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ORDERABILITY OF PRODUCTS

NOBUYUKI KEMOTO

Abstract. We prove that for non-discrete spaces X and Y ,
(1) if the product space X×Y is suborderable, then both X and

Y are hereditarily paracompact and there is a unique regular
infinite cardinal κ such that for every z ∈ X∪Y , the cofinality
from left (right) of z is either 0, 1 or κ;

(2) if X and Y are subspaces of an ordinal, then the converse
implication of (1) is also true.

1. Introduction

Recently, a kind of orderability ofX2 is known to be related to selection
theory; see [5] and [3]. In this paper, we see the results in the abstract.

Spaces mean regular topological spaces. Let < be a linear order on a
set X. The usual order topology is denoted by λ(<), that is, the topology
generated by

{(a,→) : a ∈ X} ∪ {(←, b) : b ∈ X}
as a subbase, where (a,→) = {x ∈ X : a < x}, (a, b) = {x ∈ X : a <
x < b}, etc. If necessary, we write <X and (a, b)X instead of < and
(a, b), respectively. A linearly ordered topological space (LOTS) X means
the triple 〈X,<, λ(<)〉. As usual, we consider an ordinal α as the set
of smaller ordinals and as a LOTS with the order ∈ (we identify it with
<). Similarly, a generalized ordered space (GO-space) means the triple
〈X,<, τ〉 where τ is a topology on X with λ(<) ⊂ τ which has a base
consisting of convex sets, where a subset A is convex if (a, b) ⊂ A whenever
a, b ∈ A with a < b.

A topological space 〈X, τ〉, where τ is a topology on X, is said to be
orderable if τ = λ(<) for some linear order < on X. Also, a topological
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space 〈X, τ〉 is said to be suborderable if it is a subspace of some orderable
space. It is well known that orderable spaces are hereditarily normal.
Also, it is well known that

(1) if 〈L,<L, λ(<L)〉 is a LOTS and X ⊂ L, then 〈X,<L�X,λ(<L)�
X〉 is a GO-space, where <L�X is the restricted order of <L to
X and λ(<L) �X is the subspace topology of λ(<L) on X, i.e.,
{U ∩X : U ∈ λ(<L)}. On the other hand,

(2) if 〈X,<X , τ〉 is a GO-space, then there is a LOTS 〈L,<L, λ(<L)〉
with X ⊂ L such that 〈X, τ〉 is a dense subspace of 〈L, λ(<L)〉
and <X=<L�X; therefore, 〈X, τ〉 is suborderable. Obviously, a
suborderable space is a GO-space with some linear order. More-
over,

(3) if 〈X,<X , λ(<X)〉 is a LOTS, there is a LOTS 〈L,<L, λ(<L)〉
with X ⊂ L and <X=<L�X such that the space 〈L, λ(<L)〉 is
compact and contains 〈X,λ(<X)〉 as a dense subspace. Therefore,
by (2) and (3), we have

(4) if 〈X,<X , τ〉 is a GO-space, then there is a compact LOTS
〈L,<L, λ(<L)〉 with X ⊂ L and <X=<L�X such that the com-
pact space 〈L, λ(<L)〉 contains 〈X, τ〉 as a dense subspace. So we
say a GO space 〈X,<X , τ〉 has a linearly ordered compactifica-
tion 〈L,<L, λ(<L)〉 or more simply, a GO-space X has a linearly
ordered compactification L.

Note that a compact LOTS 〈L,<L, λ(<L)〉 has the largest element
maxL and the smallest element minL. Also note that if X is a convex
subset of a LOTS 〈L,<L, λ(<L)〉, then the subspace topology λ(<L) �X
coincides with the order topology λ(<�X) on X. For more details, see
[10] and [8]. Usually, if there is no confusion, we do not distinguish the
symbols <X and <L, and simply write <.

