

http://topology.nipissingu.ca/tp/

# Uniformity of Uniform Convergence on the Family of Sets

by Alexander V. Osipov

Electronically published on July 29, 2016

# Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

**ISSN:** (Online) 2331-1290, (Print) 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on July 29, 2016

## UNIFORMITY OF UNIFORM CONVERGENCE ON THE FAMILY OF SETS

#### ALEXANDER V. OSIPOV

Abstract. We prove that for every Tychonoff space X and any uniform cub-space  $(Y,\mathcal{U})$ , the topology on C(X,Y), induced by the uniformity  $\hat{\mathcal{U}}|\lambda$  of uniform convergence on the saturation family  $\lambda$ , coincides with the set-open topology on C(X,Y). For every  $Y^2$ -compact space X and any uniform space  $(Y, \mathcal{U})$ , the topology on C(X,Y), induced by the uniformity  $\hat{\mathcal{U}}$  of uniform convergence, coincides with the Y-compact-open topology on C(X,Y) and depends only on the topology induced on Y by the uniformity  $\mathcal{U}$ . In particular, for every pseudocompact space X and any metrizable topological vector space Y with uniform  $\mathcal{U}$ , the topology on C(X,Y), induced by the uniformity  $\hat{\mathcal{U}}$  of uniform convergence, coincides with the C-compact-open topology on C(X,Y) (with the compact-open topology on  $C(\nu X, Y)$  where  $\nu X$  is the Hewitt realcompactification of X) and depends only on the topology induced on Y by the uniformity  $\mathcal{U}$ . It is also shown that in the class of closed-homogeneous complete uniform spaces Y, a necessary condition for coincidence of topologies is Y-compactness of the elements of the family  $\lambda$ .

## 1. Introduction

Let X be a Hausdorff space and let  $(Y, \mathcal{U})$  be a uniform space. We shall denote by C(X, Y) the set of all continuous mappings of the space X to the space Y, where Y is equipped with the topology induced by  $\mathcal{U}$ . For every

 $<sup>2010\</sup> Mathematics\ Subject\ Classification.$  Primary 54D25, 54B10, 54D45; Secondary 54A10, 54D30.

Key words and phrases. C-compact-open topology, closed-homogeneous, set-open topology, space, topology of uniform convergence, uniform space.

This work was supported by Act 211 Government of the Russian Federation, contract  $\pm$  02.A03.21.0006.

<sup>©2016</sup> Topology Proceedings.

 $V \in \mathcal{U}$ , denote by  $\hat{V}$  the entourage of the diagonal  $\Delta \subset C(X,Y) \times C(X,Y)$  defined by the formula

$$\hat{V} = \{ (f, g) : (f(x), g(x)) \in V \text{ for every } x \in X \}.$$

The uniformity on the set C(X,Y) generated by this family is called the uniformity of uniform convergence induced by  $\mathcal{U}$  and will be denoted by  $\hat{\mathcal{U}}$ . For two uniformities  $\mathcal{U}_1$  and  $\mathcal{U}_2$  on Y which induce the same topology, the topologies on C(X,Y) induced by  $\hat{\mathcal{U}}_1$  and  $\hat{\mathcal{U}}_2$  can be different ([3, Example 4.2.14]). It turns out, however, that for a compact space X, the topology on C(X,Y) is independent of the choice of a particular uniformity  $\mathcal{U}$  on the space Y because the topology induced by  $\hat{\mathcal{U}}$  coincides with the compact-open topology on C(X,Y).

#### 2. Preliminaries

Let X and Y be Tychonoff spaces.

For a fixed natural number n, a subset A of X is said to be  $Y^n$ -compact provided f(A) is compact for any  $f \in C(X,Y^n)$ . Note that any  $Y^{n+1}$ -compact subset of X is a  $Y^n$ -compact subset of X.

For example, if space Y is a metrizable topological vector space, then a Y-compact subset A of X is a C-compact subset of X and, moreover, A is a  $Y^n$ -compact subset of X for any  $n \in \mathbb{N}$  (and even  $Y^\omega$ -compact) [5]. Recall that a subset A of space X is a C-compact subset of X provided that a set f(A) is compact for every  $f \in C(X, \mathbb{R})$ .

