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INVERSE LIMITS OF ITERATES OF
SET-VALUED FUNCTIONS

JAMES P. KELLY

Abstract. We present a function F : [0, 1]→ C([0, 1]) that is up-
per semi-continuous, and we show that if n,m ∈ N with n 6= m,
then lim←−Fn and lim←−Fm are not homeomorphic. This answers a
question posed by Matevž Črepnjak (2015). Additionally, we com-
pare F to two other functions: a continuous function g : [0, 1] →
[0, 1] and an upper semi-continuous function H : [0, 1]→ 2[0,1]. We
apply known results to state that lim←−F , lim←− g, and lim←−H are all
homeomorphic. We show, however, that the inverse limits of iter-
ates of these functions are not homeomorphic to one another.

1. Introduction

The study of inverse limits of upper semi-continuous, set-valued func-
tions is introduced by Williams S. Mahavier in [7] and further developed
by W. T. Ingram and Mahavier in [4]. In these foundational papers, the
authors demonstrate that many of the well-known properties which hold
for inverse limits of continuous, single-valued functions do not always hold
in the more general context of set-valued functions.

One such property is known as the subsequence property. This prop-
erty implies that for a continuous function f on a compact Hausdorff
space X, the inverse limit of f is homeomorphic to the inverse limit of
fn for every natural number n. Ingram and Mahavier give two examples
illustrating that the subsequence property does not always hold for upper
semi-continuous, set-valued functions [4, Examples 3 & 4]. In [3, Prob-
lem 6.51], Ingram asks if there exists an upper semi-continuous, set-valued
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function F such that for each n,m ∈ N with n 6= m, the inverse limits of
Fn and Fm are not homeomorphic. Matevž Črepnjak constructs such a
function in [1]. The graph of this function is not connected, so Črepnjak
poses the following question [1, Problem 3.14].

Question 1.1. Is there an upper semi-continuous function F : [0, 1] →
2[0,1] with connected graph such that for n,m ∈ N with n 6= m, the inverse
limits of Fn and Fm are not homeomorphic?

We define an upper semi-continuous function F : [0, 1]→ C([0, 1]) in §3,
and we demonstrate that this provides a positive answer to Question 1.1.
Then, in §4, we discuss two other functions, g and H, and we compare
their inverse limits and the inverse limits of their iterates with those of F .

2. Preliminary Definitions and Results

A set X is a continuum if it is a non-empty, compact, connected subset
of a metric space. A subset of a continuum X which is itself a continuum
is called a subcontinuum of X. A continuum is called decomposable if it is
the union of two proper subcontinua. A non-degenerate continuum which
is not decomposable is called indecomposable.

Given a compact Hausdorff space X, we define the following hyper-
spaces of X,

2X = {A ⊆ X : A is closed in X}
C(X) =

{
A ∈ 2X : A is connected

}
.

If X and Y are compact Hausdorff spaces, a function F : X → 2Y is
called upper semi-continuous if, for each open set V ⊆ Y , the set {x ∈
X : F (x) ⊆ V } is open in X. The graph of a function F : X → 2Y is the
set

Γ(F ) = {(x, y) ∈ X × Y : y ∈ F (x)}.
In [4, Theorem 2.1], it is shown that F is upper semi-continuous if and
only if its graph is closed in X × Y .

For each i ∈ N, let Xi be a compact Hausdorff space and Fi : Xi+1 →
2Xi be upper semi-continuous. Then the inverse limit of the sequence
(Fi)

∞
i=1 is the set

lim←−(Fi)
∞
i=1 =

{
(xi)

∞
i=1 ∈

∞∏
i=1

Xi : xi ∈ Fi (xi+1) for all i ∈ N

}
.

In this paper, we will primarily be concerned with inverse limits where,
for each i ∈ N, Xi = [0, 1] and each Fi is the same function F . In this
case, we write lim←−F rather than lim←−(Fi)

∞
i=1.
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If F : X → 2X , we define the composition F ◦ F : X → 2X by

(F ◦ F )(x) =
⋃

y∈F (x)

F (y).

