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UNIFORMITY OF UNIFORM CONVERGENCE
ON THE FAMILY OF SETS

ALEXANDER V. OSIPOV

Abstract. We prove that for every Tychonoff space X and any
uniform cub-space (Y,U), the topology on C(X,Y ), induced by
the uniformity Û |λ of uniform convergence on the saturation fam-
ily λ, coincides with the set-open topology on C(X,Y ). For every
Y 2-compact space X and any uniform space (Y,U), the topology
on C(X,Y ), induced by the uniformity Û of uniform convergence,
coincides with the Y -compact-open topology on C(X,Y ) and de-
pends only on the topology induced on Y by the uniformity U .
In particular, for every pseudocompact space X and any metriz-
able topological vector space Y with uniform U , the topology on
C(X,Y ), induced by the uniformity Û of uniform convergence, co-
incides with the C-compact-open topology on C(X,Y ) (with the
compact-open topology on C(νX, Y ) where νX is the Hewitt real-
compactification of X) and depends only on the topology induced
on Y by the uniformity U . It is also shown that in the class of
closed-homogeneous complete uniform spaces Y , a necessary condi-
tion for coincidence of topologies is Y -compactness of the elements
of the family λ.

1. Introduction

Let X be a Hausdorff space and let (Y,U) be a uniform space. We shall
denote by C(X,Y ) the set of all continuous mappings of the spaceX to the
space Y , where Y is equipped with the topology induced by U . For every
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V ∈ U , denote by V̂ the entourage of the diagonal ∆ ⊂ C(X,Y )×C(X,Y )
defined by the formula

V̂ = {(f, g) : (f(x), g(x)) ∈ V for every x ∈ X}.

The uniformity on the set C(X,Y ) generated by this family is called the
uniformity of uniform convergence induced by U and will be denoted by Û .
For two uniformities U1 and U2 on Y which induce the same topology, the
topologies on C(X,Y ) induced by Û1 and Û2 can be different ([3, Example
4.2.14]). It turns out, however, that for a compact space X, the topology
on C(X,Y ) is independent of the choice of a particular uniformity U
on the space Y because the topology induced by Û coincides with the
compact-open topology on C(X,Y ).

2. Preliminaries

Let X and Y be Tychonoff spaces.
For a fixed natural number n, a subset A of X is said to be Y n-compact

provided f(A) is compact for any f ∈ C(X,Y n). Note that any Y n+1-
compact subset of X is a Y n-compact subset of X.

For example, if space Y is a metrizable topological vector space, then
a Y -compact subset A of X is a C-compact subset of X and, moreover,
A is a Y n-compact subset of X for any n ∈ N (and even Y ω-compact) [5].
Recall that a subset A of space X is a C-compact subset of X provided
that a set f(A) is compact for every f ∈ C(X,R).

Definition 2.1. A space Y will be called a cub-space if, for any x ∈ Y ×Y ,
there are a continuous map f from Y × Y to Y and a point y ∈ Y such
that f−1(y) = x.

Note that if Y is a cub-space, then for any x ∈ Y n where n > 1,
there are a continuous map f from Y n to Y and a point y ∈ Y such
that f−1(y) = x. For example, let n = 3 and x ∈ Y 3 = Y 2 × Y where
x = (x1, x2, x3). For a point z = (x1, x2), there are a continuous map h1
from Y × Y to Y and a point y ∈ Y such that h−11 (y) = z. For a point
p = (y, x3), there are a continuous map h2 from Y × Y to Y and a point
s ∈ Y such that h−12 (s) = p. So a map f = h2 ◦ (h1, idY ) is a continuous
map from Y 3 to Y such that f−1(s) = x. We now proceed by induction.

One can see that if Y is a Tychonoff space with countable pseudochar-
acter containing a nontrivial path or if Y is a zero-dimensional space with
countable pseudocharacter containing a nontrivial convergent sequence,
then Y is a cub-space. To wit, if Y is a Tychonoff space with countable
pseudocharacter, then each point in Y × Y is a zero set. For a point
(x, y) ∈ Y × Y , there is a continuous function f : Y × Y 7→ I = [0, 1]
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such that f−1(0) = (x, y). Since Y contains a nontrivial path, I is home-
omorphic to a subspace of Y . Analogously, if Y is a zero-dimensional
space with countable pseudocharacter containing a nontrivial convergent
sequence, then each point in Y ×Y is a zero set. For a point (x, y) ∈ Y ×Y ,
there is a continuous function f : Y ×Y 7→ A where A is a nontrivial con-
vergent sequence such that f−1(0) = (x, y). Since Y contains a nontrivial
convergent sequence, A is homeomorphic to a subspace of Y .

