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PERIODIC POINTS OF
SOLENOIDAL AUTOMORPHISMS

SHARAN GOPAL AND C. R. E. RAJA

Abstract. We give a characterization of the sets of periodic points
of toral automorphisms. Then we describe the one-dimensional
solenoids as the quotients of the (additive) group of adeles and
characterize the sets of periodic points of automorphisms on these
solenoids. We also determine the sets of periodic points for auto-
morphisms on a full solenoid.

1. Introduction

A dynamical system is by definition a pair (X, f), where X is a topo-
logical space and f is a continuous map of X. A point x ∈ X is said to
be periodic if there is an n ∈ N such that fn(x) = x; any such n is called
a period of x and the least among them is called the least period of x. A
well-studied problem on the periodicity is the characterization of sets of
least periods and periodic points of a family of dynamical systems. To
put formally, we seek the following. If F is a family of maps on a space
X, then give a characterization of the collections {Per(f) : f ∈ F} and
{P (f) : f ∈ F}, where Per(f) = {n ∈ N : f has a periodic point of least
period n} and P (f) = {x ∈ X : x is a periodic point of f}. The papers
[1], [5], [6], [9], [13], [15] give such characterizations for various families,
and for a nice survey on the characterization of the sets of least periods,
see [8]. On the other hand, [12] gives the number of periodic points of
any given period for some continuous homomorphisms of a solenoid.
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In this article, we consider the underlying space X to be a compact
group and the map f to be an automorphism of X; by an automorphism,
we mean a continuous automorphism.

The n-dimensional torus Tn is considered as the quotient topological
group Rn/Zn. A toral automorphism is a continuous group automorphism
of Tn. For A ∈ GL(n,Z), the map TA, defined as TA(x) = π(Ax), where
π : Rn → Tn is the canonical projection, is a toral automorphism. In fact,
every toral automorphism T arises as TA for some such matrix (see [11]).

In [15], the sets of periodic points are characterized for the 2-dimensional
toral automorphisms. Here, we extend this to toral automorphisms of any
arbitrary dimension (see Theorem 2.1).

A bigger class of compact groups that includes tori is solenoids. A
compact connected finite-dimensional abelian group is called a solenoid.
Equivalently, a topological group Σ is a solenoid if and only if its Pontrya-
gin dual Σ̂ is (isomorphic to) a subgroup of the discrete additive group
Qn and contains Zn; i.e., Zn ≤ Σ̂ ≤ Qn (see [14]). In particular, when
Σ̂ = Zn, then Σ is an n-dimensional torus and when Σ̂ = Qn, we say that
Σ is a full (n-dimensional) solenoid. Here, we describe 1-dimensional
solenoids as quotients of the adele group QA, based on a description of
subgroups of Q. We give a characterization of the sets of periodic points
for automorphisms of 1-dimensional solenoids (see Theorem 3.2) and a
characterization of the sets of periodic points for automorphisms of any
full solenoid (see Theorem 3.5).

An automorphism α of a compact group G is called ergodic if the only
α-invariant subsets of G are those of full measure or zero measure (with
respect to the Haar measure on G). Since the dual of an automorphism
α of a solenoid is an automorphism of a subgroup of Qn for some n, it is
given by an invertible matrix in Mn(Q) (which we will again denote by
α). It can be proved that α is ergodic if and only if α has no eigenvalue
of absolute value 1 (see [3]).

2. Toral Automorphisms

In this section, we give a characterization of the sets of periodic points
of toral automorphisms. If T : Tn → Tn is a toral automorphism, then,
since Qn/Zn is a torsion group and contains only a finite number of ele-
ments of any given order, we get that Qn/Zn ⊂ P (T ). We use a result
that a closed subgroup of Tn is topologically isomorphic to Tm × D for
some m ≤ n and a finite discrete group D (see [14]). A subgroup of Tn,
which itself is isomorphic to a torus, is called a subtorus of Tn.
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Theorem 2.1. If T is an automorphism on Tn, then the set P (T ) of
periodic points of T is given by P (T ) = M + Qn

Zn , where M is a subtorus
of Tn. Further, T is ergodic if and only if M = (0).