We define F 1 = F , and, for each n ≥ 2, we define Fn = F ◦ Fn−1.
We also define the inverse of F to be the function F−1 : X → 2X where
x ∈ F−1(y) if and only if y ∈ F (x).

In [5], a class of set-valued functions called irreducible functions is
defined. These functions are defined in terms of their inverse which is the
union of continuous functions. The definition in [5] is more general than
we need in this paper, so we give the following simplified definition.

Definition 2.1. A function F : [0, 1] → 2[0,1] is called irreducible if
F (0) = {0}, F (1) = {1}, and there exist distinct continuous functions

f1, . . . , fn : [0, 1]→ [0, 1], n ≥ 2,

such that

Γ
(
F−1

)
=

n⋃
i=1

Γ (fi) ,

and Γ(F ) is an arc from (0, 0) to (1, 1).

The following results appear in [5, Theorem 3.10] and [5, Theorem 4.16]
respectively.

Theorem 2.2. For each i ∈ N, let Fi : [0, 1] → 2[0,1] be an irreducible
function. Then lim←−Fi is an indecomposable continuum.

Theorem 2.3. Let n,m ∈ N \ {1}. Suppose F : [0, 1] → 2[0,1] is an
irreducible function whose inverse is the union of n continuous functions,
and G : [0, 1]→ 2[0,1] is an irreducible function whose inverse is the union
of m continuous functions. Then lim←−F is homeomorphic to lim←−G if and
only if n and m have the same prime factors.

In particular, if F is an irreducible function on [0, 1], then its inverse
limit is homeomorphic to the inverse limit of an open mapping on [0, 1].
The inverse limits of open mappings on [0, 1] form a class of continua
called Knaster continua. These are indecomposable continua with the
property that every proper subcontinuum is an arc.

3. An Upper Semi-Continuous Function for Which All
Iterates Have Distinct Inverse Limits

In this section we define an upper semi-continuous function F : [0, 1]→
C([0, 1]), and we show that if n,m ∈ N with n 6= m, then lim←−F

n is not
homeomorphic to lim←−F

m.
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Definition 3.1. We define F : [0, 1]→ C([0, 1]) as follows:

F (x) =


2x, 0 ≤ x < 1

2

[0, 1], x = 1
2

2x− 1, 1
2 < x ≤ 1.

The graph of F is pictured in Figure 1, and the graph of F 2 is pictured
in Figure 2.
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Figure 1. F

0 1
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4

Figure 2. F 2

This function, F , has been studied by Ingram [2] and Scott Varag-
ona [11]. Since F and its iterates are irreducible functions we may use
Theorem 2.3 to compare their inverse limits.

Remark 3.2. We begin by making some observations about the graph
of Fn for each n ∈ N. Fix a number n ∈ N, and for each j = 0, . . . , 2n,
let aj = j/2n.

(1) For each j = 1, . . . , 2n − 1, the graph of Fn includes the vertical
line segment {aj} × [0, 1].

(2) For each j = 0, . . . , 2n − 1, the graph of Fn includes the straight
line segment with endpoints (aj , 0) and (aj+1, 1).

Hence, the graph of Fn consists of 2n − 1 vertical line segments and 2n

diagonal line segments for a total of 2n+1 − 1 line segments. Moreover,
the union of these line segments is an arc from (0, 0) to (1, 1), so Fn is
an irreducible function whose inverse is the union of 2n+1 − 1 continuous
functions.
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In order to show that each iterate of F yields a distinct inverse limit,
we must show that for each n,m ∈ N with n 6= m, the numbers 2n−1 and
2m−1 do not have the same prime factors. The following theorem is known
as Zsigmondy’s theorem. We state it as it appears in [9, Theorem 3].

Theorem 3.3 (Zsigmondy’s Theorem). Let a and n be integers greater
than 1. There exists a prime divisor q of an − 1 such that q does not
divide aj − 1 for all 0 < j < n, except exactly in the following cases:

(1) n = 2, a = 2s − 1, where s ≥ 2.
(2) n = 6, a = 2.

This allows us to prove our main result of this section.

Theorem 3.4. If n,m ∈ N with n 6= m, then lim←−F
n and lim←−F

m are not
homeomorphic.