**Definition 2.1.** A space Y will be called a *cub-space* if, for any  $x \in Y \times Y$ , there are a continuous map f from  $Y \times Y$  to Y and a point  $y \in Y$  such that  $f^{-1}(y) = x$ .

Note that if Y is a cub-space, then for any  $x \in Y^n$  where n > 1, there are a continuous map f from  $Y^n$  to Y and a point  $y \in Y$  such that  $f^{-1}(y) = x$ . For example, let n = 3 and  $x \in Y^3 = Y^2 \times Y$  where  $x = (x_1, x_2, x_3)$ . For a point  $z = (x_1, x_2)$ , there are a continuous map  $h_1$  from  $Y \times Y$  to Y and a point  $y \in Y$  such that  $h_1^{-1}(y) = z$ . For a point  $p = (y, x_3)$ , there are a continuous map  $h_2$  from  $Y \times Y$  to Y and a point  $s \in Y$  such that  $h_2^{-1}(s) = p$ . So a map  $f = h_2 \circ (h_1, id_Y)$  is a continuous map from  $Y^3$  to Y such that  $f^{-1}(s) = x$ . We now proceed by induction.

One can see that if Y is a Tychonoff space with countable pseudocharacter containing a nontrivial path or if Y is a zero-dimensional space with countable pseudocharacter containing a nontrivial convergent sequence, then Y is a cub-space. To wit, if Y is a Tychonoff space with countable pseudocharacter, then each point in  $Y \times Y$  is a zero set. For a point  $(x,y) \in Y \times Y$ , there is a continuous function  $f: Y \times Y \mapsto \mathbb{I} = [0,1]$ 

such that  $f^{-1}(0)=(x,y)$ . Since Y contains a nontrivial path,  $\mathbb{I}$  is homeomorphic to a subspace of Y. Analogously, if Y is a zero-dimensional space with countable pseudocharacter containing a nontrivial convergent sequence, then each point in  $Y\times Y$  is a zero set. For a point  $(x,y)\in Y\times Y$ , there is a continuous function  $f:Y\times Y\mapsto \mathbb{A}$  where  $\mathbb{A}$  is a nontrivial convergent sequence such that  $f^{-1}(0)=(x,y)$ . Since Y contains a nontrivial convergent sequence,  $\mathbb{A}$  is homeomorphic to a subspace of Y.

For example, a Tychonoff space with  $G_{\delta}$ -diagonal containing a non-trivial path and a zero-dimensional space with  $G_{\delta}$ -diagonal containing a nontrivial convergent sequence are cub-spaces.

In [2], a space  $M_1$  with the following properties is constructed:  $M_1$  is a metric continuum; if Z is a subcontinuum of  $M_1$  and  $f: Z \mapsto M_1$  is a continuous mapping, then either f is constant or f(x) = x for all  $x \in X$ . It follows that  $M_1$  is not a cub-space.

**Proposition 2.2.** Let Y be a cub-space. Then any Y-compact subset of X is a  $Y^n$ -compact subset of X.

*Proof.* Let A be a Y-compact subset X and  $g \in C(X, Y^n)$ . Suppose that there is  $z \in \overline{g(A)} \setminus g(A)$ . So there are a continuous map f from  $Y^n$  to Y and a point  $g \in Y$  such that  $f^{-1}(g) = z$ . It follows that f(g(A)) is not a compact subset of Y, which contradicts the Y-compactness of A.

A subset A of X is said to be a Y-zero set provided  $A = f^{-1}(Z)$  for some zero set Z of Y and  $f \in C(X,Y)$ . For example, if Y is the real numbers space  $\mathbb{R}$ , then any zero set subset of X is an  $\mathbb{R}$  zero set of X.

**Proposition 2.3.** Let X and Y be topological spaces, A be a  $Y^2$ -compact subset of X, and B be a Y-zero set such that  $B \cap A \neq \emptyset$ . Then  $B \cap A$  is a Y-compact subset of X.