In general, a GO-space can have many linearly ordered compactifica-
tions. But it is known that a GO-space X has a linearly ordered com-
pactification lX such that, for every linearly ordered compactification cX
of X, there is a continuous function f : cX → lX with f(x) = x for every
x ∈ X; see [9]. Observe that by the definition, lX is unique up to order
isomorphisms and is said to be the minimal linearly ordered compactifi-
cation of X and is characterized as follows.

Lemma 1.1 ([9, Lemma 2.1]). A linearly ordered compactification cX of
a GO-space X is minimal if and only if (a, b)cX 6= ∅ for every a, b ∈ cX\X
with a < b.
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2. Results

Let {Xα : α ∈ Λ} be a pairwise disjoint collection of spaces. Then⊕
α∈ΛXα denotes the topological sum of Xα’s, i.e., the space

⋃
α∈ΛXα

with the topology generated by
⋃
α∈Λ τα as a base, where τα is the topol-

ogy on Xα. Note that the subspace {0}∪(1, 2) of the real line is suborder-
able but not orderable. This means that the topological sum of orderable
spaces need not be orderable. On the other hand, the infinite discrete
space D(κ) of cardinality κ is orderable because the LOTS κ × Z with
the lexicographic order is homeomorphic to D(κ), where Z is the set of
integers.

Let S be a subset of an ordinal α. Limα(S) denotes the set {β ∈
α : sup(S ∩ β) = β}, i.e., the set of all cluster points of S in α. If the
contexts are clear, we simply write Lim(S). Obviously, if S is closed in
α, then Lim(S) ⊂ S. Succ(S) denotes the set S \ Lim(S), i.e., the set of
all isolated points of S.

A subset S of a regular uncountable cardinal κ is stationary if it inter-
sects with all closed unbounded (club) sets C of κ, where a subset C of κ
is unbounded if, for every α < κ, there is β ∈ C with α ≤ β. Note that if
S is unbounded in κ, then Lim(S) is club in κ.

Lemma 2.1. Let S be a stationary set in a regular uncountable cardinal
κ and let X be a non-discrete space of cardinality < κ. Then the subspace
X × S of X × κ is not hereditarily normal.

Proof. Let x be a non-isolated point of X and let Y = (X \ {x}) × S ∪
{x} × Succ(S). Then it is routine to check that F0 = {x} × Succ(S) and
F1 = (X \ {x})× (S ∩Lim(S)) are disjoint closed sets in Y which cannot
be separated by disjoint open sets. �

Lemma 2.2. Let κ and λ be regular infinite cardinals with κ 6= λ. Then
the subspace (Succ(κ)∪ {κ})× (Succ(λ)∪ {λ}) of (κ+ 1)× (λ+ 1) is not
suborderable.

Proof. Let X = Succ(κ) ∪ {κ} and Y = Succ(λ) ∪ {λ} and assume that
X×Y is suborderable. Denote the product topology of X×Y by τ . Fix a
linearly ordered set 〈L,<L〉 such that X×Y ⊂ L and λ(<L)�X×Y = τ ,
where λ(<L) denotes the order topology on L. Denote the restricted
order <L� X × Y on X × Y by <. We may assume ω ≤ κ < λ. Let
F0 = {κ} × Succ(λ) and F1 = Succ(κ)× {λ}. Put

F−0 = {β ∈ Succ(λ) : 〈κ, β〉 < 〈κ, λ〉},

F+
0 = {β ∈ Succ(λ) : 〈κ, λ〉 < 〈κ, β〉},

F−1 = {α ∈ Succ(κ) : 〈α, λ〉 < 〈κ, λ〉},
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F+
1 = {α ∈ Succ(κ) : 〈κ, λ〉 < 〈α, λ〉}.

Note F0 = {κ} × (F−0 ∪ F
+
0 ) and F1 = (F−1 ∪ F

+
1 )× {λ}.

Claim 1. |F−1 | < κ or |F+
1 | < κ.

