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REALIZING FINITE TOPOLOGIES BY T -CLOSED
EQUIVALENCE DECOMPOSITIONS

JAMES MAISSEN

Abstract. The set-valued function T is a well-established tool
that aids in the classification of metric and Hausdorff continua.
I answer in full a question by David Bellamy on which finite T0

connected topologies can be realized as the T -closed equivalences
of continua.

1. Introduction

At the 49th Spring Topology and Dynamics Conference, David P. Bel-
lamy posed the following question:

Given a finite connected T0 space X̂, is there a continuum
X such that the T -closed equivalence decomposition of X
is topologically equal to X̂?

In this paper, the question is answered in the affirmative for all finite
connected T0 topologies.

2. Terms and Notation

In this paper, the term “continuum” will mean a non-degenerate com-
pact, connected, Hausdorff space even though the continua actually con-
structed herein will all be metric continua. A continuum is indecompos-
able if it cannot be expressed as the union of two proper subcontinua.
Let N denote the strictly positive integers. Given a compact space X,
denote the hyperspace of compact subsets of X by 2X and the power set
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of X by P(X). Let K represent the buckethandle continuum [2] defined
as K := lim←−{[0, 1],Λ} where Λ is the tent map given by

Λ(x) :=

{
2x if 0 ≤ x ≤ 1/2;
2− 2x if 1/2 < x ≤ 1.

The buckethandle continuum is also known as a horseshoe in dynamics
or as the B-J-K (Brouwer-Janiszewski-Knaster) continuum.

Definition 2.1 (Aposyndetic [6]). Let M be a continuum and let x and
y be distinct points of M . If M contains a subcontinuum H and an open
set U such that {x} ⊂ U ⊂ H ⊂M \{y}, then M is said to be aposyndetic
at x with respect to y. If, for every y ∈ M \ {x}, M is aposyndetic at x
with respect to y, then M is said to be aposyndetic at x.

Definition 2.2 (Semilocally connected [7]). A continuum M is said to be
semilocally connected at a point p of M provided that, for every open set
U containing p, there exists an open set V containing p such that V ⊂ U
and M \ V have a finite number of components.

Definition 2.3 (Connected im kleinen [5]). A topological space X is
connected im kleinen at a point x if, for every open set U ⊂ X with
x ∈ U , there is an open V with x ∈ V ⊂ U such that, for every y ∈ V ,
there exists Cy ⊂ U such that Cy is connected and {x, y} ⊂ Cy.

3. Background

Definition 3.1 (The set function T [1], [4], [6]). Given a continuum M ,
define T : P(M) → P(M) such that M \ T (A) := {y ∈ M | there exists a
subcontinuum W ⊂ M \ A, and an open set Q ⊂ W such that y ∈ Q ⊂
W ⊂M \A}. Thus, for each singleton p ∈M , the image T (p) := T ({p})
is the set of all points y ∈ M such that M is not aposyndetic at y with
respect to p.

Theorem 3.2 (Jones [6], Davis [4]). For any continuum M and for any
subset A ⊂M , the set T (A) is closed in M .

In light of Theorem 3.2, the set function T on a continuum M can be
seen as T : P(M) → 2M . This set function T has been very useful in
seeing properties of continua.

Theorem 3.3 (Jones [6]). Given a compact continuum M , M is semi-
locally connected at a point p ∈M if and only if T (p) = {p}.

Theorem 3.4 (Davis [3]). Given a compact continuum M , M is con-
nected im kleinen at a point p ∈M if and only if for every closed A ⊂M ,
p ∈ A if and only if p ∈ T (A).
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The following two definitions and the question were presented by David
P. Bellamy in his talk Some problems on T -closed subsets of continua at
the 49th Spring Topology and Dynamics Conference 2015.

Definition 3.5 (T -closed sets (Bellamy)). A closed subset A of a contin-
uum M is said to be T -closed if and only if T (A) = A.

From Theorem 3.2 the requirement in the preceding definition that the
set A be closed is merely for emphasis, and it is likewise the case in the
definition below.

Definition 3.6 (T -equivalence (Bellamy)). Let M be a continuum. De-
fine the equivalence relation ∼ such that x ∼ y implies that for every
closed A ⊂ M with T (A) = A, we have that x ∈ A if and only if y ∈ A.
That is, two points are equivalent if and only if the collections of T -closed
sets containing them are identical.

With these definitions and this context in mind, the following question
was posed.

Question 3.7 (Bellamy). Given a finite connected T0 space X̂, is there
a continuum X such that the T -closed equivalence decomposition of X is
topologically equal to X̂?

It is the goal of the paper to demonstrate by construction the following
theorem completely answering this question.

