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ORDERABILITY OF PRODUCTS

NOBUYUKI KEMOTO

ABsTrRACT. We prove that for non-discrete spaces X and Y,

(1) if the product space X X Y is suborderable, then both X and
Y are hereditarily paracompact and there is a unique regular
infinite cardinal  such that for every z € XUY, the cofinality
from left (right) of z is either 0,1 or k;

(2) if X and Y are subspaces of an ordinal, then the converse
implication of (1) is also true.

1. INTRODUCTION

Recently, a kind of orderability of X2 is known to be related to selection
theory; see [5] and [3]. In this paper, we see the results in the abstract.

Spaces mean regular topological spaces. Let < be a linear order on a
set X. The usual order topology is denoted by (<), that is, the topology
generated by

{(a,—):a e X} U{(+,b):be X}

as a subbase, where (a,—) ={z € X ra <z}, (¢,b) ={r € X :a <
x < b}, etc. If necessary, we write <x and (a,b)x instead of < and
(a,b), respectively. A linearly ordered topological space (LOTS) X means
the triple (X, <,A(<)). As usual, we consider an ordinal « as the set
of smaller ordinals and as a LOTS with the order € (we identify it with
<). Similarly, a generalized ordered space (GO-space) means the triple
(X,<,T) where 7 is a topology on X with A(<) C 7 which has a base
consisting of convex sets, where a subset A is convezif (a,b) C A whenever
a,b e A with a <b.

A topological space (X, 7), where 7 is a topology on X, is said to be
orderable if 7 = A\(<) for some linear order < on X. Also, a topological
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space (X, 7) is said to be suborderable if it is a subspace of some orderable
space. It is well known that orderable spaces are hereditarily normal.
Also, it is well known that

(1) if (L,<p,A(<g))is a LOTS and X C L, then (X, <[ X, \(<z) |
X) is a GO-space, where <y X is the restricted order of <z, to
X and A(<p) | X is the subspace topology of A(<r) on X, i.e.,
{UNX :U € A(<z)}. On the other hand,

(2) if (X, <x, ) is a GO-space, then there is a LOTS (L, <p, A(<L1))
with X C L such that (X, 7) is a dense subspace of (L, A\(<r))
and <x=<p| X; therefore, (X, ) is suborderable. Obviously, a
suborderable space is a GO-space with some linear order. More-
over,

(3) if (X, <x,\(<x)) is a LOTS, there is a LOTS (L,<r,\(<z))
with X C L and <x=<z[ X such that the space (L, \(<p)) is
compact and contains (X, A(<x)) as a dense subspace. Therefore,
by (2) and (3), we have

(4) if (X,<x,7) is a GO-space, then there is a compact LOTS
(L,<p,A(<p)) with X C L and <x=<[ X such that the com-
pact space (L, A\(<r)) contains (X, ) as a dense subspace. So we
say a GO space (X, <x,7) has a linearly ordered compactifica-
tion (L, <r,A(<r)) or more simply, a GO-space X has a linearly
ordered compactification L.

Note that a compact LOTS (L, <p,A(<p)) has the largest element
max L and the smallest element min L. Also note that if X is a convex
subset of a LOTS (L, <p, (<)), then the subspace topology A(<) X
coincides with the order topology A(<] X) on X. For more details, see
[10] and [8]. Usually, if there is no confusion, we do not distinguish the
symbols <x and <p, and simply write <.

In general, a GO-space can have many linearly ordered compactifica-
tions. But it is known that a GO-space X has a linearly ordered com-
pactification [.X such that, for every linearly ordered compactification cX
of X, there is a continuous function f : cX — (X with f(z) = x for every
x € X; see [9]. Observe that by the definition, X is unique up to order
isomorphisms and is said to be the minimal linearly ordered compactifi-
cation of X and is characterized as follows.

Lemma 1.1 (]9, Lemma 2.1]). A linearly ordered compactification cX of
a GO-space X is minimal if and only if (a,b).x # O for every a,b € cX\ X
with a < b.
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2. REsULTS

Let {X, : @ € A} be a pairwise disjoint collection of spaces. Then
P cr Xao denotes the topological sum of X,’s, i.e., the space J,cp Xa
with the topology generated by |J,c, 7o as a base, where 7, is the topol-
ogy on X,. Note that the subspace {0}U(1,2) of the real line is suborder-
able but not orderable. This means that the topological sum of orderable
spaces need not be orderable. On the other hand, the infinite discrete
space D(k) of cardinality x is orderable because the LOTS k x Z with
the lexicographic order is homeomorphic to D(k), where Z is the set of
integers.