Proof. Let  $g \in C(X,Y)$ . We fix a continuous mapping h of Y into  $\mathbb{R}$  with  $Z = h^{-1}(0)$  and  $f \in C(X,Y)$  such that  $B = f^{-1}(Z)$ . Let  $f_1$  be the diagonal product of the mappings g and f; that is,  $f_1(x) = (g(x), f(x)) \in Y \times Y$ . The set  $S = f_1(B \cap A) = f_1(A) \cap (Y \times Z)$  is closed in  $Y \times Y$ , and it follows that S is compact.

Let  $\pi$  be a natural projection of  $Y \times Y$  onto Y, associating with every point its first coordinate. Then, clearly,  $g = \pi \circ f_1$  and  $g(B \cap A) = \pi(S)$ .

Since  $\pi$  is continuous and S is compact, we conclude that  $g(B \cap A)$  is also compact.

**Proposition 2.4.** Let X be a topological space, Y be a cub-space, A be a Y-compact subset of X, and B be a Y-zero set such that  $B \cap A \neq \emptyset$ . Then  $B \cap A$  is a Y-compact subset of X.

## 3. Uniformity of Uniform Convergence on Y-Compact Sets

Recall that a family  $\lambda$  of non-empty subsets of a topological space  $(X,\tau)$  is called a  $\pi$ -network for X if, for any nonempty open set  $U \in \tau$ , there exists  $A \in \lambda$  such that  $A \subseteq U$ .

For a Hausdorff space X, a  $\pi$ -network  $\lambda$  for X, and a uniform space  $(Y, \mathcal{U})$ , we shall denote by  $\hat{\mathcal{U}}|\lambda$  the uniformity on C(X, Y) generated by the base consisting of all finite intersections of the sets of the form

$$\hat{V}|A = \{(f,g) : (f(x),g(x)) \in V \text{ for every } x \in A\},\$$

where  $V \in \mathcal{U}$ ,  $A \in \lambda$ .

The uniformity  $\hat{\mathcal{U}}|\lambda$  will be called the uniformity of uniform convergence on family  $\lambda$  induced by  $\mathcal{U}$ .

Recall that all sets of the form  $[F, U] := \{ f \in C(X, Y) : f(F) \subseteq U \}$ , where  $F \in \lambda$  and U is an open subset of Y, form a subbase of the set-open  $(\lambda$ -open) topology on C(X, Y).

We use the following notations for various topological spaces on the set C(X,Y):

 $C_{\hat{\mathcal{U}}|\lambda}(X,Y)$  for the topology induced by  $\hat{\mathcal{U}}|\lambda$ ,  $C_{\lambda}(X,Y)$  for the  $\lambda$ -open topology.

Let y be a point of a uniform space  $(Y, \mathcal{U})$  and let  $V \in \mathcal{U}$ . Recall that the set  $B(y, V) = \{z \in Y : (y, z) \in V\}$  is called the *ball with center y and radius V* or, briefly, the V-ball about y. For a set  $A \subset Y$  and a  $V \in \mathcal{U}$ , by the V-ball about A we mean the set  $B(A, V) = \bigcup_{y \in A} B(y, V)$ .

**Lemma 3.1** ([3, Lemma 8.2.5]). If  $\mathcal{U}$  is a uniformity on a space X, then, for every compact set  $Z \subseteq X$  and any open set G containing Z, there exists a  $V \in \mathcal{U}$  such that  $B(Z,V) \subseteq G$ .

A family  $\lambda$  will be called hereditary with respect to the Y-zero subsets of X if any nonempty  $A \cap B \in \lambda$  where  $A \in \lambda$  and B is a Y-zero set of X.

**Definition 3.2.** A  $\pi$ -network  $\lambda$  for X, hereditary with respect to the Y-zero-subsets of X and consisting of Y-compact subsets, will be called a *saturation family*.

**Theorem 3.3.** For every Tychonoff space X and any uniform cub-space  $(Y,\mathcal{U})$ , the topology on C(X,Y) induced by the uniformity  $\hat{\mathcal{U}}|\lambda$  of uniform convergence on the saturation family  $\lambda$  coincides with the  $\lambda$ -open topology on C(X,Y), where Y has the topology induced by  $\mathcal{U}$ .

