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KAKIMIZU COMPLEXES OF SURFACES AND
3-MANIFOLDS

JENNIFER SCHULTENS

Abstract. The Kakimizu complex is usually defined in the con-
text of knots, where it is known to be quasi-Euclidean. We here
generalize the definition of the Kakimizu complex to surfaces and 3-
manifolds (with or without boundary). Interestingly, in the setting
of surfaces, the complexes and the techniques turn out to replicate
those used to study the Torelli group, i.e., the “nonlinear” subgroup
of the mapping class group. Our main results are that the Kakimizu
complexes of a surface are contractible and that they need not be
quasi-Euclidean. It follows that there exist (product) 3-manifolds
whose Kakimizu complexes are not quasi-Euclidean.

The existence of Seifert’s algorithm, discovered by Herbert Seifert,
proves, among other things, that every knot admits a Seifert surface;
i.e., for every knot K, there is a compact orientable surface whose bound-
ary is K. It is worth noting that the existence of a Seifert surface for a
knot K also follows from the existence of submanifolds representing ho-
mology classes of manifolds or pairs of submanifolds, in this case the pair
(K, S3). This point of view proves useful in generalizing our understand-
ing of Seifert surfaces to other classes of surfaces in 3-manifolds.

Adding a trivial handle to a Seifert surface produces an isotopically
distinct surface. Adding additional handles produces infinitely many iso-
topically distinct surfaces. These are not the multitudes of surfaces of
primary interest here. The multitudes of surfaces of primary interest here
are, for example, the infinite collection of Seifert surfaces produced by
Julian R. Eisner [4]. Eisner realized that “spinning” a Seifert surface
around the decomposing annulus of a connected sum of two non-fibered
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112 J. SCHULTENS

knots produces homeomorphic but non-isotopic Seifert surfaces. This
abundance of Seifert surfaces led Osamu Kakimizu [16] to define a com-
plex, now named after him, whose vertices are isotopy classes of Seifert
surfaces of a given knot and whose n-simplices are (n+1)-tuples of vertices
that admit pairwise disjoint representatives.

Our understanding of the topology and geometry of the Kakimizu com-
plex continues to evolve. Both Kakimizu’s work [16] and, independently,
a result of Martin Scharlemann and Abigail Thompson [24] imply that
the Kakimizu complex is connected. Makoto Sakuma and Kenneth J.
Shackleton [23] exhibit diameter bounds in terms of the genus of a knot.
Piotr Przytycki and the author [21] establish that the Kakimizu complex
is contractible. Finally, Jesse Johnson, Roberto Pelayo, and Robin Wilson
[15] prove that the Kakimizu complex of a knot is quasi-Euclidean.

This paper grew out of a desire to study concrete examples of Kakimizu
complexes of 3-manifolds other than knot complements. A natural case
to consider is product manifolds, where relevant information is captured
by the surface factor. The challenge lies in adapting the idea of the
Kakimizu complex to a more general setting: codimension 1 submanifolds
of n-manifolds.

As it turns out, in the case of 1-dimensional submanifolds of a surface,
the Kakimizu complexes are related to the homology curve complexes
investigated by Allen Hatcher [9]; Ingrid Irmer [12]; Mladen Bestvina, Kai-
Uwe Bux, and Dan Margalit [2]; and Hatcher and Margalit [10] discussed
in §2. These complexes are of interest in the study of the Torelli group,
which is the kernel of the action of the mapping class group of a manifold
on the homology of the manifold. The Torelli group of a surface, in turn,
acts on the homology curve complexes. This group action has been used
to study the topology of the Torelli group of a surface, for instance by
Bestvina, Bux, and Margalit in their investigation of the dimension of
the Torelli group [2], by Irmer [13], by Hatcher and Margalit [10], and by
Andrew Putman in [22]

Hatcher [9] proved that the homology curve complex is contractible and
computed its dimension. Irmer studied geodesics of the homology curve
complex and exhibited quasi-flats. These insights guide our investigation
of the Kakimizu complex of a surface. Specifically, we prove similar, and
in some cases analogous, results in the setting of the Kakimizu complex of
a surface. Our main results are that the Kakimizu complexes of a surface
are contractible and that they need not be quasi-Euclidean.

One example stands out: the Kakimizu complex of a genus 2 surface. In
[2], Bestvina, Bux, and Margalit reprove a theorem of Geoffrey Mess that
the Torelli group of a genus 2 surface is an infinitely generated free group.
They do so by showing that it acts on a tree with infinitely many edges
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emerging from each vertex. As it turns out, the Kakimizu complex of the
genus 2 surface is also a tree with infinitely many edges emerging from
each vertex. In particular, the Kakimizu complex of the genus 2 surface
is Gromov hyperbolic. A product manifold with the genus 2 surface as a
factor will thus also have some Gromov hyperbolic Kakimizu complexes.
This is interesting as it shows that in addition to examples of 3-manifolds
with quasi-Euclidean Kakimizu complexes, as proved by Johnson, Pelayo,
and Wilson [15], there are 3-manifolds with Gromov hyperbolic Kakimizu
complexes. Kakimizu complexes exhibit more than one geometry!

1. The Kakimizu Complex of a Surface

The work here follows in the footsteps of [21]. Whereas the setting
for [21] is surfaces in 3-manifolds, the setting here is 1-manifolds in 2-
manifolds. It is worth pointing out that although we discuss only 1-
manifolds in 2-manifolds and 2-manifolds in 3-manifolds, the definitions
and arguments carry over verbatim to the setting of codimension 1 sub-
manifolds in manifolds of any dimension.

Recall that an element of a finitely generated free abelian group G is
primitive if it is an element of a basis for G. In the following we will
always assume (1) S is a compact (possibly closed) connected oriented
2-manifold and (2) α is a primitive element of H1(S, ∂S,Z).

Definition 1.1. A Seifert curve (see Figure 1) for (S, α) is a pair (w, c),
where c is a union, c1t· · ·t cn, of pairwise disjoint oriented simple closed
curves and arcs in S, and w is an n-tuple of natural numbers (w1, . . . , wn)
such that the homology class w1[[c1]] + · · ·+wn[[cn]] equals α. Moreover,
we require that S\c is connected. We call c the underlying curve of (w, c).
We will denote w1[[c1]] + · · ·+ wn[[cn]] by w ◦ c.