Let S be a subset of an ordinal a. Lim,(S) denotes the set {8 €
a :sup(S N pB) = B}, ie., the set of all cluster points of S in «. If the
contexts are clear, we simply write Lim(S). Obviously, if S is closed in
a, then Lim(S) C S. Succ(S) denotes the set S\ Lim(S), i.e., the set of
all isolated points of S.

A subset S of a regular uncountable cardinal & is stationary if it inter-
sects with all closed unbounded (club) sets C' of k, where a subset C of &
is unbounded if, for every a < k, there is § € C with a < 8. Note that if
S is unbounded in &, then Lim(S) is club in .

Lemma 2.1. Let S be a stationary set in a regular uncountable cardinal
k and let X be a non-discrete space of cardinality < k. Then the subspace
X xS of X x K is not hereditarily normal.

Proof. Let x be a non-isolated point of X and let ¥ = (X \ {z}) x SU
{z} x Succ(S). Then it is routine to check that Fy = {z} x Succ(S) and
Fy = (X \{z}) x (SNLim(S)) are disjoint closed sets in Y which cannot
be separated by disjoint open sets. O

Lemma 2.2. Let k and X\ be regular infinite cardinals with k # A. Then
the subspace (Succ(k) U {k}) x (Succ(A\) U{A}) of (k+1) x (A+1) is not
suborderable.

Proof. Let X = Succ(k) U {k} and Y = Succ(A) U {\} and assume that
X xY is suborderable. Denote the product topology of X xY by 7. Fix a
linearly ordered set (L, <p) such that X xY C Land A\(<p) [ X xY =T,
where A(<) denotes the order topology on L. Denote the restricted
order <z X XY on X xY by <. We may assume w < xk < A. Let
Fy = {k} x Succ(A) and F; = Succ(k) x {A}. Put

Fy ={B € Succ(N) : (k, B) < (k, M)},
FO+ = {pB € Succ(\) : (K, \) < (k, )},
(k) + {, A) < (K, A)},

F = {a € Succ(k
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F" = {a € Succ(k) : {k, \) < (o, \)}.
Note Fy = {k} x (Fy UFy) and F} = (F] UF") x {)\}.

Cram 1. |Fy | < kor |[F}f| < k.

Proof. Assume that both F] and F1+ have cardinality k. For every
a € Fy, since (<, (k, A\))NX xY is a 7-neighborhood of (a, \) in X XY,
there is g(a) < A such that {a} x (g(a), A JNX XY C (+-, (k,A)) L NX XY,
where (<, (k,A))r, denotes the interval in L and (g(a), ] denotes the
usual interval in A + 1. Similarly, for every a € F;", we can find g(a) < A
such that {a} x (g(a), N X xY C ((k,\),=)rNX xY.

Put 3y = sup{g(a) : @ € F; U F;t}. Then by x < ), we have 3y < \.
Pick 5 € (Bo, A)NSucc(A). We may assume § € Fy ; then (k, 8) <p (k, A).
On the other hand, by |F;"| = x and F;" x {8} C ((k,\), =)L, we have
(k,B) € CL.F;" x {8} C [(k,A\),—)r. Therefore, (r,\) <p (k,f), a
contradiction.

Now we may assume |F'| < &, then |F, | = & and (k,\) € CL.F] x
{A} C (+, (K, N)]L-

Cram 2. |Ff| = A

Proof. Assume |F;| < A; then |F; | = A. Therefore, we have (k,\) €
Cl{r}xF; C (+,(k,\)]r. For every g € Fy, since ((k, 8), >)LNX xY
is a 7-neighborhood of (k, A} and (k, ) € Cl F|” x{\}, thereis a(8) € Fy
such that (k,8) <p (a(B),A). Since kK < A, there are ag € F; and F' C
Fy of size A such that a(8) = ap for each g € F. Note (ag, A) <p, (K, A).
Then {k} x F C (4, (a, A\)); therefore, Cl.{x} x F' C (+—, (@p, \)]. On
the other hand, it follows from |F| = A that (k,A) € Cl,{x} x F; thus,
(k, \) <1, {agp, A}, a contradiction.

