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A CHARACTERIZATION OF TREE-LIKE INVERSE
LIMITS ON [0, 1] WITH INTERVAL-VALUED FUNCTIONS

M. M. MARSH

Abstract. We provide a characterization of tree-likeness in in-
verse limits on [0, 1] with interval-valued functions. We also show
that flat spots, in certain inverse sequences, give rise to subcontinua
of the inverse limit space that are either copies of subcontinua of
the partial graphs in the inverse sequence or copies of products of
subcontinua of the partial graphs and ordinary inverse limits.

In [15], the author provided necessary conditions and sufficient condi-
tions for an inverse limit on [0, 1] with interval-valued bonding functions
to be a tree-like continuum. Corollaries 27 and 28 of [15] give sufficient
conditions for such inverse limits to have dimension larger than one. We
show that one of the conditions in each of these two corollaries can be elim-
inated, thus providing a simply-stated characterization of tree-likeness in
this setting (see Corollary 3). Under the same conditions that character-
ize tree-likeness of the inverse limit, we characterize the partial graphs
(definition to follow) in this setting as λ-dendroids.1

Additionally, we show that if one of the continuum-valued bonding
functions, in certain inverse sequences, has a flat spot, then the inverse
limit space must contain either a copy of a subcontinuum of some partial
graph in the inverse sequence or a copy of a product of a subcontinuum of
a partial graph and an ordinary inverse limit on subcontinua of some of
the factor spaces (see Theorem 1). This result is critical for establishing
a lower bound for the dimension of the inverse limit space. Other results
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and examples related to one dimensionality and tree-likeness in inverse
limits with set-valued functions can be found in [9], [10], [11], and [15].

Since, even for inverse limits on [0, 1] with set-valued functions, the
dimension of the inverse limit space can be either finite or infinite, it is of
importance to have conditions related to the factor spaces, the bonding
functions, and the partial graphs that will determine the dimension of the
inverse limit space. In the setting of this paper, it follows from [2] that
all inverse limits have trivial shape. Since for continua with trivial shape,
tree-likeness is equivalent to having dimension one, our results are about
dimension one as well as about tree-likeness.

For results related to all dimensions in inverse limits with set-valued
functions, see [1] and [12]. Hisao Kato has results in [12] that give both
upper and lower bounds on the dimension of the inverse limit space. His
lower bound result in Theorem 3.8, when specialized to the setting of this
paper, follows from our Theorem 2.

A compactum is a compact metric space. All spaces considered in
this paper will be compacta. A continuum is a connected compactum.
A continuous function with be referred to as a map or mapping. For a
compactum X, dim(X) will denote covering dimension.

A function f : X → 2Y is upper semi-continuous at the point x ∈ X
if, for each open set V in Y containing the set f(x), there is an open set
U in X such that x ∈ U and f(p) ⊂ V for each p ∈ U . If f : X → 2Y

is upper semi-continuous at each point of X, then f is said to be upper
semi-continuous. We refer to functions f : X → 2Y as set-valued functions
from X to Y and we write f : X → Y is a set-valued function.

A set-valued function f : X → Y is continuum-valued if, for each x ∈ X,
the set f(x) is a subcontinuum of Y . The graph of f , which we denote by
G(f), is the set of points inX×Y consisting of points (x, y) with y ∈ f(x).
For each product X × Y of compacta X and Y , let c1 : X × Y → X and
c2 : X × Y → Y denote coordinate projection. The set-valued function
f : X → Y is surjective if c2(G(f)) = Y .

LetX1, X2, . . . be a sequence of compacta. Our setting will be the prod-
uct space

∏
i≥1Xi with the usual metric. Throughout, we let {Xi, fi}i≥1

denote an inverse sequence with upper semi-continuous set-valued bond-
ing functions, and its inverse limit is given by

lim
←−
{Xi, fi} = {x = (x1, x2, . . .) ∈

∏
i≥1

Xi | xi ∈ fi(xi+1) for i ≥ 1}.

For j,m ∈ N with j ≤ m, we define the set below.
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Gm+1
j = G′(fj , . . . , fm) = {x ∈

m+1∏
i=j

Xi | xi ∈ fi(xi+1) for j ≤ i ≤ m}.