Proof. Assume that both F−1 and F+
1 have cardinality κ. For every

α ∈ F−1 , since (←, 〈κ, λ〉)L∩X×Y is a τ -neighborhood of 〈α, λ〉 in X×Y ,
there is g(α) < λ such that {α}×(g(α), λ]∩X×Y ⊂ (←, 〈κ, λ〉)L∩X×Y ,
where (←, 〈κ, λ〉)L denotes the interval in L and (g(α), λ] denotes the
usual interval in λ+ 1. Similarly, for every α ∈ F+

1 , we can find g(α) < λ
such that {α} × (g(α), λ] ∩X × Y ⊂ (〈κ, λ〉,→)L ∩X × Y .

Put β0 = sup{g(α) : α ∈ F−1 ∪ F
+
1 }. Then by κ < λ, we have β0 < λ.

Pick β ∈ (β0, λ)∩Succ(λ). We may assume β ∈ F−0 ; then 〈κ, β〉 <L 〈κ, λ〉.
On the other hand, by |F+

1 | = κ and F+
1 × {β} ⊂ (〈κ, λ〉,→)L, we have

〈κ, β〉 ∈ ClτF
+
1 × {β} ⊂ [〈κ, λ〉,→)L. Therefore, 〈κ, λ〉 ≤L 〈κ, β〉, a

contradiction.
Now we may assume |F+

1 | < κ, then |F−1 | = κ and 〈κ, λ〉 ∈ ClτF
−
1 ×

{λ} ⊂ (←, 〈κ, λ〉]L.
Claim 2. |F+

0 | = λ.
Proof. Assume |F+

0 | < λ; then |F−0 | = λ. Therefore, we have 〈κ, λ〉 ∈
Clτ{κ}×F−0 ⊂ (←, 〈κ, λ〉]L. For every β ∈ F−0 , since (〈κ, β〉,→)L∩X×Y
is a τ -neighborhood of 〈κ, λ〉 and 〈κ, λ〉 ∈ ClτF

−
1 ×{λ}, there is α(β) ∈ F−1

such that 〈κ, β〉 <L 〈α(β), λ〉. Since κ < λ, there are α0 ∈ F−1 and F ⊂
F−0 of size λ such that α(β) = α0 for each β ∈ F . Note 〈α0, λ〉 <L 〈κ, λ〉.
Then {κ}×F ⊂ (←, 〈α0, λ〉)L; therefore, Clτ{κ}×F ⊂ (←, 〈α0, λ〉]L. On
the other hand, it follows from |F | = λ that 〈κ, λ〉 ∈ Clτ{κ} × F ; thus,
〈κ, λ〉 ≤L 〈α0, λ〉, a contradiction.

Now for each β ∈ F+
0 , it follows from 〈κ, λ〉 <L 〈κ, β〉 that there is

f(β) < κ such that

(∗) ((Succ(κ) ∪ {κ} ∩ (f(β), κ])× {β} ⊂ (〈κ, λ〉,→)L.

By κ < λ, there are α0 < κ and F ⊂ F+
0 of cardinality λ such that

f(β) = α0 for every β ∈ F .
Since |F−1 | = κ, one can pick α ∈ F−1 with α0 < α. Then 〈α, λ〉 <L

〈κ, λ〉. On the other hand, by (∗), we have {α} × F ⊂ (〈κ, λ〉,→)L;
therefore, 〈α, λ〉 ∈ Clτ{α} × F ⊂ [〈κ, λ〉,→)L, a contradiction. �

Definition 2.3. Let κ be a regular infinite cardinal, let X = {Xα : α ∈ Λ}
a pairwise disjoint collection of non-empty spaces, and let x0 be a point
with x0 /∈

⋃
α∈ΛXα, where Λ ⊂ κ. Put X = (

⋃
α∈ΛXα)∪{x0} and equip

the topology τ generated by

(
⋃
α∈Λ

τα) ∪ {(
⋃

α∈Λ∩(γ,κ)

Xα) ∪ {x0} : γ < κ}
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as a base, where τα is the topology on Xα. We call this topological space
〈X, τ〉 a 1-point extension of the topological sum

⊕
α∈ΛXα with the κ-limit

point x0 and denote it by X(X , x0).