Now for each 8 € Fj, it follows from (x,\) <z (k,3) that there is
f(B) < k such that

(%) ((Suce(r) U{r} N (f(B),K]) x {B} C ((K,A), =)L
By k < A, there are ayp < kK and F' C FO+ of cardinality A such that
f(B) = ag for every g € F.
Since |F] | = K, one can pick o € F] with o9 < . Then (a, \) <p
(k,A). On the other hand, by (x), we have {a} x F C ({k,\),—=)r;
therefore, (o, \) € Cl {a} x F C [(k,A), =)L, a contradiction. O

Definition 2.3. Let  be a regular infinite cardinal, let X = {X,, : @« € A}
a pairwise disjoint collection of non-empty spaces, and let xy be a point
with 2o & Uyep Xao, where A C k. Put X = (U,ep Xa) U{z0} and equip
the topology 7 generated by

(Umuit U Xo)u{wd:v<s}

aEA aeAN(v,k)
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as a base, where 7, is the topology on X,. We call this topological space
(X, T) al-point extension of the topological sum P X, with the k-limit
point xo and denote it by X (X, z¢).

acA

In the definition above, note that

e for every a € A, X,, is clopen in X. Thus, the topological sum
@oca Xa is a subspace of X;

e g has a neighborhood base of cardinality < k;

e A is unbounded in x if and only if zq is a non-isolated point of X.

Now let C be a club set in a regular infinite cardinal x and « < k. Let
ag =sup(CNa)and af =min{B € C:a<p},

where sup ) = —1. If contexts are clear, then we write simply a~ and a™.
Note that a € Suce(C) if and only if @~ < « and that o < a™ for every
aeC.

Lemma 2.4. Let & be a regular infinite cardinal, let X = {X, : a € A}
be a pairwise disjoint collection of mon-empty suborderable spaces with
A C Succ(C) for some club set C of k, and let xo ¢ U,cp Xo- Then
the 1-point extension X (X, o) of @ ep Xa with the k-limit point xq is
suborderable.

Proof. For every a € A, pick a compact LOTS (L, <a, A(<q)) such that
(Lo A(<q)) contains (X, 7,) as a dense subspace, where 7, denotes the
topology on X,. For every a € C'\ A, let L, = {l,} be a one point set
with the trivial order <,. By taking an isomorphic compact LOTS, we
may assume that {L, : @ € C} is pairwise disjoint with 29 ¢ (J,cc La-
Let L = (Uyee La) U {0} and define a linear order <z, on L as follows:
e for every x € UaGC Lo, x <y, xg; that is, xg = max L;
o if x,y € L, for some o € C, then = <, y is defined by = <, v;
o ifxr € L, and y € L, with o, 8 € C and « # (3, then x <, y is
defined by a < 8.
Then obviously <[ L, coincides with <, for every a € C.
Cram 1. For every « € Succ(C), L, is open in (L, A\(<L)).
Proof. 1t follows from L, = (max L,-,min L.+ )y, that L, is open in
(LA(<1)):
CramM 2. For every a € C, (Lo, A(<q)) is a convex closed subspace of
(LA(<1)).
Proof. Since Ly, is represented as L, = [min L,, max L, ]z, it is closed
and convex. Therefore, A(<r) [ Lo = A(<Ll La) = AM(<a)-

Since A\(<q) | Xo = 7o for each a € A, by Claim 2, we have the
following.
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Cramm 3. For every a € A, (X, 7o) is a subspace of (L, A\(<r)).

To finish the proof of the lemma, it suffices to see the following.

CramM 4. 7 = A(<p) [ X, where 7 denotes the topology of X =
)((.X7 .2?0).

Proof. First, we prove 7 C A(<r) [ X. Let B be the base (|J,cp 7a) U
{Uuean(y,n) Xa) U{zo} o v <k} of 7. It suffices to see B C A(<r) [ X.
Let U € B.

Case 1. U € 1, for some o € A.

By Claim 3, there is V € A(<y) with VN X, = U. By Claim 1, we
have X, = XNL, € \(<p) [ X. Therefore, U =VNX, = (VNX)NX, €
A(<z) [ X holds.

Case 2. U = (Upenn(y,n) Xa) U{zo} for some v < k.

Let ap = min(A N (,x)). Then we have ag € A C Suce(C) and
U= ((Uae(%f’n)mc L) U{zo})NX = (maxLaS,xo]L NX e <) lX.

Next, we show 7 D A(<p) [ X. Let z € L. It suffices to see the following
two facts.

Fact 1. («—,z)pNX e .