*Proof.* Denote by  $\tau_1$  the topology on C(X,Y) induced by the uniformity  $\hat{\mathcal{U}}|\lambda$  and by  $\tau_2$  the  $\lambda$ -open topology. First, we shall prove that  $\tau_2 \subseteq \tau_1$ . Clearly, it suffices to show that all sets [A,U], where  $A \in \lambda$  and U is an open subset of Y, belong to  $\tau_1$ . Consider an  $A \in \lambda$ , an open set  $U \subseteq Y$ , and an  $f \in [A,U]$ . Since A is a Y-compact subset of X, f(A) is a compact subspace of U. Applying Lemma 3.1, take a  $V \in \mathcal{U}$  such that  $B(f(A),V) \subseteq U$ . Since  $B(f,\hat{V}|A) \subseteq [A,U]$  and since f is an arbitrary element of [A,U], we have  $[A,U] \in \tau_1$ .

We shall now prove that  $\tau_1 \subseteq \tau_2$ . Clearly, it suffices to show that for any  $A \in \lambda$ ,  $V \in \mathcal{U}$ , and  $f \in C(X,Y)$ , there exist Y-compact subsets  $A_1,...,A_k \in \lambda$  and open subsets  $U_1,...,U_k$  of Y such that

$$f \in \bigcap_{i=1}^{k} [A_i, U_i] \subset B(f, \hat{V}|A).$$

By [3, Corollary 8.1.12], there exists an entourage  $W \in \mathcal{U}$  of the diagonal  $\Delta \subset Y \times Y$  which is closed with respect to the topology induced by  $\mathcal{U}$  on  $Y \times Y$  and satisfies the inclusion  $3W \subset V$ . It follows from the compactness of f(A) that there exists a finite set  $\{x_1, ..., x_k\} \subset A$  such that  $f(A) \subseteq \bigcup_{i=1}^k B(f(x_i, W))$ . Note that  $f(A) \subset \bigcup_{i=1}^k U_i$  where  $U_i = IntB(f(x_i), 2W)$ . Observe that from the closedness of W in  $Y \times Y$  follows the closedness of balls  $B(f(x_i), W)$  in Y and the compactness of the sets  $f(A) \cap B(f(x_i), W)$ . Let  $Z_i$  be a zero set of Y such that  $f(A) \cap B(f(x_i), W) \subseteq Z_i \subseteq U_i$ . By Proposition 2.4, the set  $A_i = f^{-1}(Z_i) \cap A$  is Y-compact. Note that  $A_i \in \lambda$  because the family  $\lambda$  is hereditarily Y-compact.

We have  $f \in \bigcap_{i=1}^{k} [A_i, U_i]$ . If  $g \in \bigcap_{i=1}^{k} [A_i, U_i]$ , then for any  $x \in A$  there is  $A_i$  such that  $x \in A_i$  and we have  $g(x) \in B(f(x_i), 2W)$  and  $f(x) \in B(f(x_i), W)$ . It follows that  $(f(x), g(x)) \in 3W \subset V$  for any  $x \in A$ , so that  $g \in B(f, \hat{V}|A)$ .

The Y-compact-open topology on C(X,Y) is the topology generated by the base consisting of sets  $\bigcap_{i=1}^{k} [A_i, U_i]$ , where  $A_i$  is a Y-compact subset of X and  $U_i$  is an open subset of Y for i = 1, ..., k.

Corollary 3.4. For every Tychonoff space X and any space  $(Y, \mathcal{U})$  with  $G_{\delta}$ -diagonal containing a nontrivial path, the topology on C(X,Y), induced by the uniformity  $\hat{\mathcal{U}}|_{\lambda}$  of uniform convergence on the saturation family  $\lambda$ , coincides with the  $\lambda$ -open topology on C(X,Y), where Y has the topology induced by  $\mathcal{U}$ .

Corollary 3.5. For every Tychonoff space X and a zero-dimensional space  $(Y,\mathcal{U})$  with  $G_{\delta}$ -diagonal, the topology on C(X,Y), induced by the uniformity  $\hat{\mathcal{U}}|_{\lambda}$  of uniform convergence on the saturation family  $\lambda$ , coincides with the  $\lambda$ -open topology on C(X,Y), where Y has the topology induced by  $\mathcal{U}$ .