In the definition above, note that
• for every α ∈ Λ, Xα is clopen in X. Thus, the topological sum⊕

α∈ΛXα is a subspace of X;
• x0 has a neighborhood base of cardinality ≤ κ;
• Λ is unbounded in κ if and only if x0 is a non-isolated point of X.

Now let C be a club set in a regular infinite cardinal κ and α < κ. Let

α−C = sup(C ∩ α) and α+
C = min{β ∈ C : α < β},

where sup ∅ = −1. If contexts are clear, then we write simply α− and α+.
Note that α ∈ Succ(C) if and only if α− < α and that α < α+ for every
α ∈ C.

Lemma 2.4. Let κ be a regular infinite cardinal, let X = {Xα : α ∈ Λ}
be a pairwise disjoint collection of non-empty suborderable spaces with
Λ ⊂ Succ(C) for some club set C of κ, and let x0 /∈

⋃
α∈ΛXα. Then

the 1-point extension X(X , x0) of
⊕

α∈ΛXα with the κ-limit point x0 is
suborderable.

Proof. For every α ∈ Λ, pick a compact LOTS 〈Lα, <α, λ(<α)〉 such that
〈Lα, λ(<α)〉 contains 〈X, τα〉 as a dense subspace, where τα denotes the
topology on Xα. For every α ∈ C \ Λ, let Lα = {lα} be a one point set
with the trivial order <α. By taking an isomorphic compact LOTS, we
may assume that {Lα : α ∈ C} is pairwise disjoint with x0 /∈

⋃
α∈C Lα.

Let L = (
⋃
α∈C Lα) ∪ {x0} and define a linear order <L on L as follows:

• for every x ∈
⋃
α∈C Lα, x <L x0; that is, x0 = maxL;

• if x, y ∈ Lα for some α ∈ C, then x <L y is defined by x <α y;
• if x ∈ Lα and y ∈ Lα with α, β ∈ C and α 6= β, then x <L y is

defined by α < β.
Then obviously <L�Lα coincides with <α for every α ∈ C.

Claim 1. For every α ∈ Succ(C), Lα is open in 〈L, λ(<L)〉.
Proof. It follows from Lα = (maxLα− ,minLα+)L that Lα is open in

〈L, λ(<L)〉.
Claim 2. For every α ∈ C, 〈Lα, λ(<α)〉 is a convex closed subspace of

〈L, λ(<L)〉.
Proof. Since Lα is represented as Lα = [minLα,maxLα]L, it is closed

and convex. Therefore, λ(<L)�Lα = λ(<L�Lα) = λ(<α).
Since λ(<α) � Xα = τα for each α ∈ Λ, by Claim 2, we have the

following.
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Claim 3. For every α ∈ Λ, 〈Xα, τα〉 is a subspace of 〈L, λ(<L)〉.
To finish the proof of the lemma, it suffices to see the following.
Claim 4. τ = λ(<L) � X, where τ denotes the topology of X =

X(X , x0).
Proof. First, we prove τ ⊂ λ(<L) �X. Let B be the base (

⋃
α∈Λ τα) ∪

{(
⋃
α∈Λ∩(γ,κ)Xα) ∪ {x0} : γ < κ} of τ . It suffices to see B ⊂ λ(<L) �X.

Let U ∈ B.
Case 1. U ∈ τα for some α ∈ Λ.

By Claim 3, there is V ∈ λ(<L) with V ∩Xα = U . By Claim 1, we
have Xα = X∩Lα ∈ λ(<L)�X. Therefore, U = V ∩Xα = (V ∩X)∩Xα ∈
λ(<L)�X holds.

Case 2. U = (
⋃
α∈Λ∩(γ,κ)Xα) ∪ {x0} for some γ < κ.