Conversely, if M is any subtorus of Tn, then there is an automorphism
T on Tn such that P (T ) = M + Qn

Zn .

Proof. We view the torus Tn as Rn

Zn . Let T be a toral automorphism
and A be the (integer) matrix that represents T . Suppose T is ergodic.
If T k(x + Zn) = x + Zn, then (Ak − I)x = m for some m ∈ Zn. If
det(Ak − I) = 0, then there is an eigenvalue of A which is a root of
unity, contradicting the ergodicity of T . Thus, det(Ak − I) 6= 0 and then
x = (Ak − I)−1m ∈ Qn. Thus, P (T ) = Qn

Zn .
If T is not ergodic, then A has an eigenvalue that is a root of unity;

so, there exist v( 6= 0) ∈ Rn and k ∈ N such that Ak(v) = v. Let W =
{x ∈ Rn : Ak(x) = x}. Then π(W ) is contained in the set Pk := {y ∈
Tn : T k(y) = y}, where π : Rn → Tn is the canonical map. Since W is
a non-trivial subspace of Rn, Pk is a closed subgroup of Tn with positive
dimension and hence contains a non-trivial subtorus M ′.

It is clear that T k is the identity on M ′. If M ′′ is a subtorus on which
T k
′
is the identity for some k′ ∈ N, then T kk

′
is the identity on the

subtorus M = M ′ +M ′′. Repeating this argument and since Tn is finite
dimensional, we get a subtorus M that is maximal with respect to the
property that T l is the identity on M for some l ∈ N.

Since Qn

Zn ⊂ P (T ), M + Qn

Zn ⊂ P (T ). Now, let x ∈ P (T ) and say
Tm(x) = x. The closed subgroup < M,x > generated by M and x is
of the form M0 × F , where M0 is a subtorus of Tn and F is a finite
group (see [14]). It follows that M ⊂ M0 and T lm is the identity on M0

and by maximality of M , we have M = M0. So < M,x >/M is a finite
group and hence mx ∈M for some m ∈ N. Since M is a divisible group,
there exists y ∈ M such that my = mx and hence x − y ∈ Qn

Zn . Thus,
x = y + (x− y) ∈M + Qn

Zn .
Conversely, if M is any subtorus of Tn, then Tn = M ⊕ L for some

subtorus L. IfM = Tn, then take T to be the identity on Tn. If dim(L) ≥
2, then define an automorphism T on Tn such that M and L are T -
invariant, T |M is the identity, and T |L is ergodic. Then P (T ) = M + Qn

Zn .
If dim(L) = 1, then let φ : L → M be an injective homomorphism; such
a map exists because dim(M) ≥ dim(L). Define T on Tn as T (x) =
(m + φ(l)) + l for every x ∈ Tn, where x = m + l for m ∈ M and l ∈ L.
If x = m+ l is a periodic point of T with period k, then m+ kφ(l) = m
which implies that kφ(l) (= φ(kl)) is zero in M . Since φ is injective,
l ∈ Qn

Zn . Thus, P (T ) = M + Qn

Zn . �
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3. Solenoidal Automorphisms

This section deals with the solenoidal automorphisms. We first give a
description of one-dimensional solenoids using the adeles and then char-
acterize the sets of periodic points of the family of automorphisms on a
one-dimensional solenoid. Then we consider the same problem of charac-
terization for higher dimensional solenoids. The techniques used for the
characterization in the case of one-dimensional solenoids cannot be used
for higher dimensional ones. However, Theorem 3.5 addresses this prob-
lem for full solenoids of any dimension. Nevertheless, the general problem
is unanswered.