Figure 1. A Seifert curve (weights are 1)

Our definition of a Seifert curve disallows null homologous subsets. In-
deed, a null homologous subset would bound a component of S\c and
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would hence be separating. In fact, c contains no bounding subsets. Con-
versely, if w ◦ d = α and d contains no bounding subsets, then S\d is
connected.

Lemma 1.2. If (w, c) represents α, then w is determined by the under-
lying curve c.

Proof. Suppose that (w, c) and (w′, c) represent α where w = (w1, · · · , wn)
and w′ = ((w′)1, · · · , (w′)n). Then

w1[[c1]] + · · ·+ wn[[cn]] = α = (w′)1[[c1]] + · · ·+ (w′)n[[cn]];

hence,
(w1 − (w′)1)[[c1]] + · · · (wn − (w′)n)[[cn]] = 0.

Since c has no null homologous subsets, this ensures that

w1 − (w′)1 = 0, . . . , wn − (w′)n = 0.

Thus,

w1 = (w′)1, · · · , wn = (w′)n. �

Since the underlying curve c of a Seifert curve (w, c) determines w, we
will occasionally speak of a Seifert curve c, when w does not feature in
our discussion.

Definition 1.3. Given a Seifert curve (w, c), we denote the curve ob-
tained by replacing, for all i, the curve ci with wi parallel components of
ci, with h(w, c). This defines a function from Seifert curves to unweighted
curves.

Conversely, let d = d1 t · · · t dm be a disjoint union of (unweighted)
pairwise disjoint simple closed curves and arcs such that parallel com-
ponents are oriented to be parallel oriented curves and arcs. We denote
the weighted curve obtained by replacing parallel components with one
weighted component whose weight is equivalent to the number of these
parallel components with h−1(d).

Definition 1.4. For each pair (S, α), the isomorphism betweenH1(S, ∂S)
and H1(S) identifies an element a∗ of H1(S) corresponding to α that lifts
to a homomorphism ha : π1(S) → Z. We denote the covering space
corresponding to Nα = kernel(ha) by (pα, Ŝα, S), or simply (p, Ŝ, S), and
call it the infinite cyclic covering space associated with α.

We now describe the Kakimizu complex of (S, α). As vertices we take
Seifert curves (w, c) of (S, α), considered up to isotopy of underlying
curves. We write [(w, c)]. Consider a pair of vertices v and v′ and rep-
resentatives (w, c) and (w′, c′). Here S\c and S\c′ are connected, hence
path-connected. It follows that lifts of S\c and S\c′ to the covering space
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associated with α are simply path components of p−1(S\c) and p−1(S\c′).
We obtain a graph Γ(S, α) by spanning an edge e = (v, v′) on the vertices
v and v′ if and only if the representatives (w, c) and (w′, c′) of v and v′
can be chosen so that a lift of S\c to the covering space associated with
α intersects exactly two lifts of S\c′. (Note that in this case, c and c′ are
necessarily disjoint.) See Figure 2.

c

c’

Figure 2. Two Seifert curves corresponding to vertices
of distance 1 (weights are 1)

Definition 1.5. Let X be a simplicial complex. If, whenever the 1-
skeleton of a simplex σ is in X, the simplex σ is also in X, then X is said
to be flag.

Definition 1.6. The Kakimizu complex of (S, α), denoted by Kak(S, α),
is the flag complex with Γ(S, α) as its 1-skeleton.

Remark 1.7. The Kakimizu complex is defined for a pair (S, α). For
simplicity we use the expression “the Kakimizu complex of a surface”
in general discussions, rather than the more cumbersome “the Kakimizu
complex of a pair (S, α), where S is a surface and α is a primitive element
of H1(S, ∂S,Z).” Note that the Kakimizu complex of a surface is thus
unique only in conjunction with a specified α.

Figure 3 provides an example of a pair (w, c) and (w′, c′) of disjoint
(disconnected) Seifert curves that do not span an edge. The arc from one
side of c to the other side of c intersects c′ twice with the same orientation
and a lift of S\c will hence meet at least three distinct lifts of S\c′. For
a 3-dimensional analogue of Figure 3, see [1].

Example 1.8. The Kakimizu complexes of the disk and sphere are empty.
The annulus has a non-empty but trivial Kakimizu complex Kak(A,α)
consisting of a single vertex. Specifically, let A = annulus and let α be
a generator of H1(A, ∂A,Z) = Z. Then α is represented by a spanning
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c

cc’

c’

Figure 3. Two Seifert curves corresponding to vertices
of distance strictly greater than 1 (weights are 1)

arc with weight 1. The spanning arc is, up to isotopy, the only possible
underlying curve for a representative of α. Thus, Kak(A,α) consists of a
single vertex.

Similarly, the torus has non-empty but trivial Kakimizu complexes,
each consisting of a single vertex. Specifically, let T = torus and let β be
a primitive element of H1(T,Z) = Z × Z. Again, there is, up to isotopy,
only one underlying curve for representatives of β. There are infinitely
many choices for β, but in each case, Kak(T, β) consists of a single vertex.

Having understood the above examples, we restrict our attention to
the case where S is a compact orientable hyperbolic surface with geodesic
boundary for the remainder of this paper.

Definition 1.9. Let (w, c) and (w′, c′) be Seifert curves. We say that
(w, c) and (w′, c′) (or simply c and c′) are almost disjoint if, for all i and
j, the component ci of c and the component c′j of c′ are either disjoint or
coincide.

Remark 1.10. Let σ be a simplex in Kak(S, α) of dimension n. Denote
the vertices of σ by v0, . . . , vn and let c0, . . . , cn be geodesic representatives
of the underlying curves of Seifert curves for v0, . . . , vn such that arc
components of c0, . . . , cn are perpendicular to ∂S. It is a well-known fact
that closed geodesics that can be isotoped to be disjoint must be disjoint
or coincide. The same is true for the geodesic arcs considered here and for
combinations of closed geodesics and geodesic arcs, because their doubles
are closed geodesics in the double of S. Hence, for all pairs i and j,
the component ci of c and the component c′j of c′ are either disjoint or
coincide.