Theorem 3.8. Given any connected T0 topology T on a non-empty fi-
nite set X̂, there is a continuum X such that the T -closed equivalence
decomposition of X is topologically equal to X̂.

4. Building Blocks

Note that, for any indecomposable continuum, the only T -closed set is
the entire space itself. For the construction, the buckethandle continuum
K will be used as our basic atomic unit, but it is a fairly arbitrary choice
amongst indecomposable continua.

To start, consider a space X = K1 ∪ K2 where each Ki
∼= K and

K1 ∩ K2 = {x} for some point x ∈ X. Now observe that T (x) = X, but
for any y ∈ Ki \ {x}, the image T (y) = Ki ( X. Now the set T (y) is not
T -closed since x ∈ T (y) implies that T (T (y)) = X 6= T (y).

Construct a space C formed by an infinite chain of buckethandles Ki.
To wit, pick two distinct points x, y ∈ K and label xi, yi ∈ Ki so that they
are the points in Ki corresponding to x and y. Thus, Ki ∩Kj 6= ∅ implies
|i − j| ≤ 1 and Kn ∩ Kn+1 = {yn} = {xn+1}. The idea is essentially
illustrated in Figure 1.
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Figure 1. A chain of three buckethandles K1 ∪K2 ∪K3

(Topology Proceedings logo is used here with journal’s permission)

Compactify the space C to C̄ by having the chain of continua of C
limit down to another buckethandle Kω. Observe that C̄ has exactly two
T -closed sets, namely the remainder C̄ \C and the entire space C̄. When
considering the T -closed decomposition of C̄, it has exactly two points
{a, b} where point a corresponds with C and point b corresponds with C̄ \
C. The quotient topology on {a, b} is Sierpinski space. The singleton set
{a} is open, while the singleton set {b} is not. This technique of chaining
infinitely many copies of a continuum such that it limits down to another
continuum will be the key component of the construction. Constructions
analogous to the one that created the set C and the continuum C̄ will be
utilized in the next sections.

5. Constructing a Continuum Corresponding to
a Given Finite Connected T0 Space

To illustrate the general construction in the following section, consider
the finite connected T0 space with four elements {a1, a2, a3, a4} endowed
with the topology T =

{
∅, {a1}, {a2}, {a1, a2}, {a1, a2, a3}, {a1, a2, a3, a4}

}
.

Let {Bi}4i=1 be the connected basis for T defined as follows: B1 := {a1},
B2 := {a2}, B3 := {a1, a2, a3}, and B4 := {a1, a2, a3, a4}.

Again take K as the buckethandle continuum defined earlier and begin
with four distinct copies of K denoted by X1, X2, X3, and X4. As in the
prior section, fix two distinct points x, y ∈ K denoting their images in Xi

by xi and yi.
The first non-singleton basic open set in {Bi}4i=1 is B3 = {a1, a2, a3}.

Now B3 can be uniquely written as a disjoint union of basic open sets
(occurring before B3 in the given order) together with the singleton {a3}
by B3 = B1 ∪ B2 ∪ {a3}. Denote by C̄1 and C̄2 two copies of the basic
building block C̄ described in the prior section. For C̄1, identify the
initial indecomposable continuum in this first copy of C̄ (denoted by K1

1)
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with the buckethandle X1 and identify K1
ω with X3. Likewise within C̄2,

identify its initial indecomposable continuum K2
1 with the buckethandle

X2 and identify K2
ω with X3.

The next and last remaining non-singleton basic open set in {Bi}4i=1 is
B4 = {a1, a2, a3, a4}. The only way to write B4 as a disjoint union of other
(prior) basic open sets and a singleton is by B4 = B3 ∪ {a4}. Within the
basic open set B3, take the point with the largest index, namely a3 ∈ B3.
Take yet another copy of the basic building block C̄ (denoted C̄3) from
the prior section. Identify the initial indecomposable continuum K3

1 with
X3 and the copy of K3

ω with X4.
Let X be the continuum comprised of the buckethandles X1, X2, X3,

and X4 together with C̄1, C̄2, and C̄3 joined as described above. Define
the open set A1 := X1 ∪ C1, the open set A2 := X2 ∪ C2, the neither-
open-nor-closed set A3 := X3 ∪ C3, and the closed set A4 := X4. Please
note that it is Ck and not C̄k in the decomposition above; hence, X =
A1 ∪A2 ∪A3 ∪A4 is a pairwise disjoint union.

Consider p ∈ X1 \ {y1}. Since K is indecomposable, T (p) = X1, but
T (X1) = X1 ∪ K1

2. Likewise, T (X1 ∪ K1
2) = X1 ∪ K1

2 ∪ K1
3 and so on.