For example, a Tychonoff space with Gδ-diagonal containing a non-
trivial path and a zero-dimensional space with Gδ-diagonal containing a
nontrivial convergent sequence are cub-spaces.

In [2], a space M1 with the following properties is constructed: M1 is
a metric continuum; if Z is a subcontinuum of M1 and f : Z 7→ M1 is a
continuous mapping, then either f is constant or f(x) = x for all x ∈ X.
It follows that M1 is not a cub-space.

Proposition 2.2. Let Y be a cub-space. Then any Y -compact subset of
X is a Y n-compact subset of X.

Proof. Let A be a Y -compact subset X and g ∈ C(X,Y n). Suppose that
there is z ∈ g(A) \ g(A). So there are a continuous map f from Y n to Y
and a point y ∈ Y such that f−1(y) = z. It follows that f(g(A)) is not a
compact subset of Y , which contradicts the Y -compactness of A. �

A subset A of X is said to be a Y -zero set provided A = f−1(Z) for
some zero set Z of Y and f ∈ C(X,Y ). For example, if Y is the real
numbers space R, then any zero set subset of X is an R zero set of X.

Proposition 2.3. Let X and Y be topological spaces, A be a Y 2-compact
subset of X, and B be a Y -zero set such that B

⋂
A 6= ∅. Then B

⋂
A is

a Y -compact subset of X.

Proof. Let g ∈ C(X,Y ). We fix a continuous mapping h of Y into R
with Z = h−1(0) and f ∈ C(X,Y ) such that B = f−1(Z). Let f1 be the
diagonal product of the mappings g and f ; that is, f1(x) = (g(x), f(x)) ∈
Y ×Y . The set S = f1(B

⋂
A) = f1(A)

⋂
(Y ×Z) is closed in Y ×Y , and

it follows that S is compact.
Let π be a natural projection of Y × Y onto Y , associating with every

point its first coordinate. Then, clearly, g = π ◦ f1 and g(B
⋂
A) = π(S).

Since π is continuous and S is compact, we conclude that g(B
⋂
A) is

also compact. �

Proposition 2.4. Let X be a topological space, Y be a cub-space, A be
a Y -compact subset of X, and B be a Y -zero set such that B

⋂
A 6= ∅.

Then B
⋂
A is a Y -compact subset of X.
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3. Uniformity of Uniform Convergence
on Y -Compact Sets

Recall that a family λ of non-empty subsets of a topological space
(X, τ) is called a π-network for X if, for any nonempty open set U ∈ τ ,
there exists A ∈ λ such that A ⊆ U .

For a Hausdorff space X, a π-network λ for X, and a uniform space
(Y,U), we shall denote by Û |λ the uniformity on C(X,Y ) generated by
the base consisting of all finite intersections of the sets of the form

V̂ |A = {(f, g) : (f(x), g(x)) ∈ V for every x ∈ A},

where V ∈ U , A ∈ λ.
The uniformity Û |λ will be called the uniformity of uniform conver-

gence on family λ induced by U .
Recall that all sets of the form [F,U ] := {f ∈ C(X,Y ) : f(F ) ⊆ U},

where F ∈ λ and U is an open subset of Y , form a subbase of the set-open
(λ-open) topology on C(X,Y ).

We use the following notations for various topological spaces on the set
C(X,Y ):

CÛ|λ(X,Y ) for the topology induced by Û |λ,
Cλ(X,Y ) for the λ-open topology.

Let y be a point of a uniform space (Y,U) and let V ∈ U . Recall that
the set B(y, V ) = {z ∈ Y : (y, z) ∈ V } is called the ball with center y and
radius V or, briefly, the V -ball about y. For a set A ⊂ Y and a V ∈ U , by
the V -ball about A we mean the set B(A, V ) =

⋃
y∈A

B(y, V ).

Lemma 3.1 ([3, Lemma 8.2.5]). If U is a uniformity on a space X,
then, for every compact set Z ⊆ X and any open set G containing Z,
there exists a V ∈ U such that B(Z, V ) ⊆ G.

A family λ will be called hereditary with respect to the Y -zero subsets
of X if any nonempty A

⋂
B ∈ λ where A ∈ λ and B is a Y -zero set of

X.

Definition 3.2. A π-network λ for X, hereditary with respect to the
Y -zero-subsets of X and consisting of Y -compact subsets, will be called
a saturation family.