Let α0 = min(Λ ∩ (γ, κ)). Then we have α0 ∈ Λ ⊂ Succ(C) and
U = ((

⋃
α∈(α−0 ,κ)∩C Lα) ∪ {x0}) ∩X = (maxLα−0

, x0]L ∩X ∈ λ(<L)�X.

Next, we show τ ⊃ λ(<L)�X. Let z ∈ L. It suffices to see the following
two facts.

Fact 1. (←, z)L ∩X ∈ τ .
If z = x0, (←, z)L ∩X =

⋃
α∈ΛXα ∈ τ holds. So we may assume z 6=

x0. Take α ∈ C with z ∈ Lα. If α /∈ Λ, then (←, z)L∩X =
⋃
β∈Λ∩αXβ ∈

τ . If α ∈ Λ, then by Claim 3, we have (←, z)L ∩Xα ∈ τα ⊂ τ ; therefore,
(←, z)L ∩X = (

⋃
β∈Λ∩αXβ) ∪ ((←, z)L ∩Xα) ∈ τ .

Fact 2. (z,→)L ∩X ∈ τ .
If z = x0, (z,→)L∩X = ∅ ∈ τ . So we may assume z 6= x0. Take α ∈ C

with z ∈ Lα. If α /∈ Λ, then (z,→)L ∩X = (
⋃
β∈Λ∩(α,κ)Xβ) ∪ {x0} ∈ τ .

If α ∈ Λ, then by Claim 3, we have (z,→)L ∩ Xα ∈ τα ⊂ τ ; therefore,
(z,→)L ∩X = (

⋃
β∈Λ∩(α,κ)Xβ) ∪ ((z,→)L ∩Xα) ∈ τ . �

The following corollary is well known by different approaches.

Corollary 2.5. If X = {Xα : α ∈ Λ} is a pairwise disjoint collection of
non-empty suborderable spaces, then the topological sum

⊕
α∈ΛXα is also

suborderable.

Proof. We may assume that all Xα’s are non-empty. Take a suitably large
regular infinite cardinal κ with |Λ| ≤ κ and we may assume Λ ⊂ Succ(κ).
By Lemma 2.4, X(X , x0) is suborderable for some x0. Therefore, the
subspace

⊕
α∈ΛXα of X(X , x0) is suborderable. �

Corollary 2.5 shows the following corollary.
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Corollary 2.6. If X is a suborderable space and Y is a discrete space,
then X × Y is suborderable.

Therefore, when we discuss suborderability of X × Y , we may assume
that both X and Y are non-discrete. Additionally, note that if X is an
orderable space and Y is a discrete space, then X × Y is orderable.

Corollary 2.7. Let κ be a regular infinite cardinal. Then X = (Succ(κ)∪
{κ})2 is suborderable.

Proof. For every α ∈ Succ(κ), let

Xα = ({α} × [α, κ] ∩X)
⊕

((α, κ]× {α} ∩X);

moreover, let
X = {Xα : α ∈ Succ(κ)}.

Then obviously X is a pairwise disjoint collection of suborderable spaces.
One can check that both topologies of X and X(X , 〈κ, κ〉) coincide by
carefully comparing both neighborhood bases at 〈κ, κ〉. Lemma 1.5 above
shows that X is suborderable. �

In particular, (ω + 1)2 is suborderable [7].

Lemma 2.8 ([1, Problem 3.12.3(a)]). Let 〈L,<, λ(<)〉 be a LOTS. Then
the following are equivalent.

(1) The space 〈L, λ(<)〉 is compact.
(2) For every subset A of L, A has the least upper bound supLA in
〈L,<〉.

(3) For every subset A of L, A has the greatest lower bound infLA in
〈L,<〉.

Note that sup ∅ = minL and inf ∅ = maxL whenever L is a compact
LOTS.