Definition 1.11. Consider Kak(S, α). Let (p, Ŝ, S) be the infinite cyclic
cover of S associated with α. Let τ be the generator of the group of



KAKIMIZU COMPLEXES OF SURFACES AND 3-MANIFOLDS 117

covering transformations of (p, Ŝ, S) (which is Z) corresponding to 1. Note
that τ is canonical up to sign.

Let (w, c) and (w′, c′) be Seifert curves in (S, α). Let S0 denote a
lift of S\c to Ŝ, i.e., a path component of p−1(S\c). Set Si = τ i(S0)

and ci = closure(Si) ∩ closure(Si+1). Let S′0 be a lift of S\c′ to Ŝ. Set
dK(c, c) = 0 and for c 6= c′, set dK(c, c′) equal to one less than the number
of translates of S0 met by S′0. Let v and v′ be vertices in Kak(S, α). Set
dk(v, v) = 0 and for v 6= v′, set dK(v, v′) equal to the minimum of dK(c, c′)
for (w, c) and (w′, c′) representatives of v and v′, respectively.

Definition 1.12. Let C and D be disjoint separating subsets of Ŝ. We
say that D lies above C if D lies in the component of Ŝ\C containing
τ(C). We say that D lies below C if D lies in the component of Ŝ\C
containing τ−1(C).

Remark 1.13. Here dK(c, c′) is finite: Indeed, w ◦ c = w′ ◦ c′ = α and
so [(w, c)] and [(w′, c′)] are in the kernel, Nα, of the cohomology class
dual to α. Specifically, the cohomology class dual to α is represented
by the weighted intersection pairing with (w, c) and also the weighted
intersection pairing with (w′, c′). Thus, let cj be a component of c; then
the value of the cohomology class dual to α evaluated at [[cj ]] is given
by the weighted intersection pairing of (w, c) with cj which is 0, likewise
for other components of c and c′. Thus, each component of c and c′ lies
in the kernel of this homomorphism and hence in Nα. Thus, lifts of c
and c′ are homeomorphic to c and c′, respectively, and in particular, they
are compact 1-manifolds. It follows that dK(c, c′) is finite, whence for all
vertices v and v′ of Kak(S, α), dK(v, v′) is also finite.

It is not hard to verify, but important to note, the following proposition
(see [16, Proposition 1.4]).

Proposition 1.14. The function dK is a metric on the vertex set of
Kak(S, α).

2. Relation to Homology Curve Complexes

In [9], Hatcher introduces the cycle complex of a surface:
By a cycle in a closed oriented surface S we mean

a nonempty collection of finitely many disjoint oriented
smooth simple closed curves. A cycle c is reduced if no
subcycle of c is the oriented boundary of one of the com-
plementary regions of c in S (using either orientation of
the region). In particular, a reduced cycle contains no
curves that bound disks in S, and no pairs of circles that
are parallel but oppositely oriented.



118 J. SCHULTENS

Define the cycle complex C(S) to be the simplicial com-
plex having as its vertices the isotopy classes of reduced
cycles in S, where a set of k + 1 distinct vertices spans a
k-simplex if these vertices are represented by disjoint cy-
cles c0, . . . , ck that cut S into k + 1 cobordisms C0, . . . ,
Ck such that the oriented boundary of Ci is ci+1−ci, sub-
scripts being taken modulo k + 1, where the orientation
of Ci is induced from the given orientation of S and −ci
denotes ci with the opposite orientation. The cobordisms
Ci need not be connected. The faces of a k-simplex are
obtained by deleting a cycle and combining the two adja-
cent cobordisms into a single cobordism. One can think
of a k-simplex of C(S) as a cycle of cycles. The ordering
of the cycles c0, . . . , ck in a k-simplex is determined up
to cyclic permutation.

Cycles that span a simplex represent the same element
of H1(S) since they are cobordant. Thus we have a well-
defined map π0 : C(S) → H1(S). This has image the
nonzero elements of H1(S) since on the one hand, every
cycle representing a nonzero homology class contains a
reduced subcycle representing the same class (subcycles
of the type excluded by the definition of reduced can be
discarded one by one until a reduced subcycle remains),
and on the other hand, it is an elementary fact, left as an
exercise, that a cycle that represents zero in H1(S) is not
reduced.

For a nonzero class x ∈ H1(S) let Cx(S) be the sub-
complex of C(S) spanned by vertices representing x, so
Cx(S) is a union of components of C(S). [9, p. 1].

Lemma 2.1. When both are defined, i.e., when S is closed, connected,
of genus at least 2, and α is primitive, V ert(Kak(S, α)) is isomorphic to
a proper subset of V ert(Cα(S)).

Proof. Let v be a vertex ofKak(S, α). If we choose a representative (w, c),
then h(w, c) is a disjoint collection of (unweighted) curves and arcs. The
requirement on the Seifert curve (w, c) that S\c be connected implies that
the multi-curve h(w, c) is reduced and thus represents a vertex of Cα(S).
Abusing notation slightly, we denote the map from V ert(Kak(S, α)) to
V ert(Cα) thus obtained by h. There is an inverse, h−1, defined on the
image of h; hence, h is injective.
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It is not hard to identify reduced multi-curves that contain bound-
ing subsets that are not the oriented boundary of a subsurface. Hence,
V ert(Kak(S, α)) is a proper subset of V ert(Cα(S)). �

Lemma 2.2. Suppose that S is hyperbolic and let σ be an n-simplex
in Kak(S, α). Denote the vertices of σ by v0, . . . , vn. Then there are
representatives of v0, . . . , vn with underlying curves c0, . . . , cn such that
the following hold:

(1) ci ∩ cj = ∅ for all i 6= j;
(2) S\(c0 ∪ · · · ∪ cn) is partitioned into subsurfaces P0, . . . , Pn such

that ∂Pi = ci − ci−1.

Proof. Let (p, Ŝ, S) be the covering space associated with α and let σ be
a simplex in Kak(S, α). Let c0, . . . , cn be geodesic representatives of the
underlying curves of v0, . . . , vn such that arc components of c0, . . . , cn are
perpendicular to ∂S. By Remark 1.10, ci and cj are almost disjoint for
all i 6= j. Consider a lift S0 of S\c0 to Ŝ. For each j 6= 0, cj lifts to a
separating collection ĉj of simple closed curves and simple arcs. Moreover,
since S0 is homeomorphic to S\c0, the lifts ĉi and ĉj are almost disjoint
as long as i 6= j. By reindexing c0, . . . , cn if necessary and performing
small isotopies that pull apart equal components, we can thus ensure that
ĉi lies above ĉj for i > j.