We refer to these sets as partial graphs in the inverse sequence. For
consistency of notation, if i ≥ 1, we let Gi

i = Xi. The notation X
T
≈ Y

(X
T
⊂ Y ) will indicate that X is homeomorphic to Y (X is homeomorphic

to a subset of Y ).
For 1 ≤ j < k, we denote the set-valued composition function fj ◦

fj+1 ◦ . . . ◦ fk : Xk+1 → Xj by fj,k+1. For j ≥ 1, let πj :
∏∞

i=1Xi →
Xj denote jth-coordinate projection. If A ⊂ Xi+1 for some i ≥ 1,
let fi|A be the set-valued function with domain A such that fi|A(x) =
fi(x) for x ∈ A. If A ⊂ Xm for some m ≥ 1, let Gm

j |A = {z ∈
Gm

j | πm(z) ∈ A}. It should be noted that we also have Gm
j |A =

G′(fj |fj+1,m(A), . . . , fm−2|fm−1,m(A), fm−1|A).
A set-valued function f : X → Y has a flat spot (at p ∈ Y ) if there

exists a point p ∈ Y and a nondegenerate continuum X ′ ⊂ X such that
X ′×{p} ⊂ G(f). We say that X ′×{p} is a flat spot of f . Let {Xi, fi}i≥1
be an inverse sequence with set-valued functions and let 1 ≤ i < j. When
fi is a member of an inverse sequence, we write {xi} × Yi+1 is a flat spot
of fi, where Yi+1 is a subcontinuum of Xi+1.

A flat spot at xj of fj composes to a nondegenerate value of fi in the
composition fi ◦fi+1 ◦ . . .◦fj if fi(xj) is nondegenerate for i = j−1 and if
there exists a point xi+1 in fi+1,j(xj) such that fi(xi+1) is nondegenerate
for i < j − 1.

The notion of a k-tail sequence in an inverse sequence, which we call
here an n-tail sequence, was introduced in [14]. We repeat the definition
with different notation that should make the concept more accessible. Let
n ∈ N and for i ≥ n, let Yi be a compactum such that Yi ⊂ Xi. Suppose
that {ki : Yi+1 → Xi}i≥n is a sequence of set-valued functions such that
for each i ≥ 1, G(ki) ⊂ G(fi). Suppose also that, for i ≥ 0,

(i) Yn+i ⊂ kn+i(Yn+i+1) , and
(ii) (kn+i)

−1 is a map (from a subcompactum of Xn+i into Xn+i+1).

Under these conditions, we say that {ki}i≥n is an n-tail sequence of
inverse mappings (with respect to the inverse sequence {Xi, fi}). We
use the n-tail sequence {ki}i≥n to generate a subcompactum of X. Let
An = kn(Yn+1). For 1 ≤ i < n, let Ai = fi(Ai+1) and let gi = fi|Ai+1

.
For i ≥ 1, let An+i = (kn+i−1)

−1(An+i−1) and let gn+i−1 = kn+i−1|Ai+1
.
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Let A(n) = lim
←−
{Ai, gi}. By [7, Theorem 2.4], A(n) is a subcompactum

of X. We say that A(n) is the subcompactum of X generated by the n-tail

sequence {ki}i≥n. By [14, Theorem 2.1], A(n)
T
≈ Gn

1 |An
.

A continuum is hereditarily unicoherent if the intersection of each pair
of its subcontinua is connected. A mapping g : X → Y is weakly confluent
if, for each subcontinuum K of Y , there exists a component H of g−1(K)
such that g(H) = K. A continuum Y is in Class(W ) if each surjective
mapping of a continuum onto Y is weakly confluent. Some classes of
continua that are contained in Class(W) are arclike, non-planar circle-
like, atriodic tree-like, atriodic acyclic, and atriodic with symmetric span
zero (see [3], [4], [5],and [13]).

Theorem 1 sets up the tools we need to have the dimension of the
partial graphs not exceed the dimension of the inverse limit space. Since,
for inverse limits with mappings, the dimension of the factor spaces can
exceed the dimension of the inverse limit space, and each inverse limit with
set-valued functions is also an ordinary inverse limit on its partial graphs
[11, Theorem 4.1], Theorem 2 may be somewhat surprising. Corollary 2,
which follows from Theorem 1, is the main tool for proving Theorem 2.

Theorem 1. Let X = lim
←−
{Xi, fi}, where, for each i ≥ 1, Xi is a heredi-

tarily unicoherent continuum, fi : Xi+1 → Xi is a surjective, continuum-
valued function, and c2|G(fi) : G(fi) → Xi is weakly confluent. If there
exists a flat spot {xn} × Yn+1 of fn for some n ≥ 1 in the inverse se-
quence, then

(1) either X contains a copy of Gm
1 |Zm

, for some m ≥ n+1 and some
nondegenerate subcontinuum Zm of Xm

(2) or there exists a subcontinuum Y of X such that Y is homeomor-
phic to Gn

1 |{xn} × lim
←−
{Yi, gi}i≥n+1, where each Yi is a nondegen-

erate subcontinuum of Xi and each gi is a surjective mapping.