Furthermore, T (K1
j ) = K1

j−1 ∪ K1
j ∪ K1

j+1 for any j > 1. In general, for
any p1 ∈ A1, not only is {p1} not T -closed, but the only T -closed sets
containing p1 will also contain all of A1. Likewise, for any p2 ∈ A2, the
only T -closed sets containing p2 must also contain all of A2. Also note
that neither A1 nor A2 can be T -closed as neither is a closed set in X.

Consider p ∈ X3 \ {y3}. Now T (p) = X3, but just as before T (X3) 6=
X3; rather T (X3) = X3 ∪ K3

2 and so on. Thus, just as before for any
p3 ∈ A3, the only T -closed sets containing p3 must also contain all of A3.
Finally, for any p ∈ X4, T (p) = X4 = T (X4) making X4 a T -closed set
(noting X4 ∩X \X4 = ∅). Likewise, the only T -closed sets containing a
point of A4 = X4 must also contain all of A4.

From the above, it is clear that for any T -closed set V that whenever
Ai ∩ V 6= ∅, it follows that Ai ⊂ V . There are a total of four T -closed
sets of X. There are exactly two T -closed sets containing A1, namely the
subcontinuum A1∪A3∪A4 and all of X itself. Likewise, there are exactly
two T -closed sets containing A2, namely A2 ∪A3 ∪A4 and X. There are
three T -closed sets containing A3, namely A1 ∪ A3 ∪ A4, A2 ∪ A3 ∪ A4,
and X. Finally, all four T -closed sets contain A4: the three listed above
and the previously observed T -closed set, that is, A4 = X4 itself.

The decomposition by T -closed sets identifiesAi with ai for i = 1, 2, 3, 4.
The sets A1 and A2 are open, and thus {a1} and {a2} are open. The set
A3 is neither open nor closed, but A4 is closed, so X \ A4 is open, and
thus {a1, a2, a3} is open. By definition, the whole space X is open, so the
whole space {a1, a2, a3, a4} is open. Thus, the T -closed decomposition



92 J. MAISSEN

of X is the four-point space with the given connected T0 topology T as
desired.

6. General Construction

For the trivial case dealing with the singleton space {a1}, take the
indecomposable buckethandle continuum K. As explained earlier, K has
only one T -closed set (K itself), and thus the T -closed decomposition of
K is topologically equal to the singleton space {a1}.

Begin the construction for connected T0 topologies with a finite number
n > 1 points using n distinct copies of the buckethandle K denoted by Xi.
In other words, for each 1 ≤ i ≤ n, let Xi

∼= K where the only 1 ≤ j ≤ n
with Xi ∩Xj 6= ∅ is precisely when j = i.

Given a finite set T := {a1, a2, . . . , an} with n > 1, let T be any
connected T0 topology for T . Since T is finite and T a topology, the
intersection

Bi :=
⋂

ai∈U∈T
U

is open. Moreover, the collection {Bi}ni=1 forms a connected basis for the
connected T0 topology T . Without loss of generality, assume that the
points {ai}ni=1 are indexed so that this connected basis {Bi}ni=1 satisfies
|Bj | ≤ |Bk| whenever 1 ≤ j ≤ k ≤ n.

Since T is a T0 topology, it separates points, and thus {a1} = B1 is
open. However, since T is a connected topology, it cannot be discrete and
there is at least one index i such that Bi is not a singleton. Let 2 ≤ m ≤ n
be the first such index. Begin the construction below sequentially starting
with k = m and proceeding through k = n.

Now since T is a T0 topology and from the way the basic open sets
were determined, this basic open set Bk can be uniquely decomposed as
the disjoint union of one or more of the previous basic open sets and the
singleton {ak}. Let {jm} ⊂ [1, k− 1]∩N be the indices of the basic open
sets comprising that specific decomposition of Bk. For each corresponding
Bjm , there is an ai ∈ Bjm such that for all j > i, aj /∈ Bjm . Join the
continua Xi and Xk by a copy of the basic building block C̄, used in the
prior two sections, with K1 identified with Xi and Kω identified with Xk.

Do this for each Bjm in the decomposition of Bk and then continue
in this fashion through the remaining basic open sets to the basic open
set Bn. The resulting continuum comprised of {Xi}ni=1 and all of the
homeomorphic copies of C̄ added to them in this process form the desired
continuum X.
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Claim 1. The continuum X constructed above is such that X̂, the T -
closed decomposition of X, is topologically equal to the set T endowed
with the topology T .
Proof. The claim will be proven in two steps. The first step is to show
that the sets X̂ = T , which itself is done in two small parts.

For each 1 ≤ i ≤ n, define the subset Ai ⊂ X to be the set comprised
of Xi and all (if there are any) of the homeomorphic copies of C (note not
C̄ but rather just C) that were attached to it. Thus, X is the pairwise
disjoint union of the subsets in the collection {Ai}ni=1.