Note that the lift of S\c0 is homeomorphic to S\c0. In particular,
ci ∩ cj = ∅ for all i 6= j. Moreover, the surface with interior below ĉi
and above ĉi−1 projects to a subsurface Pi of S for i = 1, . . . , n. The
subsurfaces P1, . . . , Pn exhibit the required properties. �

Remark 2.3. When w0, . . . , wn = 1, Lemma 2.2 ensures that c0 =
h(w0, c0) = h(1, c0), . . . , cn = h(wn, cn) = h(1, cn) form a cycle of cy-
cles. In this case h extends over the simplex σ to produce a simplex h(σ)
in Cα. However, h does not extend over simplices in which weights are
not all 1. See Figure 4.

Hatcher [9] proves that for each x ∈ H1(S), Cx(S) is contractible.
(In particular, it is therefore connected and hence constitutes just one
component of C(S).) In §4 we prove an analogous result for Kak(S, α),
using a technique from the study of the Kakimizu complex of 3-manifolds.

The cyclic cycle complex and the Kakimizu complex are simplicial com-
plexes. The complex defined by Bestvina, Bux, and Margalit (see [2]) is
not simplicial, but can be subdivided to obtain a simplicial complex. See
the final comments in [10, §2]. There is a subcomplex of the cyclic cycle
complex that equals this subdivision of the complex defined by Bestvina,
Bux, and Margalit. This is the complex of interest in the context the
Torelli group. Bestvina, Bux, and Margalit exploited the action of the
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3

d d1(2, (2,) )1

c2)

)(2,c

(1, (1,d )

2

Figure 4. An edge of Kak(S, α) that does not map into Cα

Torelli group on this complex to compute the dimension of the Torelli
group. Hatcher and Margalit [10] used it to identify generating sets for
the Torelli group.

In [12], Irmer defines the homology curve complex of a surface:

Suppose S is a closed oriented surface. S is not required
to be connected but every component is assumed to have
genus g ≥ 2.

Let α be a nontrivial element of H1(S,Z). The ho-
mology curve complex, HC(S, α), is a simplicial complex
whose vertex set is the set of all homotopy classes of ori-
ented multi-curves in S in the homology class α. A set
of vertices m1, . . . ,mk spans a simplex if there is a set of
pairwise disjoint representatives of the homotopy classes.

The distance, dH(v1, v2), between two vertices v1 and
v2 is defined to be the distance in the path metric of the
one-skeleton, where all edges have length one. [12, p. 1]

It is not hard to see the following (cf. Remark 1.10 and Figure 3).

Lemma 2.4. When both are defined, i.e., when S is closed, connected,
of genus at least 2 and α is primitive, Kak(S, α) is a subcomplex of
HC(S, α). Moreover, for vertices v and v′ of Kak(S, α),

dK(v, v′) ≥ dH(v, v′).

Irmer [12] shows that distance between vertices ofHC(S, α) is bounded
above by a linear function on the intersection number of representatives.
The same is true for vertices of the Kakimizu complex. Irmer also con-
structs quasi-flats in HC(S, α). Her construction carries over to the set-
ting of the Kakimizu complex. See §6.
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3. The Projection Map, Distances and Geodesics

In [16], Kakimizu defined a map on the vertices of the Kakimizu com-
plex of a knot. He used this map to prove several things, for instance that
the metric, dK , on the vertices of the Kakimizu complex equals graph
distance (quoted and re-proved here as Theorem 3.6). In [21], Kakimizu’s
map was rebranded as a projection map.

We wish to define

πV ert(Kak(S,α)) : V ert(Kak(S, α))→ V ert(Kak(S, α))

on the vertex set of Kak(S, α). Let (p, Ŝ, S) be the infinite cyclic covering
space associated with α. Let v and v′ be vertices in Kak(S, α) such
that v 6= v′. Here v = [(w, c)] for some compact oriented 1-manifold
c and v′ = [(w′, c′)] for some compact oriented 1-manifold c′. We may
assume, in accordance with Definition 1.11 and Remark 1.13, that (w, c)
and (w′, c′) are chosen so that dK(c, c′) = dK(v, v′). Define τ, Si, S′i, ci
and, by analogy, c′i, as in Definition 1.11.

Instead of working only with c′0, we will now also work with h(w′, c′0).
Take m = max{i | Si+1 ∩ S′0 6= ∅}. Consider a connected component C
of Sm+1 ∩ S′0. Its frontier consists of a subset of c′0 and a subset of cm.
The subset of c′0 lies above the subset of cm. In particular, C lies above
cm and below c′0; hence, the orientations of the subset of c′0 are opposite
those of the subset of cm. See Figure 5. Because the subset of c′0 and the
subset of cm cobound C, they are homologous. It follows that the lowest
components of the corresponding subset of h(w′, c′0) are also homologous
to the subset of cm.

c

c

c

m−1

0

m+1

m

c’

Figure 5. The setup with cm, c′0 (weights are 1)
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Replacing the lowest of the corresponding subsets of h(w′, c′0) with the
subset of cm and isotoping this portion of cm to lie below cm yields a
multi-curve d1 with the following properties:

• d1 is homologous to h(w′, c′0) via a homology that descends to a
homology in S (because C is homeomorphic to a subset of S);
• d1 has lower geometric intersection number with cm than h(w′, c′0);
• d1 lies above h(w′, c′−1) and can be isotoped to lie below and thus

be disjoint from h(w′, c′0); moreover, its projection can be isotoped
to be disjoint from h(w′, c′).

• For (x1, e1) = h−1(d1), we have x1 ◦ e1 homologous to w′ ◦ c′0 via
a homology that descends to a homology in S.

See figures 5 and 6.

c

c

c

m−1

m+1

m

Figure 6. d1

Working with h−1(d1), d1 instead of c′0, h(w′, c′0), we perform such re-
placements in succession to obtain a sequence of multi-curves d1, . . . , dk
such that the following hold:

• dj is homologous to dj−1 via a homology that descends to a ho-
mology in S;

• dj has lower geometric intersection number with cm than dj−1;
• dj can be isotoped to lie below h(w′, c′0), d1, . . . , dj−1; moreover,

its projection can be isotoped to be disjoint from h(w′, c′).
• For (xj , ej) = h−1(dj), we have xj ◦ ej homologous to w′ ◦ c′0 via

a homology that descends to S.
• dk lies above h(w′, c′−1) and below cm.