Proof. Let n ≥ 1, where {xn}×Yn+1 is a flat spot of fn. Since c2|G(fn+1) is
weakly confluent, there exists a subcontinuum Fn+1 of G(fn+1) such that
c2(Fn+1) = Yn+1. If either c1(Fn+1) = {z} or c1(Fn+1) contains a point z
in Xn+2 where Zn+1 = fn+1(z) ∩ Yn+1 is nondegenerate, then any point
x = (x1, x2, . . .) of X with πn+2(x) = z creates an (n + 2)-tail sequence.
In particular, for i ≥ n+2, we let ki(xi+1) = xi and G(ki) = {(xi+1, xi)}.
So, {ki}i≥n+2 is an (n+2)-tail sequence with first coordinate z. It follows
from [14, Theorem 2.1] that X contains a copy of Gn+2

1 |{z}.

Since Gn+1
1 |Zn+1

T
≈ Gn+1

1 |Zn+1
× {z}

T
⊂ Gn+2

1 |{z}, (1) holds for m =
n+ 1.
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So, we assume that c1(Fn+1) is nondegenerate and contains no z where
fn+1(z)∩Yn+1 is nondegenerate. Hence, c1(Fn+1) is a nondegenerate sub-
continuum Yn+2 of Xn+2, and gn+1 : Yn+2 → Yn+1, defined by gn+1(x) =
fn+1(x) ∩ Yn+1, is a surjective mapping. Also, G(gn+1) ⊂ G(fn+1). We
repeat the process in the previous paragraph for c2|G(fn+2) : G(fn+2) →
Xn+2. By weak confluence, we pick a subcontinuum Fn+2 of G(fn+2) such
that c2(Fn+2) = Yn+2. If either c1(Fn+2) = {z} or c1(Fn+2) contains a
point z in Xn+3 where Zn+2 = fn+2(z)∩ Yn+2 is nondegenerate, then we
have an (n+ 3)-tail sequence, giving a subcontinuum of X that is a copy

of Gn+2
1 |Zn+2

T
⊂ Gn+3

1 |{z} and satisfying (1) for m = n+ 2.

We digress momentarily to make an observation that will be used in
the proof of Theorem 2.
Observation. If Zn+2 is a flat spot in Yn+2, then gn+1(Zn+2) = {yn+1}
for some yn+1 ∈ Yn+1. So, xn ∈ fn(yn+1) = fn(gn+1(Zn+1)). That is,
{yn+1} × Zn+2 is a flat spot that composes to {xn}.

If no such z exists in c1(Fn+2) ⊂ Xn+3, we let Yn+3 = c1(Fn+2), and
again define a surjective mapping gn+2 : Yn+3 → Yn+2.

Continuing this process, we eventually find an m ≥ n + 1 for which
(1) holds, or we have an inverse sequence {Yi, gi}i≥n+1, where each gi
is a surjective mapping. We claim that, ignoring the extra parentheses,
Y = Gn

1 |{xn} × lim
←−
{Yi, gi}i≥n+1 is a subset of X. To see this, let y =

(y1, . . . , yn, yn+1, . . .) be a point of Y . By definition of Gn
1 |{xn}, we have

that yn = xn, and for 1 ≤ i ≤ n + 1, yi ∈ fi(yi+1). For i ≥ n + 2,
gi(yi+1) = yi and by definition of gi, yi ∈ fi(yi+1). So, y ∈ X and (2)
holds. �

Corollary 1. Let X = lim
←−
{Xi, fi}, where for each i ≥ 1, Xi is hered-

itarily unicoherent and in Class(W ), and fi : Xi+1 → Xi is a surjective,
continuum-valued function. If there exists a flat spot {xn} × Yn+1 of fn
for some n ≥ 1 in the inverse sequence, then

(1) either X contains a copy of Gm
1 |Zm

, for some m ≥ n+1 and some
nondegenerate subcontinuum Zm of Xm

(2) or there exists a subcontinuum Y of X such that Y is homeomor-
phic to Gn

1 |{xn} × lim
←−
{Yi, gi}i≥n+1, where each Yi is a nondegen-

erate subcontinuum of Xi and each gi is a surjective mapping.