Theorem 3.3. For every Tychonoff space X and any uniform cub-space
(Y,U), the topology on C(X,Y ) induced by the uniformity Û |λ of uniform
convergence on the saturation family λ coincides with the λ-open topology
on C(X,Y ), where Y has the topology induced by U .
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Proof. Denote by τ1 the topology on C(X,Y ) induced by the uniformity
Û |λ and by τ2 the λ-open topology. First, we shall prove that τ2 ⊆ τ1.
Clearly, it suffices to show that all sets [A,U ], where A ∈ λ and U is
an open subset of Y , belong to τ1. Consider an A ∈ λ, an open set
U ⊆ Y , and an f ∈ [A,U ]. Since A is a Y -compact subset of X, f(A) is
a compact subspace of U . Applying Lemma 3.1, take a V ∈ U such that
B(f(A), V ) ⊆ U . Since B(f, V̂ |A) ⊆ [A,U ] and since f is an arbitrary
element of [A,U ], we have [A,U ] ∈ τ1.

We shall now prove that τ1 ⊆ τ2. Clearly, it suffices to show that for
any A ∈ λ, V ∈ U , and f ∈ C(X,Y ), there exist Y -compact subsets
A1,...,Ak ∈ λ and open subsets U1, ..., Uk of Y such that

f ∈
k⋂
i=1

[Ai, Ui] ⊂ B(f, V̂ |A).

By [3, Corollary 8.1.12], there exists an entourage W ∈ U of the di-
agonal ∆ ⊂ Y × Y which is closed with respect to the topology induced
by U on Y × Y and satisfies the inclusion 3W ⊂ V . It follows from
the compactness of f(A) that there exists a finite set {x1, ..., xk} ⊂ A

such that f(A) ⊆
⋃k
i=1B(f(xi,W )). Note that f(A) ⊂

k⋃
i=1

Ui where

Ui = IntB(f(xi), 2W ). Observe that from the closedness of W in Y × Y
follows the closedness of balls B(f(xi),W ) in Y and the compactness
of the sets f(A)

⋂
B(f(xi),W ). Let Zi be a zero set of Y such that

f(A)
⋂
B(f(xi),W ) ⊆ Zi ⊆ Ui. By Proposition 2.4, the set Ai =

f−1(Zi)
⋂
A is Y -compact. Note that Ai ∈ λ because the family λ is

hereditarily Y -compact.

We have f ∈
k⋂
i=1

[Ai, Ui]. If g ∈
k⋂
i=1

[Ai, Ui], then for any x ∈ A there

is Ai such that x ∈ Ai and we have g(x) ∈ B(f(xi), 2W ) and f(x) ∈
B(f(xi),W ). It follows that (f(x), g(x)) ∈ 3W ⊂ V for any x ∈ A, so
that g ∈ B(f, V̂ |A). �

The Y -compact-open topology on C(X,Y ) is the topology generated

by the base consisting of sets
k⋂
i=1

[Ai, Ui], where Ai is a Y -compact subset

of X and Ui is an open subset of Y for i = 1, ..., k.

Corollary 3.4. For every Tychonoff space X and any space (Y,U) with
Gδ-diagonal containing a nontrivial path, the topology on C(X,Y ), in-
duced by the uniformity Û |λ of uniform convergence on the saturation
family λ, coincides with the λ-open topology on C(X,Y ), where Y has the
topology induced by U .
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Corollary 3.5. For every Tychonoff space X and a zero-dimensional
space (Y,U) with Gδ-diagonal, the topology on C(X,Y ), induced by the
uniformity Û |λ of uniform convergence on the saturation family λ, co-
incides with the λ-open topology on C(X,Y ), where Y has the topology
induced by U .

Corollary 3.6. For every Y 2-compact space X and any uniform space
(Y,U), the topology on C(X,Y ), induced by the uniformity Û of uniform
convergence, coincides with the Y -compact-open topology on C(X,Y ) and
depends only on the topology induced on Y by the uniformity U .

Note that R-compactness (C-compactness) of a space X is equivalent
to pseudocompactness of X.

Corollary 3.7. For every pseudocompact space X and any metrizable
topological vector space Y with uniform U , the topology on C(X,Y ), in-
duced by the uniformity Û of uniform convergence, coincides with the
C-compact-open topology on C(X,Y ) and depends only on the topology
induced on Y by the uniformity U .

Note that for a pseudocompact space X the space C(X,Y ) with the
C-compact-open topology is linearly homeomorphic to C(νX, Y ) with the
compact-open topology where νX is the Hewitt realcompactification of
X.

4. Closed-Homogeneous Spaces

Recall that a space X is strongly locally homogeneous (SLH) if it has
an open base B such that for all B ∈ B and x, y ∈ B there is a homeo-
morphism f : X 7→ X which is supported on B (that is, f is the identity
outside B) and moves x to y. The well-known homogeneous continua
are SLH: the Hilbert cube, the universal Menger continua, and manifolds
without boundaries.