See figures 7, 8, and 9.
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1

cm

c’0

2

Figure 7. A different pair of weighted multi-curves

1

cm

−1h (d1)

1

1 1

Figure 8. h−1(d1)
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1

cm

−1h (d )

1 1
1

2

Figure 9. h−1(d2)

This proves the following.

Lemma 3.1. The homology class [[p(dk)]] = p#(xk ◦ ek) = α.

We make two observations: (1) A result of Ulrich Oertel [19] shows that
the isotopy class of p(ek) does not depend on the choices made. (2) It is
important to realize that (xk, p(ek)) may not be a Seifert curve, because
S\p(ek) is not necessarily connected.

If S\p(h−1(ek)) is connected, set pc(c′) = (xk, p(ek)). Otherwise,
choose a component D of S\p(ek). If the frontier of D is null homol-
ogous, then remove the frontier of D from p(ek). See figures 10, 11, 12.

If the frontier of D is not null homologous (because the orientations
do not match up), choose an arc a in its frontier with smallest weight.
Denote the weight of a by wa. We eliminate the component a of p(ek)
by adding ±wa to the weights of the other components of p(ek) in the
frontier of D in such a way that the resulting weighted multi-curve still
has homology α.

After a finite number of such eliminations, we obtain a weighted multi-
curve that is a subset of p(ek), has homology α, and whose complement in
S is connected. After reversing orientation on components with negative
weights, we obtain a Seifert curve pc(c′).
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m
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Figure 10. The setup with cm, c′0 (weights are 1)
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Figure 11. dk
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0c’

m−2

m−1
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Figure 12. A subset of dk

Lemma 3.2. The homology class [[pc(c
′)]] = α.

Proof. This follows from Lemma 3.1 and the observations above. �

Definition 3.3. We denote the isotopy class [pc(c
′)] by πv(v′).

Lemma 3.4. For v 6= v′, the following hold:

dK(πv(v
′), v′) = 1

and
dK(πv(v

′), v) ≤ dK(v′, v)− 1.

It will follow from Theorem 3.6 below that the inequality is in fact an
equality.

Proof. By construction, ek lies strictly between c′0 and c′−1. So τ(ek)
lies strictly between c′1 and c′0. Thus, the lift of S\pc(c′) with frontier in
ek ∪ τ(ek) meets S′0 and S′1 and is disjoint from S′i for i 6= 0, 1. It follows
that the lift of S\pc(c′) with frontier contained in ek ∪ τ(ek) also meets
S′0 and S′1 and is disjoint from S′i for i 6= 0, 1. Hence,

dK(πv(v
′), v′) = 1.

In addition, suppose that c′0 ∩ Si 6= ∅ if and only if i ∈ {n, . . . ,m+ 1}.
Then c′1 ∩ Si 6= ∅ if and only if i ∈ {n+ 1, . . . ,m+ 2}. Hence, the lift of
S\c′ that lies strictly between c′0 and c′1 meets exactly Sn, . . . , Sm+2.
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By construction, ek ∩ Si can be nonempty only if i ∈ {n, . . . ,m} and
thus τ(ek) ∩ Si can be nonempty only if i ∈ {n + 1, . . . ,m + 1}. Hence,
the lift of S\pc(c′) with frontier in ek ∪ τ(ek) can meet Si only if i ∈
{n, . . . ,m+ 1}. It follows that the lift of S\pc(c′) with frontier contained
in ek ∪ τ(ek) can meet Si only if i ∈ {n, . . . ,m+ 1}, whence

dK(πv(v
′), v) ≤ m+ 1− n− 1 = dK(v′, v)− 1. �

Definition 3.5. The graph distance on a complex C is a function that
assigns to each pair of vertices v and v′ the least possible number of edges
in an edge path in C from v to v′.

Theorem 3.6 (Kakimizu). The function dK equals graph distance.

Proof. Denote the graph distance between v′ and v by d(v′, v). If dK(v′, v)
= 1, then d(v′, v) = 1 and vice versa by definition. So suppose dK(v′, v) =
m > 1 and consider the path with vertices

v′, πv(v
′), π2

v(v′), . . . , πm−1v (v′), πmv (v′) = v.

By Lemma 3.4, dK(πv(v
′), v′) = 1 and dK(πiv(v

′), πi−1v (v′)) = 1. Thus,
the existence of this path guarantees that d(v′, v) ≤ m. Hence, d(v′, v) ≤
dK(v′, v). Let v′ = v0, v1, . . . , vn = v be the vertices of a path realizing
d(v′, v). By the triangle inequality and the fact that d(vi−1, vi) = 1 =
dK(vi−1, vi),

dK(v′, v) ≤ dK(v0, v1) + · · ·+ dK(vn−1, vn) = 1 + · · ·+ 1 =

d(v0, v1)+ · · ·+d(vn−1, vn) = d(v′, v) �

The following theorem is a reinterpretation of a theorem of Scharle-
mann and Thompson [24] that was proved using different methods.

Theorem 3.7. The Kakimizu complex is connected.

Proof. Let v and v′ be vertices in Kak(S, α). By Remark 1.13, dK(v, v′)
is finite. By Theorem 3.6, d(v, v′) is finite. In particular, there is a path
between v and v′. �

Definition 3.8. A geodesic between vertices v and v′ in a Kakimizu
complex is an edge-path that realizes d(v, v′).

Theorem 3.9. The path with vertices v′, πv(v′), π2
v(v′), . . . , πv(v

′)m−1,
πmv (v′) = v is a geodesic.

Proof. This follows from Theorem 3.6 because the path

v′, πv(v
′), π2

v(v′), . . . , πv(v
′)m−1, πmv (v′) = v

realizes d(v′, v). �
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Remark 3.10. Theorem 3.9 tells us that geodesics in the Kakimizu com-
plex joining two given vertices are, at least theoretically, constructible.