Proof. For each n ∈ N, let P (n) be the set of prime factors of 2n−1. From
Theorem 2.3 and Remark 3.2, it suffices to show that for each n,m ∈ N,
if n 6= m, then P (n+ 1) 6= P (m+ 1).

By Zsigmondy’s theorem, for every n ≥ 2 other than 6, P (n) contains
an element which is not an element of P (j) for any 0 < j < n. Then
by inspection, we see that no two of P (2), P (3), P (4), P (5), and P (6) are
equal:

P (2) = {3},
P (3) = {7},
P (4) = {3, 5},
P (5) = {31},
P (6) = {3, 7}. �

4. Comparing the Inverse Limits of
Three Upper Semi-Continuous Functions

We now define two other functions and compare their inverse limits
and the inverse limits of their iterates with those of F .

Definition 4.1. We define g : [0, 1]→ [0, 1] by

g(x) =


3x, 0 ≤ x ≤ 1

3

2− 3x, 1
3 ≤ x ≤

2
3

3x− 2, 2
3 ≤ x ≤ 1.

We also define H : [0, 1]→ 2[0,1] to be the upper semi-continuous func-
tion whose graph is the union of three straight line segments: one from
(0, 0) to (2/3, 1), one from (2/3, 1) to (1/3, 0), and one from (1/3, 0) to
(1, 1).
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The graph of g is pictured in Figure 3, and the graph of H is pictured
in Figure 4.
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Figure 3. g
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Figure 4. H

The functions F , g, andH are each irreducible functions whose inverses
are comprised of 3 continuous functions. Hence, the following proposition
follows from Theorem 2.3.

Proposition 4.2. The inverse limits lim←−F , lim←− g, and lim←−H are all
homeomorphic.

While these three functions have homeomorphic inverse limits, the in-
verse limits of their iterates are not homeomorphic to one another. We
show this in steps beginning with Proposition 4.4.

The following notation will be useful in the proof of Proposition 4.4.

Notation 4.3. Given two points (x1, y1) and (x2, y2), we use the notation
(x1, y1)(x2, y2) to represent the straight line segment whose endpoints are
(x1, y1) and (x2, y2).

Proposition 4.4. If n ≥ 2, then lim←−H
n contains a simple closed curve.

In particular, lim←−H
n is not chainable.
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Proof. The graph of H2 is pictured in Figure 5. Note that this graph
contains the simple closed curve S = A ∪B ∪ C ∪D, where

A =

(
1

3
, 0

)(
4

9
,

1

2

)
,

B =

(
4

9
,

1

2

)(
2

3
, 1

)
,

C =

(
2

3
, 1

)(
5

9
,

1

2

)
,

D =

(
5

9
,

1

2

)(
1

3
, 0

)
.
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Figure 5. H2

Now observe that the graph of H includes the graph of y = 3x/2 over
the interval [0, 2/3]. Fix n ∈ N, then the graph of Hn includes the graph
of y = 3nx/2n over the interval [0, 2n/3n]. Since this function is strictly
increasing, it follows that the graph of Fn+2 contains the simple closed
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curve Sn = An ∪Bn ∪ Cn ∪Dn where

An =

(
2n

3n
· 1

3
, 0

)(
2n

3n
· 4

9
,

1

2

)
,

Bn =

(
2n

3n
· 4

9
,

1

2

)(
2n

3n
· 2

3
, 1

)
,

Cn =

(
2n

3n
· 2

3
, 1

)(
2n

3n
· 5

9
,

1

2

)
,

Dn =

(
2n

3n
· 5

9
,

1

2

)(
2n

3n
· 1

3
, 0

)
.

Therefore, we have that, for each k ≥ 2, Γ(Hk) contains a simple closed
curve. It then follows from a result due to M. M. Marsh [8, Corollary 3.2]
that lim←−H

k contains a simple closed curve for each k ≥ 2. As Marsh’s
results are more general, we include a proof for our specific case.

Fix k ≥ 2. To show that lim←−H
k contains a simple closed curve, we

define a function φ : Γ(Hk)→ lim←−H
k by

φ(x, y) =

(
y, x,

2k

3k
x,

22k

32k
x,

23k

33k
x, . . .