3.1. One-dimensional solenoids.

We give here a characterization of the family {P (α) : α is an auto-
morphism of a 1-dimensional solenoid}. By definition, a 1-dimensional
solenoid Σ is a compact group such that Z ≤ Σ̂ ≤ Q. We first give a
description of the subgroups of Q as given in [2]. Let P be the set of all
prime numbers and let M ⊂ Q. For any x ∈ M and p ∈ P , the p-height
of x, hp(x) is defined to be the largest non-negative integer n, if it ex-
ists, such that x

pn ∈ M ; otherwise, define hp(x) = ∞. Thus, (hp(x)) is
a sequence (where p runs through the primes in the natural order) with
values in Z≥0∪{∞} called the height sequence of x. Two height sequences
(up) and (vp) are said to be equivalent if up = vp for all but finitely many
primes and up = ∞ ⇔ vp = ∞ for any p. Given a subgroup M of
Q, there is a unique height sequence (up to equivalence) associated to
all elements of M . Thus, we can associate a height sequence, unique
up to equivalence, to any given subgroup of Q; moreover, two subgroups
of Q are isomorphic if and only if their associated height sequences are
equivalent.

We denote by Qp and Zp the field of p-adic numbers and the ring of
p-adic integers, respectively. The multiplicative group {x ∈ Zp : |x|p = 1}
is denoted by Z∗p. By convention, we denote R by Q∞. The ring of
adeles QA is defined as the restricted product R×

∏
p∈P Qp with respect

to Zp; i.e., for any (a∞, a2, a3, ...) ∈ QA, ap ∈ Zp for all but finitely many
p. Here, we will consider only the additive group structure of QA. Since
every rational number has p-adic norm equal to 1 for all but finitely many
p, we have a diagonal inclusion δ : Q→ QA given by (δ(r))p = r for every
p ≤ ∞ and for every r ∈ Q. Now, for any a = (ap) ∈ QA, we can associate
a character ψa of Q as ψa(r) = e−2πira∞

∏
p<∞ e2πi{rap}p , where {x}p is

the p-adic fractional part of x. The map ψ : QA → Q̂, given by a 7→ ψa,
is a surjective homomorphism and Q̂ is isomorphic to QA

δ(Q) (see [7]). If
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c ∈ δ(Q), then ψc(r) = 1 for every r ∈ Q; thus, if (ap), (bp) ∈ QA such that
there is an s ∈ Q with ap = s + bp for every p ≤ ∞, then ψ(ap) = ψ(bp).
Since every 1-dimensional solenoid should be a quotient of Q̂, it can be
realized as a quotient of QA. The following proposition describes this
quotient explicitly.

Proposition 3.1. Let Σ be a one-dimensional solenoid. Let D = {p ∈
P : hp(x) 6= 0 for some x ∈ Σ̂}, np := sup{hp(x) : x ∈ Σ̂ ∩ Z∗p}, and
D∞ = {p ∈ D : np =∞}. Then Σ = QA

δ(Q)+L , where L =
∏
p≤∞ Up and

Up =

 (0) if p ∈ D∞ ∪ {∞}
pnpZp if p ∈ D \D∞
Zp if p /∈ D.

Proof. Since Σ is a 1-dimensional solenoid, Σ̂ < Q and ̂̂
Σ(= Σ) = Q̂

V ,
where V is the annihilator of Σ̂ (see [14]). Let π : Q̂ → Σ be the
canonical projection. Then the map ψ′ = π ◦ ψ : QA → Σ is a sur-
jective homomorphism, where ψ : QA → Q̂ is given by a 7→ ψa and
ψa(r) = e−2πira∞

∏
p<∞ e2πi{rap}p for every r ∈ Q. We now claim that

Ker(ψ′) = δ(Q) + L.
Before proving the claim, we show that for every (lp) ∈ R×

∏
p<∞ Zp

and r ∈ Σ̂, ψ(lp)(r) = e−2πirl∞
∏
p∈D e

2πi{rlp}p . Let r = m
n , (m,n) = 1,

and p be a prime not in D. If p|n, then m
p ∈ Σ̂ and thus hp(m) 6= 0, which

is a contradiction to the fact that p /∈ D. So, p /∈ D ⇒ |r|p ≤ 1 and thus∏
p/∈D e