Note that, typically, πv(v′) 6= πv′(v). See Figure 13 for a step in the
construction of πv′(v).

c

c

c

c’

0

1

2

−m+1

Figure 13. u(c′−m+1, c0)

4. Contractibility

The proof of contractibility presented here is a streamlined version of
the proof given in the 3-dimensional case in [21]. Those familiar with
Hatcher’s work in [9] will note certain similarities with his first proof of
contractibility of Cα(S) in the case that α is primitive.

Lemma 4.1. Suppose that v, v1, and v2 are vertices in Kak(S, α). Then
there are representatives c, c1, and c2 with v = [(w, c)], v1 = [(w1, c1)],
and v2 = [(w2, c2)] that realize dK(v, v1), dK(v, v2), and dK(v1, v2).

Proof. Let c, c1, and c2 be geodesic representatives of the underlying
curves of representatives of v, v1, and v2 such that arc components of c,
c1, and c2 are perpendicular to ∂S. Lifts of c, c1, and c2 to (p, Ŝ, S), the
infinite cyclic covering of S associated with α, are also geodesics. Points of
intersection lift to points of intersection. Geodesics that intersect cannot
be isotoped to be disjoint. Hence, c, c1, and c2, with appropriate weights,
realize dK(v, v1), dK(v, v2), and dK(v1, v2). �

Lemma 4.2. Suppose that v, v1, and v2 are vertices in Kak(S, α) such
that dK(v, vi) > 1 and dK(v1, v2) = 1. Then dK(πv(v

1), πv(v
2)) ≤ 1.
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Proof. In the case that, say, v1 = v, note that dK(v1, v2) = 1 means
that dK(v, v2) = 1. Thus, πv(v1) = πv(v) = v and πv(v

2) = v. Thus,
dK(πv(v

1), πv(v
2)) = 0. In the case that, say, dK(v1, v) = 1 and v2 6= v,

note that πv(v1) = v and

dK(v, v2) ≤ dK(v, v1) + dK(v1, v2) = 1 + 1;

thus,
dK(v, πv(v

2) ≤ 1,

by Lemma 3.4, and dK(πv(v
1), πv(v

2)) ≤ 1. Hence, we will assume for
the rest of this proof that dK(v, vi) > 1.

By Lemma 4.1, there are representatives (w, c), (w1, c1), and (w2, c2)
of v, v1, and v2 that realize dK(v, v1), dK(v, v2), and dK(v1, v2). Let
(p, Ŝ, S) be the infinite cyclic cover of S associated with α. Define τ , Si,
S1
i , S2

i , ci, c1i , c2i as in Definition 1.11 but with a caveat: Label S1
i and

S2
i so that S1

0 and S2
0 meet S1 and meet Sj only if j ≤ 1.

Since dK(c1, c2) = dK(v1, v2), c1 and c2 must be disjoint. Since c10 is
separating, c20 lies either above or below c10. Without loss of generality,
we will assume that c20 lies above c10 (and below τ(c10)). See figures 14
and 15. Note that h(w2, c20) also lies above h(w1, c10). Proceeding as
in the discussion preceding Lemma 3.2, construct e1k whose projection
contains pc(c1) and then e2l whose projection contains pc(c2), noting that
this construction can be undertaken so that e2l lies above e1k (and below
τ(e1k)).

c

c

c1

0

−1

Figure 14. c10 and c20



130 J. SCHULTENS

c

c

c1

0

−1

Figure 15. d1k and d2l

Consider the lift of S\pc(c2) with frontier in e2l ∪ τ(e2l ). This lift of
S\pc(c2) meets at most the two lifts of S\pc(c1) whose frontiers lie in
e1k ∪ τ(e1k) and τ(e1k) ∪ τ2(e1k), whence

dK(πv(v
1), πv(v

2)) ≤ 1. �

Lemma 4.3. If dK(v1, v2) = m, then dK(πv(v
1), πv(v

2)) ≤ m.

Proof. Let v1 = v0, v1, . . . , vm−1, vm = v2 be the vertices of a path from
v1 to v2 that realizes dK(v1, v2). By Lemma 4.2, dK(πv(vi), πv(vi+1)) ≤
dK(vi, vi+1) = 1 for i = 0, . . . ,m− 1. Hence,

dK(πv(v
1), πv(v

2)) ≤ dK(πv(v0), πv(v1)) + · · ·+ dK(πv(vm−1), πv(vm)) ≤

dK(v0, v1)+ · · ·+dK(vm−1, vm) ≤ m. �

Theorem 4.4. The Kakimizu complex of a surface is contractible.

Proof. Let Kak(S, α) be a Kakimizu complex of a surface. It is well
known (see [8, p. 358, Exercise 11]) that it suffices to show that every
finite subcomplex of Kak(S, α) is contained in a contractible subcomplex
of Kak(S, α). Let C be a finite subcomplex of Kak(S, α). Choose a
vertex v in C and denote by C′ the smallest flag complex containing every
geodesic of the form given in Theorem 3.9 for v′ a vertex in C. Since C is
finite, it follows that C′ is finite.

Define c : V ert(C′) → V ert(C′) on vertices by c(v′) = πv(v
′). By

Lemma 4.2, this map extends to edges. Since C′ is flag, the map extends
to simplices and thus to all of C′. By Lemma 4.3 this map is continuous.
It is not hard to see that c is homotopic to the identity map. In particular,
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c is a contraction map. (Specifically, cd, where d is the diameter of C′,
has the set {v} as its image.) �

5. Dimension

In [9], Hatcher proves that the dimension of Cα(S) is 2g(S)− 3, where
g(S) is the genus of the closed oriented surface S. An analogous argument
derives the same result in the context of Kak(S, α).

Lemma 5.1. Let S be a closed connected orientable surface with genus(S)
greater than or equal to 2 and let α be a primitive class in H1(S, ∂S). The
dimension of Kak(S, α) is −χ(S)− 1 = 2genus(S)− 3.