If 2 =20, (+,2)L N X = Jpen Xa € 7 holds. So we may assume z #
zg. Take a € C with z € L. If a ¢ A, then (<=, 2)1NX = Ugcpna X5 €
7. If @ € A, then by Claim 3, we have (+,2);, N X, € 7, C 7; therefore,
(= 2)p N X = (Ugerna Xp) U (s 2)L N Xa) € 7.

FacT 2. (z,—)rNX €.

If z = zg, (2,—=)NX =0 € 7. So we may assume z # xy. Take o € C
with z € Lo. If o ¢ A, then (2, =) N X = (Ugean(a,n X8) U{zo} € 7.
If @ € A, then by Claim 3, we have (z,—)r N X, € 7, C 7; therefore,
(2, =) NX = (Ugern(an) X8) U (2, 2)r N Xa) €. O

The following corollary is well known by different approaches.

Corollary 2.5. If ¥ = {X, : a € A} is a pairwise disjoint collection of
non-empty suborderable spaces, then the topological sum @, .\ X is also
suborderable.

Proof. We may assume that all X,’s are non-empty. Take a suitably large
regular infinite cardinal x with |A| < k and we may assume A C Succ(k).
By Lemma 2.4, X(X,xzg) is suborderable for some xg. Therefore, the
subspace @, Xao of X(X,x0) is suborderable. O

Corollary 2.5 shows the following corollary.
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Corollary 2.6. If X is a suborderable space and Y is a discrete space,
then X XY is suborderable.

Therefore, when we discuss suborderability of X x Y, we may assume
that both X and Y are non-discrete. Additionally, note that if X is an
orderable space and Y is a discrete space, then X x Y is orderable.

Corollary 2.7. Let k be a reqular infinite cardinal. Then X = (Succ(k)U
{k})? is suborderable.

Proof. For every a € Succ(k), let

Xo = ({a} x [a, 8] 0 X) P((a, 5] x {a} N X);
moreover, let
X ={X,:a € Succ(k)}.
Then obviously X is a pairwise disjoint collection of suborderable spaces.
One can check that both topologies of X and X (X, (k,k)) coincide by

carefully comparing both neighborhood bases at (k, k). Lemma 1.5 above
shows that X is suborderable. (Il

In particular, (w + 1)? is suborderable [7].

Lemma 2.8 ([1, Problem 3.12.3(a)]). Let (L, <,\(<)) be a LOTS. Then
the following are equivalent.
(1) The space (L, \(<)) is compact.
(2) For every subset A of L, A has the least upper bound sup; A in
(L, <).
(3) For every subset A of L, A has the greatest lower bound infr, A in
(L, <).

Note that sup( = min L and inf ) = max L whenever L is a compact
LOTS.

Definition 2.9. Let L be a compact LOTS and x € L. A subset A C
(+—, ) is said to be 0-unbounded for x in L if, for every y < x, there is
a € A with y < a. Similarly, for a subset A C (z, =), l-unbounded for x
is defined. Now the 0-cofinality 0-cfp x of x in L is defined by
O-cfr, x = min {|A4|: A is 0-unbounded for x in L}.

Analogously, 1-cfy, = is defined. If there is no confusion, we write simply
0-cf x and 1-cf z. Observe that

e if x is the smallest element of L, then 0-cf z = 0;

e if x has the immediate predecessor in L, then O-cf z = 1;

e otherwise, O-cf x is a regular infinite cardinal.

Moreover, note
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e w < O-cf z if and only if sup; (+—, z);, = « if and only if
T € CIL(%,x)L.

If 0-cf x = K, then we can define a strictly increasing function c¢: Kk — L
which is continuous with its range c[k] O-unbounded for z. We call such
a function ¢ a 0-normal function for x in L. The reader should note that
these methods in a compact LOTS extend the usual methods in ordinal
numbers.

Observe that in the notation above, for every closed set F' of &, c[F]
is also closed in (-, ). Therefore, ¢ is an embedding such that ¢[x] is
closed in (4—,z) and O-unbounded for z. Note that there can be many
0-normal functions for x in L.