Suppose V ⊂ X is a T -closed set such that Aj ∩ V 6= ∅ for some
1 ≤ j ≤ n. Let p ∈ Aj ∩ V , then p is a point in at least one copy of K
(denote it by K∗) that lies within Aj , and thus K∗ ⊂ T (p) ⊂ V . Let K†
be an arbitrary copy of K in Aj . By the construction of Aj , there is a
finite chain of copies of K linking K∗ to K† (possibly from one attached
copy of C to another going through Xj). Since V is T -closed, if n is the
number of links in that chain, then K† ⊂ Tn(p) ⊂ V . Thus, it follows
that Aj ∩ V 6= ∅ implies Aj ⊂ V which means that T -closed sets do not
distinguish between pairs of points lying within a given Aj .

To see that T -closed sets distinguish between each of the Ai’s, first
observe that in constructing the space X that whenever a chain C̄ was
added joining sayXi toXj , it was the order of the indices that determined
how the attachment was made. Without loss of generality, suppose i <
j, then, in adding the chain C̄ between them, the initial link K1 was
identified with Xi while the limiting link Kω := C̄ \C was identified with
Xj . Thus, for a given Ak ⊂ X, it holds that Āk ∩Al = ∅ whenever l < k.

For any Ai 6= Aj , there is a T -closed set containing one of them that
does not intersect (and hence contain) the other. Without loss of gener-
ality, assume that i < j. Define the set

Yj :=
⋃
k≥j

Ak,

and thus X \ Yj =
⋃

l<j Al. For each k ≥ j, the closure Āk is a subset
of Yj , which makes Yj a closed set. Now since each Al is connected, the
set X \ Yj has, perforce, at most a finite number of components, all of
which are open. For any l < j and any point p ∈ Al ⊂ X \ Yj , T (p)
is exactly the copies of K in Al containing p. If T (p) ∩ Xl = ∅, then
define a subcontinuum W ⊂ X \ Yj by W := T (T (p)), which is T (p)
together with the copies of K in Al intersecting T (p). If, on the other
hand, T (p)∩Xl 6= ∅, then first let Z be the finite (possibly empty) union
of all the copies of the chain C̄ that were attached between Xl and any
Xm with m < l. In this case, define the subcontinuum W ⊂ X \ Yj as
the finite union of subcontinua, W := T (T (p))∪Z, joined together at Xl.
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In either event, W is a subcontinuum of X \ Y containing the point p.
Pick an open set Q such that T (p) ⊆ Q ⊆ W ⊂ X \ Yj . Thus, by the
definition of T , we have p /∈ T (Yj), and since p was an arbitrary element
of X \ Yj , Yj is T -closed. Hence, Yj is a T -closed set containing Aj but
not containing Ai.

To recap, every point of a given Ai belongs to the same T -closed subsets
as Ai itself does, and that for any two distinct Ai and Aj that there is
a T -closed subset containing one but not the other. For each 1 ≤ i ≤ n,
the set Ai decomposes (in the sense of T -closed sets) exactly to the point
ai ∈ T . Thus, the sets X̂ = T .

All that remains, as the second step of proving this claim, is to show
that X̂, the T -closed decomposition of X, has the given topology T .

Define the set valued map f : T → {Ai}ni=1 by f(ai) = Ai and, for
each 1 ≤ i ≤ n, let Bi be the union of the subsets of X in the f -image of
the previously chosen connected basic open set Bi. By finite induction,
each of the sets Bi will be seen to be open. Since B1 = {a1}, the subset
B1 = A1. Let Y1 := X \ A1 =

⋃n
i=2 Ai. As observed in the first step of

this proof, the set Y1 has all its limits points and thus is closed. Thus,
its compliment A1 is an open set. For any 1 ≤ k ≤ n, the basis element
Bk+1 can be written as the disjoint union of the singleton set {ak+1} and
basic open sets Bjm for some finite subsequence {jm} where each jm ≤ k.
Let U be an open neighborhood of Ak+1 that is sufficiently “small” in the
sense that for any 1 ≤ l ≤ n if Al∩U 6= ∅, then Āl∩Ak+1 6= ∅. Recall that
Yk+1 :=

⋃n
i=k+2 Ai has all of its limit points; hence, it is closed. Then the

set Bk+1 is open, since it can be written as(
U ∩ (X \ Yk+1)

)
∪

⋃
i∈{jm}

Bi

which is the finite union of open sets. Thus, by finite induction, for
1 ≤ i ≤ n the set Bi is open. Since {Bi}ni=1 was a basis for the topology
T on the set T , the T -closed decomposition of X is endowed with an
equivalent topology. �
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