Proof. Since each Xi is in Class(W), it follows that each c2|G(fi) : G(fi)→
Xi is weakly confluent. The corollary follows. �



106 M. M. MARSH

Corollary 2. Let X = lim
←−
{[0, 1], fi}, where for each i ≥ 1, fi : [0, 1] →

[0, 1] is a surjective, interval-valued function. If there exists a flat spot
{xn} × Yn+1 of fn for some n ≥ 1 in the inverse sequence, then

(1) either X contains a copy of Gm
1 |Zm , for some m ≥ n+1 and some

nondegenerate subinterval Zm of [0, 1]
(2) or there exists a subcontinuum Y ofX such that Y is topologically

the product of Gn
1 |{xn} and a nondegenerate arclike continuum

lim
←−
{Yi, gi}i≥n+1.

Proof. We only need to observe that [0, 1] is in Class(W), and the inverse
limit in (2) of Theorem 1 is an inverse limit on nondegenerate arcs with
surjective bonding mappings. �

Theorem 2 generalizes [15, corollaries 27 and 28].

Theorem 2. Let X = lim
←−
{[0, 1], fi}, where, for each i ≥ 1, fi : [0, 1] →

[0, 1] is a surjective, interval-valued function. If either there exists an
i ≥ 1 where dim(G(fi)) = 2 or there exists a flat spot that composes to a
nondegenerate interval in the inverse sequence, then dim(X) ≥ 2.

Proof. If dim(G(fn)) = 2 for some n ≥ 1, then it follows from [16, The-

orem 10.2] that G(fn)
T
≈ G(f−1n ) = Gn+1

n contains a closed two cell of
the form [sn, tn] × [sn+1, tn+1]. In this case, each point of [sn+1, tn+1]
is a nondegenerate value of fn that contains the interval [sn, tn]. Also,
{sn} × [sn+1, tn+1] is a flat spot of fn.

Let n ≥ 1. Suppose either dim(G(fn)) = 2 or {xn} × [sn+1, tn+1] is a
flat spot of fn that composes to xj+1 with j < n, and fj(xj+1) = [sj , tj ],
a nondegenerate interval. In either case, we can apply Corollary 2. We
consider two cases.

Case A. Suppose (1) in Corollary 2 holds. So, X contains a copy of
Gm

1 |Zm
for some m ≥ n + 1 and for some nondegenerate subinterval Zm

of [0, 1]. Recall, in the proof of Theorem 1, that in this case there exists
z in Ym+1 such that fm(z) ∩ Ym is a nondegenerate subcontinuum, say
[sm, tm], of Ym.

If m = n + 1, then either [sn, tn] × [sm, tm] ⊂ Gn+1
n = Gm

n , giving
us that dim(Gm

n ) = 2, or the flat spot {xn} × [sm, tm] composes to the
nondegenerate value fj(xj+1), and by [15, Theorem 24], dim(Gm

j ) ≥ 2.
If m ≥ n + 2, by construction and choice of m, we have that for

n+ 1 ≤ i < m, gi is a mapping of Yi+1 onto a nondegenerate continuum
Yi.

Suppose that dim(G(fn)) = 2 with [sn, tn]× [sn+1, tn+1] ⊂ Gn+1
n . Let

f̂n : G
′(gn+1, . . . , gm−1) → [sn, tn] be the set-valued function defined by
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f̂n(xn+1, . . . , xm) = [sn, tn]. We observe that

G(f̂−1n ) = [sn, tn]×G′(gn+1, . . . , gm−1)
T
⊂ Gm

n |[sm,tm].

Since each gi is a surjective mapping, G′(gn+1, . . . , gm−1) is a nondegen-
erate arc. It follows that dim(Gm

n |[sm,tm]) ≥ 2.
Suppose that {xn} × [sn+1, tn+1] is a flat spot of fn that composes to

xj+1 with j < n. We consider two subcases.
Subcase i. Suppose that {xm−1}× [sm, tm] is a flat spot of gm−1. By

the Observation in the proof of Theorem 1, {xm−1} × [sm, tm] is a flat
spot that composes to {xn}. By assumption, xn composes to xj+1, where
fj(xj+1) is nondegenerate, giving us that the flat spot {xm−1} × [sm, tm]
composes to the nondegenerate value fj(xj+1), in which case, by [15,
Theorem 24], we have that the partial graph

G′′ = G′(fj |fj+1,n(xn), . . . , fn|[sn+1,tn+1],

gn+1|gn+2,m−1(xm−1), . . . , gm−1|[sm,tm])

has dimension greater than one.
Since G′′ ⊂ Gm

j |[sm,tm], we have that dim(Gm
j |[sm,tm]) ≥ 2.