**Corollary 3.6.** For every  $Y^2$ -compact space X and any uniform space  $(Y, \mathcal{U})$ , the topology on C(X, Y), induced by the uniformity  $\hat{\mathcal{U}}$  of uniform convergence, coincides with the Y-compact-open topology on C(X, Y) and depends only on the topology induced on Y by the uniformity  $\mathcal{U}$ .

Note that  $\mathbb{R}$ -compactness (C-compactness) of a space X is equivalent to pseudocompactness of X.

**Corollary 3.7.** For every pseudocompact space X and any metrizable topological vector space Y with uniform  $\mathcal{U}$ , the topology on C(X,Y), induced by the uniformity  $\hat{\mathcal{U}}$  of uniform convergence, coincides with the C-compact-open topology on C(X,Y) and depends only on the topology induced on Y by the uniformity  $\mathcal{U}$ .

Note that for a pseudocompact space X the space C(X,Y) with the C-compact-open topology is linearly homeomorphic to  $C(\nu X,Y)$  with the compact-open topology where  $\nu X$  is the Hewitt realcompactification of X.

## 4. Closed-Homogeneous Spaces

Recall that a space X is strongly locally homogeneous (SLH) if it has an open base  $\mathcal{B}$  such that for all  $B \in \mathcal{B}$  and  $x, y \in B$  there is a homeomorphism  $f: X \mapsto X$  which is supported on B (that is, f is the identity outside B) and moves x to y. The well-known homogeneous continua are SLH: the Hilbert cube, the universal Menger continua, and manifolds without boundaries.

A topological space X is said to be closed homogeneous provided that for any  $x,y\in X$  and any K closed subset of  $X\setminus\{x,y\}$ , there is a homeomorphism  $f:X\mapsto X$  which is supported on  $X\setminus K$  (that is, f is the identity on K) and moves x to y.

It is well known that a zero-dimensional homogeneous space is closed homogeneous. Observe that a closed-homogeneous space is SLH. Note that there exists an SLH space X which is not closed homogeneous (see [4]). In fact, if we take  $X = \mathbb{R} \setminus \{0\}$  and  $\beta = \{\{x\} : x < 0\} \bigcup \{(a,b) : 0 < a < b\}$ , then the topological space  $(X, \tau(\beta))$ , generated by the base  $\beta$ , is an SLH metrizable space which is not closed homogeneous.

# 5. Uniformity of Uniform Convergence on Y-Closed Totally Bounded Sets

Recall that if Y is uniformized by a uniformity  $\hat{U}$ , a subset A of X is said to be Y-totally bounded when f(A) is totally bounded for any  $f \in C(X,Y)$  (see [1]).

A subset A of X is said to be Y-closed totally bounded if f(A) is closed totally bounded for any  $f \in C(X,Y)$ .

**Theorem 5.1.** Let X be a Tychonoff space, Y be a uniform closed-homogeneous space, and  $C_{\hat{\mathcal{U}}|\lambda}(X,Y) = C_{\lambda}(X,Y)$ . Then the family  $\lambda$  consists of Y-closed totally bounded sets.

*Proof.* Suppose that there is  $A \in \lambda$  which is not a Y-totally bounded set. Then there is  $f \in C(X,Y)$  such that f(A) is not totally bounded. Let  $B(f,\hat{V}|A)$  be an open neighborhood of f in the topological space  $C_{\hat{U}|\lambda}(X,Y)$ .

Since  $C_{\hat{\mathcal{U}}|\lambda}(X,Y) = C_{\lambda}(X,Y)$ , there is an open set  $\bigcap_{i=1}^{k} [A_i,U_i]$  in the

topological space  $C_{\lambda}(X,Y)$  such that  $f \in \bigcap_{i=1}^{k} [A_i, U_i] \subseteq B(f, \hat{V}|A)$ . Consider a subset M of f(A) such that

- 1. M is not totally bounded;
- 2. either  $M \subset U_i$  or  $\overline{f(A) \cap U_i} \cap M = \emptyset$  for every i = 1, ..., k.