Definition 2.9. Let L be a compact LOTS and x ∈ L. A subset A ⊂
(←, x)L is said to be 0-unbounded for x in L if, for every y < x, there is
a ∈ A with y ≤ a. Similarly, for a subset A ⊂ (x,→)L, 1-unbounded for x
is defined. Now the 0-cofinality 0-cfL x of x in L is defined by

0-cfL x = min {|A| : A is 0-unbounded for x in L}.
Analogously, 1-cfL x is defined. If there is no confusion, we write simply
0-cf x and 1-cf x. Observe that

• if x is the smallest element of L, then 0-cf x = 0;
• if x has the immediate predecessor in L, then 0-cf x = 1;
• otherwise, 0-cf x is a regular infinite cardinal.

Moreover, note
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• ω ≤ 0-cf x if and only if supL(←, x)L = x if and only if
x ∈ ClL(←, x)L.

If 0-cf x = κ, then we can define a strictly increasing function c : κ→ L
which is continuous with its range c[κ] 0-unbounded for x. We call such
a function c a 0-normal function for x in L. The reader should note that
these methods in a compact LOTS extend the usual methods in ordinal
numbers.

Observe that in the notation above, for every closed set F of κ, c[F ]
is also closed in (←, x)L. Therefore, c is an embedding such that c[κ] is
closed in (←, x) and 0-unbounded for x. Note that there can be many
0-normal functions for x in L.

Also note that if cX and c′X are two linearly ordered compactifications
of a GO-space X, then i-cfcX x coincides with i-cfc′X x for every x ∈ X
and i ∈ 2 = {0, 1}. In our discussion, we apply these methods for L = lX
with a GO-space X and consider 0-cf lX x or 1-cf lX x for x ∈ lX. In
particular, if X is a subspace of an ordinal, say X ⊂ [0, γ], with the usual
order, then we can check using Lemma 1.1 that lX = Cl[0,γ]X. Moreover,
in this case, for every x ∈ lX, obviously 1-cf x is 0 or 1; furthermore, we
can easily check that 0-cf x is equal to cf x in the usual sense whenever
x ∈ Lim(X). Let X be a GO-space, x ∈ X, and κ = 0- cf x ≥ ω and
fix a 0-normal function c : κ → lX. Inductively, one can take a strictly
increasing sequence {x(α) : α < κ} ⊂ (←, x)lX ∩X with sup({c(β) : β ≤
α} ∪ {x(β) : β < α}) < x(α). Then, obviously, {x(α) : α < κ} ∪ {x} is
homeomorphic to Succ(κ) ∪ {κ}. Similarly, whenever X is a subspace of
an ordinal and α ∈ X ∩Lim(X), one can fix a strictly increasing sequence
{α(γ) : γ < κ} ⊂ X which is cofinal in α such that {α(γ) : γ < κ} ∪ {α}
is homeomorphic to Succ(κ) ∪ {κ}, where κ = cf α.

R. Engelking and D. Lutzer [2] proved that a suborderable space is
paracompact if and only if it does not have a closed subspace which
is homeomorphic to a stationary set in a regular uncountable cardinal.
Therefore, we have the following lemma.

Lemma 2.10 ([2]). A suborderable space is hereditarily paracompact if
and only if it does not have a subspace which is homeomorphic to a sta-
tionary set in a regular uncountable cardinal.

Now we are prepared to find properties implied by the suborderability
of product spaces. Note that if the product space X × Y is suborderable,
then both X and Y are suborderable. Therefore, we may assume that X
and Y are GO-spaces under the assumption that X × Y is suborderable.

Theorem 2.11. Let X and Y be non-discrete GO-spaces. If the product
space X × Y is suborderable, then



ORDERABILITY OF PRODUCTS 75

(1) X and Y are hereditarily paracompact;
(2) there is a unique regular infinite cardinal κ such that, for every

z ∈ X ∪ Y and i ∈ 2, i-cf z is 0, 1, or κ, where i-cf z means
i-cf lX z (i-cf lY z) whenever z ∈ X (z ∈ Y , respectively);

(3) X or Y are hereditarily disconnected.

Proof. Assume that X × Y is suborderable. Fix a linearly ordered set
〈L,<L〉 such that X × Y is a subspace of 〈L, λ(<L)〉.