Subcase ii. Suppose that [sm, tm] is not a flat spot of fm−1. By
assumption, fj(xj+1) is a nondegenerate arc. Also, the partial graph
(with mappings) G′(gn+1|gn+2,m([sm,tm]), . . . , gm−1|[sm,tm]) is a nondegen-
erate arc. Since {xn} composes to {xj+1}, let (xj+1, . . . , xn) be a point
of Gn

j+1. Then

fj(xj+1)×{xj+1}× . . .×{xn}×G′(gn+1|gn+2,m([sm,tm]), . . . , gm−1|[sm,tm])

is topologically a subset of Gm
j |[sm,tm]. It follows that dim(Gm

j |[sm,tm]) ≥
2.

So, in all subcases of Case A, we have, by [15, Corollary 6], that
dim(Gm

1 |[sm,tm]) ≥ 2. Since X contains a copy of Gm
1 |[sm,tm], dim(X) ≥ 2.

Case B. Suppose (2) in Corollary 2 holds. Since lim
←−
{Yi, gi}i≥n+1 is a

nondegenerate arclike continuum, it has dimension one. If {xn} composes
to the nondegenerate value xj+1 of fj , we have that Gn

j |{xn} is a nonde-
generate continuum and hence has dimension at least one. So, by [15,
Theorem 24], dim(Gn

1 |{xn}) ≥ 1. It follows from the Hurewicz Product
Theorem that dim(Y ) ≥ 2. Hence, dim(X) ≥ 2.

Suppose that dim(G(fn)) = 2 with [sn, tn]× [sn+1, tn+1] ⊂ Gn+1
n . Let

X̂ = lim
←−
{[si, ti], gi}i≥n+1. Let f̂n : X̂ → Gn

1 |[sn,tn] be the continuum-

valued function defined by f̂n(xn+1, . . .) = Gn
1 |[sn,tn]. Note that

Gn
1 |[sn,tn] × lim

←−
{Yi, gi}i≥n+1 = G(f̂−1n )

T
⊂ X.
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Each of Gn
1 |[sn,tn] and lim

←−
{Yi, gi}i≥n+1 is a nondegenerate continuum. So,

it follows from the Hurewicz Product Theorem that dim(X) ≥ 2. �

Corollary 3 generalizes [15, corollaries 29 and 30]. As mentioned at the
beginning of the paper, by [2], Corollary 3 is also a characterization of
dimension one of the inverse limit space in this setting.

Corollary 3. Let X = lim
←−
{[0, 1], fi}, where, for each i ≥ 1, fi : [0, 1] →

[0, 1] is a surjective, interval-valued function. Then X is tree-like if and
only if dim(G(fi)) = 1 for each i ≥ 1, and no flat spot composes to a
nondegenerate value in the inverse sequence.

Proof. ⇒: Since X is tree-like, dim(X) = 1. So, it follows from Theo-
rem 2 that dim(G(fi)) = 1 for each i ≥ 1, and no flat spot composes to a
nondegenerate value in the inverse sequence.
⇐: This implication is established in [15, Theorem 26]. �

Corollary 4 generalizes [15, Theorem 17].

Corollary 4. Let {[0, 1], fi}ni=1 be a finite inverse sequence, where, for
each 1 ≤ i ≤ n, fi : [0, 1]→ [0, 1] is a surjective, interval-valued function.
The following are equivalent.

(1) Gn+1
1 is a λ-dendroid.

(2) For each 1 ≤ i ≤ n, dim(G(fi)) = 1, and no flat spot composes
to a nondegenerate value in the finite inverse sequence.

(3) Gj
i is a λ-dendroid for each 1 ≤ i ≤ j ≤ n+ 1.

Proof. For 1 ≤ k ≤ n, let Xk+1 = lim
←−
{[0, 1], gi}, where, for each 1 ≤ i ≤

k, gi = fi, and for i > k, gi is the identity map on [0, 1]. It is easy to see

that, for each 1 ≤ k ≤ n, Xk+1
T
≈ Gk+1

1 .

(1) ⇒ (2): Suppose that Gn+1
1 is a λ-dendroid. So, Xn+1 is a λ-

dendroid, and is, therefore, tree-like. By Corollary 3, dim(G(gi)) = 1 for
each i ≥ 1, and no flat spot composes to a nondegenerate value in the
inverse sequence. The implication follows.

(2) ⇒ (3): By either [15, Theorem 26] or Corollary 3, we get that
each Xk+1 is tree-like. So, each Gk+1

1 is tree-like and has dimension
one. It follows from [15, Theorem 17] that each Gj

i is a λ-dendroid for
1 ≤ i ≤ j ≤ n+ 1.

(3)⇒ (1): This implication is obvious. �
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