2πi{rlp}p = 1. Hence, ψ(lp)(r) = e−2πirl∞
∏
p∈D e

2πi{rlp}p .
Now, if y = (yp) ∈ δ(Q) + L, then, for every p ≤ ∞, yp = s + lp

for some s ∈ Q and lp ∈ Up. Then, for any r ∈ Σ̂, ψy(r) = ψ(lp)(r) =∏
p∈D\D∞ e

2πi{rlp}p . Fix some p ∈ D \ D∞ and r ∈ Σ̂. Say r = pks,
where s = m

n ∈ Z∗p; then |r|p = p−k. If k ≥ 0, then r ∈ Zp and thus
rlp ∈ Zp. Suppose k < 0. Then nr = m

p−k ∈ Σ̂ and thus hp(m) ≥ −k.
Since m ∈ Z∗p, −k ≤ np. Thus, |rlp|p = p−k|lp|p ≤ pnp |lp|p ≤ 1 and
hence rlp ∈ Zp. Thus, ψy(r) = 1 for every r ∈ Σ̂; i.e., ψy ∈ V . Hence,
y ∈ Ker(ψ′).

Conversely, let y ∈ Ker(ψ′). Then ψ′(y) ∈ V ; i.e., ψy(r) = 1 for
every r ∈ Σ̂. Since QA = δ(Q) + ([0, 1) ×

∏
p<∞ Zp) (see [16]), y can

be written as y = (s + lp) for some s ∈ Q, l∞ ∈ [0, 1), and lp ∈ Zp.
Then ψy(r) = ψ(lp)(r) = 1 for every r ∈ Σ̂. Choosing r = 1, we get
ψ(lp)(1) = e−2πil∞ and thus l∞ = 0. Hence, ψ(lp)(r) =

∏
p∈D e

2πi{rlp}p

for every r ∈ Σ̂.
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Let p ∈ D \D∞. By the definition of np, there exists x ∈ Σ̂ ∩ Z∗p with
hp(x) = np. Let r = x

pnp and x = m
n . Then nr = m

pnp ∈ Σ̂; further,
|nr|q ≤ 1 for every q 6= p and |nr|p = pnp . Thus, ψ(lp)(nr) = e2πi{nrlp}p .

But ψ(lp)(nr) = 1⇒ {nrlp}p = 0
⇒ nrlp ∈ Zp
⇒ |lp|p ≤ 1

|nr|p = 1
pnp

⇒ lp ∈ pnpZp.
Finally, let p ∈ D∞. Since np = ∞, for any l ∈ N, there exists

x ∈ Σ̂ ∩ Z∗p such that hp(x) > l; i.e., x
pl+1 ∈ Σ̂. Again, say x = m

n and
r = x

pl+1 ; then nr = m
pl+1 ∈ Σ̂ and |nr|q ≤ 1 for every q 6= p, whereas

|nr|p = pl+1. Thus, ψ(lp)(nr) = e2πi{nrlp}p .
So ψ(lp)(nr) = 1⇒ {nrlp}p = 0

⇒ nrlp ∈ Zp
⇒ |lp|p ≤ 1

|nr|p = 1
pl+1 .

Since l can be arbitrarily large, we have |lp|p = 0, and thus lp = 0. �

As noted, the dual of an automorphism α of a 1-dimensional solenoid
Σ is defined by multiplication with a non-zero rational number, which will
be denoted again by α. Also, α is ergodic on Σ if and only if α /∈ {−1, 1}.
So, it is enough to consider only the ergodic automorphisms, because for
the other two automorphisms (i.e., when α ∈ {−1, 1}), we have P (α) = Σ.

Theorem 3.2. Let Σ, L, D, and D∞ be defined as in the above propo-
sition. If α is an ergodic automorphism of Σ, then P (α) =

δ(Q)+
∏′ Qp

δ(Q)+L ,
where

∏′Qp := {x ∈ QA : xp = 0 for every p ∈ D∞∪{∞} and xp ∈ pnpZp
for all but finitely many p in D \D∞}.