(1) We will see that Y is hereditarily paracompact (the case for X is
similar). Assume not; then by Lemma 2.10, there is a subspace which is
homeomorphic to a stationary set S in a regular uncountable cardinal in
κ. Since X is non-discrete, there is i ∈ 2 and x ∈ X with λ = i- cf lX x ≥
ω. As mentioned above, X has a subspace which is homeomorphic to
Succ(λ) ∪ {λ}.

Case 1. λ < κ.

By Lemma 2.1, the hereditarily normal space X ×Y has a non-heredi-
tarily normal subspace, a contradiction.

Case 2. κ ≤ λ.
Since S is stationary, we can take α ∈ S ∩ Lim(S). Set µ = cf α; then

µ < λ. As mentioned above, S has a subspace which is homeomorphic
to Succ(µ) ∪ {µ}. Then the suborderable space X × Y contains a sub-
space which is homeomorphic to (Succ(λ)∪ {λ})× (Succ(µ)∪ {µ}). This
contradicts Lemma 2.2.

(2) Assume that (2) does not hold. Since both X and Y are non-
discrete, there are x ∈ X, y ∈ Y , and i, j ∈ 2 with i-cf x ≥ ω, j-cf y ≥ ω,
and i-cf x 6= j-cf y. Set κ = i-cf x and λ = j-cf y. Then the suborderable
space X × Y contains a subspace which is homeomorphic to (Succ(κ) ∪
{κ})× (Succ(λ) ∪ {λ}). This contradicts Lemma 2.2.

(3) Recall that a space is hereditarily disconnected if every non-empty
connected subset is a one-point set. Assume neither X nor Y is hered-
itarily disconnected. Then there are connected subsets C and D of X
and Y , respectively, with 2 ≤ |C| and 2 ≤ |D|. Fix x0, x1 ∈ C and
y0, y1 ∈ D with x0 6= x1 and y0 6= y1, respectively. We may assume
〈x0, y0〉 <L 〈x0, y1〉 <L 〈x1, y1〉; otherwise, change the indices. Then
〈x1, y0〉 ∈ C × {y0} ∩ {x1} ×D; moreover, both C × {y0} and {x1} ×D
are connected. Therefore, C × {y0} ∪ {x1} × D is a connected sub-
set of X × Y \ {〈x0, y1〉} containing the points 〈x0, y0〉 and 〈x1, y1〉.
On the other hand, the disjoint open sets (←, 〈x0, y1〉)L ∩ X × Y and
(〈x0, y1〉,→)L ∩X × Y separate the connected set C × {y0} ∪ {x1} ×D,
a contradiction. �
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Whenever X and Y are subspaces of an ordinal, then the converse
implication of the theorem above is also true.

Theorem 2.12. Let X and Y be non-discrete subspaces of an ordinal.
Then the product space X × Y is suborderable, if

(1) X and Y are hereditarily paracompact, and
(2) there is a unique regular infinite cardinal κ such that, for every

z ∈ X ∪ Y and i ∈ 2, cf z is either 0, 1 or κ; equivalently, for
every z ∈ (X ∩ Lim(X)) ∪ (Y ∩ Lim(Y )), cf z = κ.

Proof. Note that every subspace of an ordinal is hereditarily disconnected.
We may assume X∪Y ⊂ [0, γ] for some ordinal γ. It suffices to see that by
induction on α ≤ γ, (X∩[0, α])×Y is suborderable (because α = γ finishes
the proof). Assume that α ≤ γ and for every α′ < α, (X ∩ [0, α′])× Y is
suborderable.

Case 1. α /∈ Lim(X).

In this case, let α′ = sup(X ∩ α). By α′ < α, since (X ∩ [0, α])× Y is
homeomorphic to (X ∩ [0, α′])×Y

⊕
(X ∩{α})×Y , it is suborderable by

the assumption.

Case 2. α ∈ Lim(X).