Proof. It is not hard to build a simplex of Kak(S, α) of dimension
2genus(S)−3. See, for example, Figure 16, where 0, 1, 2, and 3 are multi-
curves (each of weight 1) representing the vertices of a simplex. Thus, the
dimension of Kak(S, α) is greater than or equal to 2genus(S)− 3.

c

3

0

1

2 20c c
c

c

c

Figure 16. A simplex in a genus 3 surface

Conversely, let σ be a simplex of maximal dimension in Kak(S, α).
Label the vertices of σ by v0, . . . , vn and let c0, . . . , cn be geodesic rep-
resentatives of the underlying curves of representatives of v0, . . . , vn. By
Lemma 2.2, S\(c0 ∪ · · · ∪ cn) consists of subsurfaces P0, . . . , Pn with fron-
tiers c0 − cn, c1 − c0, . . . , cn − cn−1. Since ci and ci−1 are not isotopic, no
Pi can consist of annuli. In addition, no Pi can be a sphere; hence, each
must have negative Euler characteristic. Thus, the number of Pi’s is at
most −χ(S). That is,

n ≤ −χ(S) = 2genus(S)− 2.

In other words, the dimension of σ and hence the dimension of Kak(S, α)
are less than or equal to 2genus(S)− 3. �

We can extend this argument to compact surfaces by introducing the
following notion of complexity.
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Definition 5.2. Let S be a compact surface and let P be an open sub-
set of S whose boundary consists of open subarcs of ∂S and, possibly,
components of ∂S. Define

c(P, S) = −2χ(P ) + number of open subarcs in ∂P.

The following lemma is immediate.

Lemma 5.3. Let C be a union of simple closed curves and simple arcs in
S. Then

c(S, S) = c(S\C, S).

Theorem 5.4. Let S be a compact connected orientable surface with
χ(S) ≤ −1 and let α be a primitive class in H1(S, ∂S). The dimen-
sion of Kak(S, α) is −2χ(S) − 1 = 4genus(S) + 2b − 5, where b is the
number of boundary components of S.

Proof. To build a simplex of Kak(S, α) of dimension 4genus(S) + 2b− 5,
we can, for instance, employ the vertices pictured in Figure 17, where 0, 1,
2, 3, 4 and 5 are multi-curves (each of weight 1) representing the vertices
of a simplex. Thus, the dimension of Kak(S, α) is greater than or equal
to 4g(S) + 2b− 5.

b

a

a

d

0

0
1

2

2

3

3

3

4
3

3

0

0

5

4

b

c

c

d

Figure 17. A simplex in a punctured genus 2 surface
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Conversely, let σ be a simplex of maximal dimension in Kak(S, α).
Label the vertices of σ by v0, . . . , vn and let c0, . . . , cn be geodesic rep-
resentatives of the underlying curves of representatives of v0, . . . , vn such
that arc components of c0, . . . , cn are perpendicular to ∂S. By Lemma
2.2, S\(c0∪ · · ·∪ cn) consists of subsurfaces P0, . . . , Pn with frontiers con-
taining c0−cn, c1−c0, . . . , cn−cn−1. Since ci and ci−1 are not isotopic, Pi
cannot consist of annuli or disks with exactly two open subarcs of ∂S in
their boundary. In addition, no Pi can be a sphere or a disk with exactly
one open subarc of ∂S in its boundary; hence, each must have positive
complexity. Thus, the number of Pi’s is at most c(S, S\(c0 ∪ · · · ∪ cn)).
That is,

n ≤ c(S, S\(c0 ∪ · · · ∪ cn)) = c(S, S) = −2χ(S).

In other words, the dimension of σ and hence the dimension of Kak(S, α)
is less than or equal to −2χ(S)− 1 = 4genus(S) + 2b− 5. �

6. Quasi-flats

In this section we explore an idea of Irmer (see [12, §7]).
Consider Figure 18. Denote the surface depicted by S and the homol-

ogy class of c by α. The curves t1 and t2 are homologous, as are t3 and t4.
Denote by v the vertex (1, c) of Kak(S, α), by v1 the vertex corresponding
to the result d1 obtained from c by Dehn twisting n times around t1 and
−n times around t2, and by v2 the vertex corresponding to the result d2
obtained from c by Dehn twisting n times around t3 and −n times around
t4. Then d1 and d2 are homologous to c, so we obtain three vertices v,
v1, and v2 in Kak(S, α) (all weights are 1). Note the following:

d(v, vi) = dK(v, vi) = n

d(v1, v2) = dK(v1, v2) = n.

c

2
t

t
1

t
3

4
t

Figure 18. Building a quasi-flat by Dehn twists

For i = 1, 2, we consider the geodesics gi with vertices vi, πv(vi), . . . ,
πnv (vi) = v. In addition, consider the geodesic g3 with vertices v2, πv1(v2),
. . . , πnv1(v2) = v1 and note that πiv1(v2) is represented by a curve obtained
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from c by Dehn twisting i times around t1, −i times around t2, n−i times
around t3, and −(n− i) times around t4.

Definition 6.1. Let (X, d) be a metric space. A triangle is a 6-tuple (v1,
v2, v3, g1, g2, g3), where v1, v2, and v3 are vertices and the edges g1, g2,
and g3 satisfy the following: g1 is a distance minimizing path between
v1 and v2; g2 is a distance minimizing path between v2 and v3; g3 is a
distance minimizing path between v3 and v1.

A triangle (v1, v2, v3, g1, g2, g3) is δ-thin if each gi lies in a δ-neighbor-
hood of the other two edges. A metric space (X, d) is δ-hyperbolic if every
triangle in (X, d) is δ-thin. It is hyperbolic if there is a δ > 0 such that
(X, d) is δ-hyperbolic.

For n even, the midpointm1 of the geodesic g1 is the vertex correspond-
ing to the result d′1 obtained from c by Dehn twisting n

2 times around t1
and −n2 times around t2. Likewise, the midpoint m2 of the geodesic g2 is
the vertex corresponding to the result d′2 obtained from c by Dehn twist-
ing n

2 times around t3 and −n2 times around t4. The midpoint m3 of g3 is
represented by a curve obtained from c by Dehn twisting n

2 times around
t1 and around t3 and −n2 times around t2 and t4.

Lemma 6.2. Let S be the closed oriented surface of genus 4. Then
Kak(S, α) is not hyperbolic.

Proof. For S the closed genus 4 surface, the triangle (v, v1, v2, g1, g2, g3)
described depends on n, so we will denote it by Tn. In Tn we have the
following:

d(v,m3) = dK(v,m3) = n

d(v1,m2) = dK(v1,m2) = n

d(v2,m1) = dK(v2,m1) = n.