Proof. Let π(x) ∈ Σ be α-periodic with period n, where π : QA → QA
δ(Q)+L

is the canonical projection. Then (αn− 1)x ∈ δ(Q) +L; say (αn− 1)xp =

r + lp, where r ∈ Q and lp ∈ Up. Thus, (xp) = ( r
αn−1 ) + (

lp
αn−1 ) ∈

δ(Q) +
∏′Qp.

Conversely, let x ∈ δ(Q) +
∏′Qp; say xp = r + lp, for every p ≤ ∞.

Then, for any n ∈ N, (αn−1)xp = (αn−1)r+(αn−1)lp. If p ∈ D∞∪{∞},
then (αn − 1)lp = 0. So, it suffices to show that there is an n ∈ N such
that (αn − 1)lp ∈ Up for every p /∈ D∞ ∪ {∞}. Now, since (lp) ∈ QA,
there is a finite set F of primes such that lp ∈ Zp for every prime p /∈ F .
Let F \ D = {p1, p2, ...pk}. Again, since (lp) ∈

∏′Qp, there is a finite
set G ⊂ D \ D∞ such that lp ∈ pnpZp for every p ∈ D \ G. Let G =
{pk+1, pk+2, ..., pk+l}. Noting that np = 0 for every prime p /∈ D, we can
see that lp ∈ pnpZp for every prime p /∈ {p1, p2, ...pk+l}.
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Now, let α = α1

α2
where αi ∈ Z for i = 1, 2. If p|α2, then p ∈ D∞

because αj ∈ Σ̂ for every j ∈ N; thus, |α|p ≤ 1 for every prime p /∈ D∞.
Since α is an automorphism, we can show in a similar way that |α−1|p ≤ 1
for any p /∈ D∞. Hence, α ∈ Z∗p, in particular, for p ∈ {p1, p2, ...pk+l}.
Also, for every p /∈ D∞, |αn − 1|p ≤ 1 for every n ∈ N. So, for any
p /∈ D∞, |(αn − 1)lp|p ≤ |lp|p and, in addition, if p /∈ {p1, p2, ..., pk+l},
then (αn − 1)lp ∈ pnpZp. Thus, it suffices to show that there exists an
n ∈ N such that (αn − 1)lp ∈ pnpZp for every p ∈ {p1, p2, ..., pk+l}.

Since α ∈ Z∗p for p ∈ {p1, p2, ...pk+l}, we have ᾱ = (α, α, ...α) ∈∏k+l
i=1 Z∗pi , which is a compact group. The set {ᾱn : n ∈ N} is a semi-group

and thus its closure in
∏k+l
i=1 Z∗pi is a closed semigroup; so {ᾱn : n ∈ N} is

a subgroup of
∏k+l
i=1 Z∗pi (see [17]).

Thus, (1, 1, ..., 1) ∈ {ᾱn : n ∈ N}
⇒ there exists a sequence (ni) such that (ᾱni)→ (1, 1, ..., 1)
⇒ (αni)→ 1 in Z∗pm for each 1 ≤ m ≤ k + l
⇒ (|αni − 1|pm)→ 0 for each 1 ≤ m ≤ k + l.

Now, given lpm ∈ Qpm for each 1 ≤ m ≤ k + l, choose N such that
|αN − 1|p < 1

pnp |lp|p for each p ∈ {p1, p2, ..., pk+l}. Thus, (αN − 1)lp ∈
pnpZp for each p ∈ {p1, p2, ..., pk+l}. �

Remark 3.3. It follows that {P (α) : α ∈ Aut(Σ)} = {Σ, δ(Q)+
∏′ Qp

δ(Q)+L }.

As a consequence, we obtain the following result that is contained in
Theorem 3.1 in [12].

Corollary 3.4. If α is an ergodic automorphism of a 1-dimensional
solenoid Σ, then |Pn(α)| =

∏
p/∈D∞ |α

n − 1|−1p , where Pn(α) := {x ∈
Σ : αn(x) = x} and |Pn(α)| is its cardinality.