Set λ = cf α and fix a normal function c : λ → α for α; that is, it is a
strictly increasing continuous cofinal function into α, where c(−1) = −1.
Since λ is homeomorphic to c[λ], by Lemma 2.10, c−1[X] is non-stationary
in λ whenever λ is uncountable.

Subcase 2.1. α /∈ X.

When λ = ω, (X ∩ [0, α])×Y is homeomorphic to
⊕

n∈ω(X ∩ (c(n−
1), c(n)])×Y . When ω < λ, taking a club set C in λ with C∩c−1[X] = ∅,
(X ∩ [0, α])×Y is homeomorphic to

⊕
δ∈Succ(C)(X ∩ (c(δ−), c(δ)])×Y . In

either case, (X ∩ [0, α])× Y is suborderable by the inductive assumption.

Subcase 2.2. α ∈ X.

By assumption (2), we have λ = κ. We will see by induction on
β ≤ γ that (X ∩ [0, α])× (Y ∩ [0, β]) is suborderable (then β = γ finishes
this subcase). Assume that β ≤ γ and for every β′ < β, (X ∩ [0, α]) ×
(Y ∩ [0, β′]) is suborderable. It suffices to check the case β ∈ Y ∩Lim(Y ),
because other cases are similar to Case 1 and Subcase 2.1. By assumption
(2), we have cf β = κ. Let d : κ → β be a normal function for β. When
κ = ω, let C = ω. When κ > ω, by Lemma 2.10, take a club set C of κ
with C ∩ (c−1[X] ∪ d−1[Y ]) = ∅. For every δ ∈ Succ(C), let Zδ =

(X∩(c(δ−), α])×(Y ∩(d(δ−), d(δ)])
⊕

(X∩(c(δ−), c(δ)])×(Y ∩(d(δ), β]).
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By the inductive assumption, Zδ is suborderable. Put Λ = {δ ∈ Succ(C) :
Zδ 6= ∅} and Z = {Zδ : δ ∈ Λ}. Note that Z is pairwise disjoint. It is
easy to see that (X ∩ [0, α]) × (Y ∩ [0, β]) = (

⋃
δ∈Λ Zδ) ∪ {〈α, β〉} and

the product topology coincides with topology of the 1-point extension of⊕
δ∈Λ Zδ with the κ-limit point 〈α, β〉. It follows from Lemma 2.4 that

(X ∩ [0, α])× (Y ∩ [0, β]) is suborderable. �

Note that the product of two subspaces of an ordinal is scattered (=
every subspace has an isolated point), and that scattered suborderable
spaces are orderable [11]. Thus, in Theorem 2.12, “suborderable” is re-
placed by “orderable.”

Example 2.13. The square S2 of the Sorgenfrey line S with the usual
order satisfies (1), (2), and (3) with X = Y = S in Theorem 2.11. But S2

is not suborderable.
It is well known that S is hereditarily paracompact and hereditarily

disconnected. Since S2 is not normal, it is not suborderable. We check
(2). We may assume S = (0, 1) with the usual order and the topology
induced by {(a,→) : a ∈ (0, 1)} ∪ {(←, b] : b ∈ (0, 1)}, where (0, 1)
denotes the unit open interval. Then using Lemma 1.1 and Lemma 2.8,
it is easy to check lS = [0, 1] × {0} ∪ (0, 1) × {1} with the lexicographic
order identifying S with (0, 1) × {0}. Then, for every x ∈ lS and i ∈ 2,
i- cf x is either 0, 1, or ω.

Question 2.14. For non-discrete suborderable spaces X and Y , charac-
terize suborderability of X × Y .

Concerning monotonical normality, the following are known.
• If X × Y is monotonically normal and if Y contains a countable

set with a limit point, then X is stratifiable [6].
• If X2 is monotonically normal, then X is hereditarily paracom-

pact and Xn is monotonically normal for each finite n [4].
So we also ask the following question.

Question 2.15. Characterize suborderable spaces X and Y for which
X × Y is monotonically normal.
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