Also note that if cX and ¢’ X are two linearly ordered compactifications
of a GO-space X, then i-cf.x x coincides with i-cf. x = for every z € X
and i € 2 = {0, 1}. In our discussion, we apply these methods for L = [X
with a GO-space X and consider O-cf;x z or 1-cfjx x for x € IX. In
particular, if X is a subspace of an ordinal, say X C [0, ], with the usual
order, then we can check using Lemma 1.1 that [X = Cljy ,; X. Moreover,
in this case, for every x € [X, obviously 1-cf z is 0 or 1; furthermore, we
can easily check that 0-cf z is equal to cf z in the usual sense whenever
z € Lim(X). Let X be a GO-space, x € X, and Kk = 0-cfz > w and
fix a 0-normal function ¢ : kK — [X. Inductively, one can take a strictly
increasing sequence {z(a) : @ < k} C («—, );x N X with sup({c(8) : f <
alU{z(B) : 8 < a}) < z(a). Then, obviously, {z(a) : a < K} U {z} is
homeomorphic to Succ(x) U {x}. Similarly, whenever X is a subspace of
an ordinal and o € X NLim(X), one can fix a strictly increasing sequence
{a(y) : ¥ < K} C X which is cofinal in « such that {a(y) : v < k} U {a}
is homeomorphic to Succ(k) U {k}, where k = cf a.

R. Engelking and D. Lutzer [2] proved that a suborderable space is
paracompact if and only if it does not have a closed subspace which
is homeomorphic to a stationary set in a regular uncountable cardinal.
Therefore, we have the following lemma.

Lemma 2.10 ([2]). A suborderable space is hereditarily paracompact if
and only if it does not have a subspace which is homeomorphic to a sta-
tionary set in a regular uncountable cardinal.

Now we are prepared to find properties implied by the suborderability
of product spaces. Note that if the product space X x Y is suborderable,
then both X and Y are suborderable. Therefore, we may assume that X
and Y are GO-spaces under the assumption that X x Y is suborderable.

Theorem 2.11. Let X and Y be non-discrete GO-spaces. If the product
space X XY is suborderable, then
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(1) X and Y are hereditarily paracompact;

(2) there is a unique regular infinite cardinal k such that, for every
z € XUY and i € 2, i-cfz is 0, 1, or k, where i-cf z means
i-cfix z (i-cfiy z) whenever z € X (z € Y, respectively);

(3) X orY are hereditarily disconnected.

Proof. Assume that X x Y is suborderable. Fix a linearly ordered set
(L, <y) such that X x Y is a subspace of (L, \(<p1)).

(1) We will see that Y is hereditarily paracompact (the case for X is
similar). Assume not; then by Lemma 2.10, there is a subspace which is
homeomorphic to a stationary set S in a regular uncountable cardinal in
k. Since X is non-discrete, there is i € 2 and x € X with A = i-cf;x x >
w. As mentioned above, X has a subspace which is homeomorphic to

Succ(A) U {A}.
Case 1. A < k.

By Lemma 2.1, the hereditarily normal space X x Y has a non-heredi-
tarily normal subspace, a contradiction.

Case 2. Kk < A.

Since S is stationary, we can take o € S N Lim(S). Set u = cf a; then
1 < X. As mentioned above, S has a subspace which is homeomorphic
to Succ(u) U {g}. Then the suborderable space X x Y contains a sub-
space which is homeomorphic to (Succ(A) U{A}) x (Succ(p) U{p}). This
contradicts Lemma 2.2.

(2) Assume that (2) does not hold. Since both X and Y are non-
discrete, there are x € X, y € Y, and ,j € 2 with i-cfz > w, j-cfy > w,
and i-cf ¢ # j-cfy. Set k = i-cf x and A = j-cf y. Then the suborderable
space X x Y contains a subspace which is homeomorphic to (Succ(x) U
{k}) x (Succ(N\) U{A}). This contradicts Lemma 2.2.

(3) Recall that a space is hereditarily disconnected if every non-empty
connected subset is a one-point set. Assume neither X nor Y is hered-
itarily disconnected. Then there are connected subsets C' and D of X
and Y, respectively, with 2 < |C] and 2 < |D|. Fix zg,z1 € C and
Yo,y1 € D with zg # 21 and yo # w1, respectively. We may assume
(xo,90) <r {(mo,y1) <r (x1,y1); otherwise, change the indices. Then
(z1,90) € C x {yo} N{z1} x D; moreover, both C' x {yo} and {z1} x D
are connected. Therefore, C' X {yo} U {z1} X D is a connected sub-
set of X x Y \ {(zo,y1)} containing the points (zo,yo) and {(x1,y1).
On the other hand, the disjoint open sets (+, (zo,y1))r, N X x Y and
({xo,y1), =) N X X Y separate the connected set C' x {yo} U{z1} x D,
a contradiction. a
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Whenever X and Y are subspaces of an ordinal, then the converse
implication of the theorem above is also true.