Let  $W = \bigcap U_i$  where  $U_i$  is such that  $M \subseteq U_i$ . Let  $y_1, y_2 \in W$  such that  $y_1 \in M$  and  $(y_1, y_2) \notin V$ . Since Y is a closed-homogeneous space there is a homeomorphism  $h: Y \mapsto Y$  which is supported on W (that is, h is the identity on  $X \setminus W$ ) and moves  $y_1$  to  $y_2$ . Consider a continuous map g = X

 $h \circ f$ . Note that  $g \in \bigcap_{i=1}^k [A_i, U_i]$ . It is clear that if  $x \in f^{-1}(y_1) \cap A$ , then

 $(f(x), g(x)) \notin V$  and  $g \notin B(f, \hat{V}|A)$ . This contradicts our assumption. So a set f(A) is a totally bounded subset of space Y and A is a Y-totally bounded set.

Suppose that f(A) is not closed. Then we have a point  $y \in \overline{f(A)} \setminus f(A)$ . Let  $S = Y \setminus \{y\}$  and [A, S] be an open set of space  $C_{\lambda}(X, Y)$ . Then there exists an open set  $B(f, \hat{V}|B)$  of space  $C_{\hat{U}|\lambda}(X, Y)$  such that  $f \in B(f, \hat{V}|B) \subseteq [A, S]$ . Let z be a point of IntB(y, W) where  $2W \subseteq V$  such that  $f^{-1}(z) \cap A \neq \emptyset$ . Since Y is a closed-homogeneous space, there is a homeomorphism  $p: Y \mapsto Y$  which is supported on IntB(y, W) and moves z to y. Consider a continuous map  $q = p \circ f$ . It is clear that if  $x \in f^{-1}(IntB(y, W)) \cap B$ , then  $(f(x), q(x)) \in 2W \subseteq V$  and if  $x \in f^{-1}(z) \cap A$ , then q(x) = y. Thus,  $q \in B(f, \hat{V}|B)$  and  $q \notin [A, S]$ . This

contradicts our assumption. We have that A is a Y-closed totally bounded subset of X.

**Theorem 5.2.** Let X be a Tychonoff space, Y be a closed-homogeneous complete uniform space, and  $C_{\hat{\mathcal{U}}|\lambda}(X,Y) = C_{\lambda}(X,Y)$ . Then the family  $\lambda$  consists of Y-compact sets.

*Proof.* It suffices to note that a closed totally bounded subset of a complete uniform space is a compact set.  $\Box$ 

**Corollary 5.3.** Let X be a Tychonoff space, Y be a zero-dimensional homogeneous complete uniform space, and  $C_{\hat{\mathcal{U}}|\lambda}(X,Y) = C_{\lambda}(X,Y)$ . Then the family  $\lambda$  consists of Y-compact sets.

**Example 5.4.** If Z is the Sorgenfrey line and  $C_{\hat{\mathcal{U}}|\lambda}(Z,Z) = C_{\lambda}(Z,Z)$ , then the family  $\lambda$  consists of compact sets. On the other hand, since Z is a cub-space, we get that, for any Hausdorff space X, the topology on C(X,Z), induced by the uniformity  $\hat{\mathcal{U}}|\lambda$  of uniform convergence on the saturation compact family  $\lambda$ , coincides with the  $\lambda$ -open topology on C(X,Z).

**Acknowledgment.** The author would like to thank the referee for the very thorough report that led to a number of improvements to the original version of this paper.

#### References

- Anna Di Concilio and Som Naimpally, Proximal set-open topologies, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 3 (2000), no. 1, 173–191.
- [2] H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1967), 241–249.
- [3] Ryszard Engelking, General Topology. Translated from the Polish by the author. 2nd ed. Sigma Series in Pure Mathematics, 6. Berlin: Heldermann Verlag, 1989.
- [4] Ali Ahmad Fora, New and old types of homogeneity, Turkish J. Math. 24 (2000), no. 4, 335–344.
- [5] A. V. Osipov, The set-open topology, Topology Proc. 37 (2011), 205–217.

Institute of Mathematics and Mechanics; Ural Branch of the Russian Academy of Sciences; Ural Federal University; Ekaterinburg, Russia E-mail address: OAB@list.ru