which is a solid torus such that A′′= A− (B1∪B2∪B3) still remains a
solid torus. Here B2 is the tubular neighborhood of c2. Then we glue A′′
and H ′′ to get A′′ ∪H ′′, a solid torus. Thus, we get A ∪H, a solid torus
where a can be considered as its core. Therefore, a ∪ r is a Hopf link.

1

l1

c c2

l2

c3

Figure 9. When c1 and c2 are essential curves on ∂A

Case 3(b). If c1 and c3 are essential and c2 inessential, then the
essential curve c3 cannot be placed inside the disk bounded by c2. Thus,
this case cannot happen.

Case 3(c). If c2 and c3 are essential and c1 inessential, we can switch
the roles of c1 and c3 in 3(a). Therefore, the result will be same as in case
3(a).

Case 4: When all ci’s are essential
If all ci’s are essential, they must be the parallel (p, q) curves. In this

case we will try to find the fundamental group of A ∪ H by using the
Seifert–van Kampen theorem (see [15]). Since the gluing work is done
between ∂A and the exit set of H, we will use the generators of the
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exit set and H to compute the fundamental group. Figure 10 gives the
generators for the exit set and for H.

x

y
z

Figure 10. Generators of the exit set and H

By using the Seifert–van Kampen theorem, the fundamental group of
A ∪H is given by

π1(A ∪H) = {a, x, y, z | ap = z, ap = yzx−1, ap = xy−1x−1yx−1}.

Using a Tietze transformation (see [10]), we can get

(1) π1(A ∪ U) = {a, x | apxapx−1a−pxapxa−px−1 = 1}.

Now we use R. H. Fox’s free differential calculus [5] (see also [10]) and
find the Alexander polynomial of (1) which is given by ∆(t) = 2tp− t2p−
1 + t−1.

But this can only be the Alexander polynomial of a knot when p = 0.
Thus, π1(A∪H) is infinite cyclic. Hence, the repeller r is an unknot and
A ∪H is a solid torus.

Next we see what we will get if we glue H to the tubular neighborhood
R of the repeller through the entrance set of H. This will give us an idea
about the attractor.

The generators of the entrance set are shown in Figure 11.
Using the Seifert–van Kampen theorem we can find the fundamental

group of R ∪H as follows:

π1(R ∪H) = {r, x, y, z | r = x, r = z−1yz, r = z−1y−1x−1yz−1y−1xyz}.

A calculation shows that π1(H ∪R) is isomorphic to the knot group of
a figure-8 knot.
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Figure 11. Generators of entrance set En

In Figure 12 we construct a realization where indeed the attractor a
is a figure-8 knot. By the Gordon–Luecke theorem [11] this is the only
possibility for a. Since p = 0, r is a meridian of A. It follows that the
three boundary orbits in the saddle set are unknotted and unlinked. Of
course the roles of a and r can be switched by flow reversal. �

Attractor
Repeller

Figure 12. Realization of Case 4 with figure-8 knot attractor
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Theorem 3.2. For a simple Smale flow on S3 with the saddle set modeled
by H+, the link a ∪ r is a Hopf link.

Proof. LetH+ denote the template shown in Figure 13. Let us also denote
by H+ the thickened template as we did in the previous theorem. In this
case, too, the exit set Ex is divided into three annuli and two rectangular
strips. The thickened template is shown in Figure 13 and the exit sets
are shown in Figure 14.

Figure 13. Template H+ and thickened template

C1

C3

C2

C1

C2

C3

Figure 14. Exit set and exit set configuration

Let C1, C2, and C3 denote the three annuli and L1 and L2 the two
rectangular strips. The core of the exit set is thus partitioned into three
loops c1, c2, and c3 and two line segments l1 and l2. Let A be the tubular
neighborhood of the attractor a and let R be the tubular neighborhood
of the repeller r. As in the previous case, we glue the boundary of A into
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the exit set Ex and get A ∪ H+. Then we glue it to R to get S3. The
only configuration for the exit set is l1, and l2 must attach to the same
side of c2 and the only allowed structure is ©−©−©.