Theorem 2.12. Let X and Y be non-discrete subspaces of an ordinal.
Then the product space X XY is suborderable, if

(1) X and Y are hereditarily paracompact, and

(2) there is a unique regular infinite cardinal k such that, for every
z€ XUY and i € 2, cfz is either 0,1 or k; equivalently, for
every z € (X NLim(X)) U (Y NLim(Y)), cf z = .

Proof. Note that every subspace of an ordinal is hereditarily disconnected.
We may assume X UY C [0,~] for some ordinal . It suffices to see that by
induction on o <, (XN[0, a]) XY is suborderable (because o = ~ finishes
the proof). Assume that o <« and for every o/ < a, (X N[0,0/]) x Y is
suborderable.

Case 1. a ¢ Lim(X).

In this case, let o/ = sup(X Na). By ¢ < a, since (X N[0,a]) XY is
homeomorphic to (X N[0,a']) x Y @(X N{a}) x Y, it is suborderable by
the assumption.

Case 2. a € Lim(X).

Set A = cf a and fix a normal function ¢ : A — « for «; that is, it is a
strictly increasing continuous cofinal function into «, where ¢(—1) = —1.
Since A is homeomorphic to ¢[A], by Lemma 2.10, ¢~*[X] is non-stationary
in A whenever A is uncountable.

Subcase 2.1. o ¢ X.

When A = w, (XN[0,a]) xY is homeomorphic to @,, ., (X N(c(n—
1),¢(n)]) xY. When w < A, taking a club set C'in A with CNe [ X] =0,
(XN[0,a]) xY is homeomorphic to B scgyee(cy (X N(c(67),¢(d)]) x Y. In
either case, (X N0, a]) x Y is suborderable by the inductive assumption.

Subcase 2.2. a € X.

By assumption (2), we have A\ = k. We will see by induction on
B <~ that (X N[0,a]) x (Y N[O, S]) is suborderable (then 8 = ~ finishes
this subcase). Assume that 8 < v and for every 3’ < 3, (X N[0,q]) x
(Y N0, 7)) is suborderable. It suffices to check the case 8 € Y NLim(Y),
because other cases are similar to Case 1 and Subcase 2.1. By assumption
(2), we have cf 8 = k. Let d : K — [ be a normal function for 5. When
K =w, let C = w. When k > w, by Lemma 2.10, take a club set C of s
with C' N (¢ [ X]Jud=t[Y]) = 0. For every ¢ € Succ(C), let Zs =

(XN (e(67),a]) x (Y N(d(67), d(8)])) DX N (e(d7), e(8)]) x (Y N (d(8), B])-
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By the inductive assumption, Zs is suborderable. Put A = {§ € Succ(C) :
Zs # 0} and Z = {Z5 : 6 € A}. Note that Z is pairwise disjoint. It is
easy to see that (X N [0,a]) x (Y N[0,5]) = (Usea Zs) U {{, 3)} and
the product topology coincides with topology of the 1-point extension of
Dsca Zs with the s-limit point (o, 3). It follows from Lemma 2.4 that
(X NJ[0,a]) x (Y NI0,Q]) is suborderable. O

Note that the product of two subspaces of an ordinal is scattered (=
every subspace has an isolated point), and that scattered suborderable
spaces are orderable [11]. Thus, in Theorem 2.12, “suborderable” is re-
placed by “orderable.”

Example 2.13. The square S? of the Sorgenfrey line S with the usual
order satisfies (1), (2), and (3) with X =Y =S in Theorem 2.11. But S?
is not suborderable.

It is well known that S is hereditarily paracompact and hereditarily
disconnected. Since S? is not normal, it is not suborderable. We check
(2). We may assume S = (0,1) with the usual order and the topology
induced by {(a,—) : a € (0,1)} U {(+,b] : b € (0,1)}, where (0,1)
denotes the unit open interval. Then using Lemma 1.1 and Lemma 2.8,
it is easy to check S = [0,1] x {0} U (0,1) x {1} with the lexicographic
order identifying S with (0,1) x {0}. Then, for every = € IS and i € 2,
i-cf x is either 0, 1, or w.

Question 2.14. For non-discrete suborderable spaces X and Y, charac-
terize suborderability of X x Y.

Concerning monotonical normality, the following are known.
e If X xY is monotonically normal and if Y contains a countable
set with a limit point, then X is stratifiable [6].
e If X? is monotonically normal, then X is hereditarily paracom-
pact and X" is monotonically normal for each finite n [4].

So we also ask the following question.

Question 2.15. Characterize suborderable spaces X and Y for which
X xY is monotonically normal.
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