Proof. Let x ∈ QA such that π(x) ∈ Pn(α), where π : QA → Σ (= QA
δ(Q)+L )

is the canonical projection. Then we have x = (r + lp), where r ∈ Q,
(lp) ∈

∏′Qp, and (αn − 1)lp ∈ Up. Thus, lp = 0 for every p ∈ D∞ ∪ {∞}
and |(αn − 1)lp|p ≤ 1

pnp ; i.e., |lp|p ≤ 1
pnp |αn−1|p for every p /∈ D∞.

It follows from the proof of Theorem 3.2 that for every prime p /∈ D∞,
|αn − 1|p ≤ 1. Therefore, as αn − 1 ∈ Q, there are at most finitely many
primes outside D∞, say p1, p2, ..., pk, such that |αn−1|p = 1 for every p /∈
D∞ ∪ {p1, p2, ..., pk} and |αn − 1|p < 1 for every p ∈ {p1, p2, ..., pk}. For
each 1 ≤ i ≤ k, let |αn−1|pi = p−kii for some ki > 0. Then lp ∈ pnpZp for
every p /∈ D∞ ∪ {p1, p2, ..., pk} and lp ∈ pnp−kiZp for p ∈ {p1, p2, ..., pk}.
Hence, Pn(α) =

δ(Q)+
∏
Vp

δ(Q)+L , where Vp = pnp−kiZp for p ∈ {p1, p2, ..., pk},
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and for the rest of the primes, Vp = Up. Thus, |Pn(α)| =
∏k
i=1 |

Vpi

Upi
| =∏k

i=1 p
ki =

∏k
i=1 |αn − 1|−1pi =

∏
p/∈D∞ |α

n − 1|−1p . �

3.2. Higher dimensional solenoids.

The above characterizations depend upon the description of the sub-
groups of Q using the notion of p-heights. However, no such description is
available for the subgroups of Qn for n > 1. In fact, Alexander S. Kechris
[10] implies that there is probably “no reasonably simple classification” of
these groups. However, for a full solenoid, we have the following descrip-
tion of the sets of periodic points. Recall that Σ is called a full solenoid
if Σ̂ ' Qd for some d ≥ 0.

Theorem 3.5. Let α be an automorphism of a full solenoid Σ. Then
P (α) = F (αm) for some m ≥ 1 and P (α) is a full solenoidal subgroup of
Σ; that is, the dual of P (α) is a Q-vector subspace. In particular, α is
ergodic if and only if P (α) is trivial.

The proof depends on the following lemma.

Lemma 3.6. Let α be an automorphism of a full solenoid Σ. Then
F (α) = {x ∈ Σ | α(x) = x} is a full solenoidal subgroup of Σ.

Proof. Let Σ̂ = Qd for some d ≥ 1. For any r ∈ Q, let mr : Σ → Σ
be the automorphism whose dual m̂r : Qd → Qd is the multiplication by
the rational number r. Then α̂m̂r = m̂rα̂; hence, αmr = mrα. This
implies that F (α) is mr-invariant and hence the dual of F (α) is invariant
under multiplication by any rational. Thus, the dual of F (α) is a Q-vector
subspace of Qd. �

Proof of Theorem 3.5. It follows from Lemma 3.6 that F (αi) is a full
solenoidal subgroup of Σ. Since Σ is finite-dimensional, there is an m ≥ 1
such that dim(F (αm)) ≥ dim(F (αi)) for any i ≥ 1. Now, for any i ≥
1, there is a k ≥ 1 such that F (αk) contains both F (αi) and F (αm).
This implies that dim(F (αk)) ≥ dim(F (αm)) and hence dim(F (αk)) =
dim(F (αm)). This implies that since F (αk) and F (αm) are (full) solenoids
and F (αk) contains F (αm), F (αm) = F (αk). Therefore, F (αm) contains
all F (αi). Thus, F (αm) = P (α). �
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