)
.

Since φ is clearly continuous and injective, lim←−H
k contains a subcontin-

uum homeomorphic to Γ(Hk). It follows that lim←−H
k contains a simple

closed curve. �

Proposition 4.5. If n ≥ 2, then the following hold:
(1) lim←−F

n is not homeomorphic to lim←− g
m or lim←−H

m for any m ∈ N.
(2) lim←−H

n is not homeomorphic to lim←−F
m or lim←− g

m for any m ∈ N.

Proof. From Theorem 3.4, we have that for each n ≥ 2, lim←−F
n is not

homeomorphic to lim←−F , and from Proposition 4.2, we have that lim←−F ,
lim←− g, and lim←−H are all homeomorphic. It follows that, for each n ≥ 2,
lim←−F

n is not homeomorphic to either lim←− g or lim←−H.
Moreover, since g is a continuous, single-valued function, for every

m ∈ N, lim←− g
m is homeomorphic to lim←− g, so it follows that, for any n ≥ 2

and any m ∈ N, lim←−F
n is not homeomorphic to lim←− g

m.
Hence, it suffices to show that, for any n ≥ 2 and any m ∈ N, the

inverse limit lim←−H
n is homeomorphic to neither lim←−F

m nor lim←− g
m. From

Proposition 4.4, lim←−H
n is not chainable for any n ≥ 2, and for every

m ∈ N, both lim←−F
m and lim←− g

m are chainable. Therefore, the result
follows. �

Various functions satisfying Definition 2.1 have been studied by this au-
thor, as well as Ingram [2], James P. Kelly and Jonathan Meddaugh [6],
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Varagona [11], and Michel Smith and Varagona [10], primarily because
their inverse limits are indecomposable continua. We show in Proposi-
tion 4.6 that this is not preserved under iteration. First, we make the
following observation about lim←−H

2.

Proposition 4.6. The continuum lim←−H
2 contains a subcontinuum which

is homeomorphic to lim←−F
2.

Proof. Let H̃ : [0, 1] → 2[0,1] be the function whose graph consists of the
following line segments:

A1 = (0, 0)

(
4

9
, 1

)
, A6 =

(
4

9
, 0

)(
5

9
,

1

2

)
,

A2 =
(

4

9
, 1

)(
2

9
, 0

)
, A7 =

(
5

9
,

1

2

)(
7

9
, 1

)
,

A3 =
(

2

9
, 0

)(
4

9
,

1

2

)
, A8 =

(
7

9
, 1

)(
5

9
, 0

)
,

A4 =
(

4

9
,

1

2

)(
5

9
, 1

)
, A9 =

(
5

9
, 0

)
(1, 1).

A5 =
(

5

9
, 1

)(
4

9
, 0

)
,

The graph of H̃ is a subset of the graph of H2 and is pictured in
Figure 6.
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Figure 6. The graph of H̃ as a subset of the graph of H2
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Since the graph of H̃ is a subset of the graph of H2, it follows that
lim←− H̃ ⊆ lim←−H

2. Moreover, H̃ is an irreducible function whose inverse
is the union of seven continuous functions. Therefore, by Theorem 2.3,
lim←− H̃ is homeomorphic to lim←−F

2. �

Proposition 4.7. The continuum lim←−H
2 is decomposable.

Proof. Let X = lim←−H
2, and let H̃ be defined as in the proof of Proposi-

tion 4.6. We define a sequence of irreducible functions (Hi)
∞
i=1 by H1 = H̃

and Hi = H2 for all i ≥ 2. Since each Hi is surjective and has its inverse
equal to a union of continuous, single-valued functions, Y = lim←−Hi is a
continuum. Moreover, since for each i ∈ N, Γ(Hi) ⊆ Γ(H2), we have that
Y ⊆ X.

Additionally, if I1 is the open interval (0, 1/2) and I2 is the open interval
(0, 2/9), then lim←−Hi contains the open set π−11 (I1) ∩ π−12 (I2). Therefore,
X is decomposable. �
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