A topological space X is said to be closed homogeneous provided that
for any x, y ∈ X and any K closed subset of X \ {x, y}, there is a home-
omorphism f : X 7→ X which is supported on X \ K (that is, f is the
identity on K) and moves x to y.

It is well known that a zero-dimensional homogeneous space is closed
homogeneous. Observe that a closed-homogeneous space is SLH. Note
that there exists an SLH space X which is not closed homogeneous (see
[4]). In fact, if we take X = R \ {0} and β = {{x} : x < 0}

⋃
{(a, b) : 0 <

a < b}, then the topological space (X, τ(β)), generated by the base β, is
an SLH metrizable space which is not closed homogeneous.
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5. Uniformity of Uniform Convergence on
Y -Closed Totally Bounded Sets

Recall that if Y is uniformized by a uniformity Û , a subset A of X
is said to be Y -totally bounded when f(A) is totally bounded for any
f ∈ C(X,Y ) (see [1]).

A subset A of X is said to be Y -closed totally bounded if f(A) is closed
totally bounded for any f ∈ C(X,Y ).

Theorem 5.1. Let X be a Tychonoff space, Y be a uniform closed-
homogeneous space, and CÛ|λ(X,Y ) = Cλ(X,Y ). Then the family λ

consists of Y -closed totally bounded sets.

Proof. Suppose that there is A ∈ λ which is not a Y -totally bounded
set. Then there is f ∈ C(X,Y ) such that f(A) is not totally bounded.
Let B(f, V̂ |A) be an open neighborhood of f in the topological space
CÛ|λ(X,Y ).

Since CÛ|λ(X,Y ) = Cλ(X,Y ), there is an open set
k⋂
i=1

[Ai, Ui] in the

topological space Cλ(X,Y ) such that f ∈
k⋂
i=1

[Ai, Ui] ⊆ B(f, V̂ |A). Con-

sider a subset M of f(A) such that
1. M is not totally bounded;
2. either M ⊂ Ui or f(A)

⋂
Ui

⋂
M = ∅ for every i = 1, ..., k.

LetW =
⋂
Ui where Ui is such thatM ⊆ Ui. Let y1, y2 ∈W such that

y1 ∈M and (y1, y2) /∈ V . Since Y is a closed-homogeneous space there is
a homeomorphism h : Y 7→ Y which is supported on W (that is, h is the
identity on X \W ) and moves y1 to y2. Consider a continuous map g =

h ◦ f . Note that g ∈
k⋂
i=1

[Ai, Ui]. It is clear that if x ∈ f−1(y1)
⋂
A, then

(f(x), g(x)) /∈ V and g /∈ B(f, V̂ |A). This contradicts our assumption.
So a set f(A) is a totally bounded subset of space Y and A is a Y -totally
bounded set.

Suppose that f(A) is not closed. Then we have a point y ∈ f(A)\f(A).
Let S = Y \ {y} and [A,S] be an open set of space Cλ(X,Y ). Then
there exists an open set B(f, V̂ |B) of space CÛ|λ(X,Y ) such that f ∈
B(f, V̂ |B) ⊆ [A,S]. Let z be a point of IntB(y,W ) where 2W ⊆ V such
that f−1(z)

⋂
A 6= ∅. Since Y is a closed-homogeneous space, there is

a homeomorphism p : Y 7→ Y which is supported on IntB(y,W ) and
moves z to y. Consider a continuous map q = p ◦ f . It is clear that
if x ∈ f−1(IntB(y,W ))

⋂
B, then (f(x), q(x)) ∈ 2W ⊆ V and if x ∈

f−1(z)
⋂
A, then q(x) = y. Thus, q ∈ B(f, V̂ |B) and q /∈ [A,S]. This
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contradicts our assumption. We have that A is a Y -closed totally bounded
subset of X. �

Theorem 5.2. Let X be a Tychonoff space, Y be a closed-homogeneous
complete uniform space, and CÛ|λ(X,Y ) = Cλ(X,Y ). Then the family λ
consists of Y -compact sets.

Proof. It suffices to note that a closed totally bounded subset of a com-
plete uniform space is a compact set. �

Corollary 5.3. Let X be a Tychonoff space, Y be a zero-dimensional
homogeneous complete uniform space, and CÛ|λ(X,Y ) = Cλ(X,Y ). Then
the family λ consists of Y -compact sets.

Example 5.4. If Z is the Sorgenfrey line and CÛ|λ(Z,Z) = Cλ(Z,Z),
then the family λ consists of compact sets. On the other hand, since
Z is a cub-space, we get that, for any Hausdorff space X, the topology
on C(X,Z), induced by the uniformity Û |λ of uniform convergence on
the saturation compact family λ, coincides with the λ-open topology on
C(X,Z).
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