Exactly the way we did in the previous theorem, we divide the proof
into different cases depending on how many ci’s are essential in ∂A.

Case 1: When all ci’s are inessential in ∂A
If we look at the exit set of H+, we can see that c2 in ∂A cannot bound

a disk in ∂A because it links a closed orbit of the saddle set. Hence, we
cannot attach any disk or ball to it. Thus, this case cannot happen.

Case 2: When one ci is essential and the other two inessential
If only one ci is essential, it must be c2 because only c2 cannot bound

a disk and thus c1 and c3 must be inessential curves on ∂A. So c1 and c3
bound a disk in ∂A. Push these disks inside A a little bit to get two balls,
B1 and B3, such that A−(B1∪B3) still remains a solid torus. Then attach
these balls to annuli C1 and C3, respectively. Then H+′′ = (H+∪B1)∪B3

becomes a solid torus and A′′ = Cl(A− (B1 ∪ B3)) also becomes a solid
torus. Then we can take the tubular neighborhood of c2 in H+′′ which
is a solid torus and attach this solid torus to A′′ along the (p, q) annulus
C2. This will give us A′′ ∪H+′′, a solid torus where a can be considered
as its core. Thus, a ∪ r is a Hopf link.

Case 3: When two ci’s are essential and one inessential
Suppose two ci’s are essential. Then we will have the following sub-

cases.
Case 3(a). Suppose c1 and c2 are essential and c3 inessential. Since

c3 is inessential, create a thin solid ball, B3, as before and attach it to
C3. Thus, H+′ = H+ ∪ B3 becomes a genus 2 handlebody. Now choose
the disk bounded by the curves c1, l1, and c2 and shrink it a little bit so
that its closure is still a disk. Push this disk inside A′ = A− B3 slightly
to create a thin solid ball, B1. Attach this solid ball to C1 such that the
resulting H+′′ = H+ ∪ B3 ∪ B1 becomes a solid torus. Now since c2 is
a (p, q) curve, take the tubular neighborhood of c2 and attach it to the
annulus C2 to make A∪H+ a solid torus at the end. Thus, we get a∪ r,
a Hopf link.

Case 3(b). Suppose c2 and c3 are essential and c1 inessential. We
can exchange the roles of c1 and c3 in 3(a). This does not make any
difference. We will get a ∪ r, a Hopf link, in this case, too. The proof
exactly follows the same process as in 3(a).

Case 3(c). Suppose c1 and c3 are essential and c2 inessential. But
c2 cannot bound a disk. So this case cannot happen.

Case 4: When all ci’s are essential
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If all ci’s are essential on ∂A, then all of these are parallel (p, q) curves
on ∂A. We find the fundamental group of A ∪H+ using the Seifert–van
Kampen theorem as we did in Theorem 3.1. Since the gluing of the exit
set is done with ∂A, we find the generators of the exit set and then glue
H+ and A together through the exit set. The generators of H+ and the
exit set are given in Figure 15.

X

Z
Y

Figure 15. Generators of the exit set and H+

The diagram of the exit set is the same as in Theorem 3.1 except for
the crossing. So we get the same set of generators for H+ and for the exit
set. This gives us the same fundamental group of A∪H+ when we apply
the Seifert–van Kampen theorem. As before, using Fox’s free differential
calculus, the Alexander polynomial of A∪H+ is ∆(t) = 2tp− t2p−1+ t−1

which gives a knot structure only when p = 0.
But when p = 0, we get c2 an (0, q) curve and, similarly, two other

essential curves. Since c2 cannot bound a disk, c2 cannot be a (0, q)
curve. Because of this, the case cannot exist. Thus, the only possible
cases for the Smale flows on S3 with the saddle set modeled by H+ are
cases 2 and 3 where the only possible structure for a∪r is a Hopf link. �
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