In particular, g3 is contained in a δ-neighborhood of the two geodesics
g1 and g2 only if n is less than δ. Thus, the triangle Tn in Kak(S, α) is
not δ-thin for n ≥ δ. It follows that Kak(S, α) is not hyperbolic. �

Definition 6.3. Let (X, d) be a metric space. A quasi-flat in (X, d) is a
quasi-isometry from Rn to (X, d), for n ≥ 2.

Note the following:

d(m1,m2) = dK(m1,m2) =
n

2

d(m1,m3) = dK(m1,m3) =
n

2

d(m2,m3) = dK(m2,m3) =
n

2
.
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Thus, the triangle Tn scales like a Euclidean triangle. It is not too
hard to see that a triangle with this property can be used to construct a
quasi-isometry between R2 and an infinite union of such triangles lying
in Kak(S, α). Thus, Kak(S, α) contains quasi-flats. It is also not hard to
adapt this construction to show that, for S an oriented surface, Kak(S, α)
is not hyperbolic and contains quasi-flats if the genus of S is greater than
or equal to 4, or the genus of S is greater than or equal to 2 and χ(S) ≤ −6.

7. Genus 2

We consider the example of a closed orientable surface S of genus 2.
A non-trivial primitive homology class α can always be represented by
a non-separating simple closed curve with weight 1. Moreover, a Seifert
curve in a closed orientable surface of genus 2, since its underlying curve
is non-separating, can have at most two components. Figure 19 depicts
multi-curves c and d1 ∪ d2 such that [[c]] = [[d1]] + [[d2]].

2c d d1

Figure 19. Underlying curves c and d1 ∪ d2 in a genus
2 surface (all weights are 1)

We refer to a Seifert curve with one component as type 1 and a Seifert
curve with two components as type 2. Since α is primitive, a Seifert curve
of type 1 must have weight 1. It follows that distinct Seifert curves of
type 1 must intersect. A Seifert curve of type 1 can be disjoint from a
Seifert curve of type 2 (see Figure 19) and distinct Seifert curves of type
2 can be disjoint (see figures 20 and 21).

Let c be the underlying curve of a Seifert curve of type 1 and d = d1∪d2
the underlying curve of a Seifert curve of type 2 that are disjoint. Then
the three disjoint simple closed curves c∪d cut S into pairs of pants. Any
Seifert curve that is disjoint from c ∪ d must have its underlying curve
parallel to either c or d. Note that, since the weight of c is 1, the weights
for d1 and d2 must also be 1.
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21
1

1

2( ,d )

( 1),e 1( ,e2)

( ,d )

Figure 20. Seifert curves (2, 1, d) and (1, 1, e)

,c1( )

1( ,e2)

,e1 (1 )

Figure 21. Seifert curves (1, 1, e) and (1, c)

Consider the link of [(1, c)] in Kak(S, α). It consists of equivalence
classes of Seifert curves of type 2. The Seifert curves of type 2 have
underlying curves that are pairs of curves lying in S\c, are not parallel
to c, and are separating in S\c but not in S. There are infinitely many
such pairs of curves. More specifically, S\c is a twice punctured torus,
so the curves are parallel curves that separate the two punctures and can
be parameterized by Q. Distinct such curves cannot be isotoped to be
disjoint and hence correspond to distance two vertices of Kak(S, α). This
confirms that Kak(S, α) has dimension 1 = (2)(2) − 3 near [(1, c)], as
prescribed by Theorem 5.1.

For d = d1∪d2 as in Figure 19 or 20, we consider S\(d1∪d2), a sphere
with four punctures. The link of [(w1, w2, d1∪d2)] contains isotopy classes
of Seifert curves of type 1. These are essential curves that are separating
in S\(d1∪d2) but not in S and that partition the punctures of S\(d1∪d2)
appropriately. There are infinitely many such curves. They too can be
parameterized by Q. Note that distinct Seifert curves of type 1 cannot



KAKIMIZU COMPLEXES OF SURFACES AND 3-MANIFOLDS 137

be isotoped to be disjoint and hence correspond to vertices of Kak(S, α)
of distance two or more.

In addition, the link of [(w1, w2, d1∪d2)] contains vertices [(u1, u2, e1∪
e2)] such that one component of e1∪e2, say e1, is parallel to a component
of d1 ∪ d2, say d1, and S\(d1 ∪ d2 ∪ e1 ∪ e2) consists of two pairs of pants
and one annulus. Seifert curves of this type can also be parameterized
by Q, since e2 is a curve in a twice punctured torus that partitions the
punctures appropriately and e1 is parallel to d1. Note that, since the
weights of d1 and d2 are w1 and w2, we must have

w1 = u1 ± u2
w2 = u2 .

In summary, Kak(S, α) is a tree, each of whose vertices has a countably
infinite discrete (i.e., 0-dimensional) link.

Recall that Johnson, Pelayo, and Wilson showed that the Kakimizu
complex of a knot in the 3-sphere is quasi-Euclidean. The Kakimizu com-
plex of the genus 2 surface is an infinite graph, thus Gromov hyperbolic.
In particular, it is not quasi-Euclidean.

8. 3-Manifolds

The definitions given for Seifert curve, infinite cyclic cover, Kakimizu
complex, and so forth carry over to codimension 1 submanifolds in man-
ifolds of any dimension. In particular, they carry over to Seifert surfaces
and Kakimizu complexes in the context of compact (possibly closed) 3-
manifolds. One need merely replace 1’s by 2’s and 2’s by 3’s. Instead of
Seifert curves, one considers Seifert surfaces. Seifert surfaces are weighted
essential surfaces that represent a given relative second homology class
and have connected complements. This ties into and generalizes some of
the work in [21].

Let S be a compact oriented surface. Take M = S× I. Incompressible
surfaces in a product manifold are either horizontal or vertical. Vertical
surfaces have the form c× I, where c is a multi-curve in S. It follows that
Kak(M, [[c × I]]) = Kak(S, [[c]]), where [[·]] denotes the homology class
of ·.

Theorem 8.1. There exist 3-manifolds with Gromov hyperbolic Kakimizu
complex.

Proof. Let S be the closed oriented surface of genus 2, α a primitive
homology class in H1(S), and c a compact 1-manifold representing α.
Then Kak(S, α) is the graph discussed in §7. In particular, Kak(S, α) is
quasi-hyperbolic. Take M = S × I. Then Kak(M, [[c× I]]) = Kak(S, α)
is also quasi-hyperbolic. �
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