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L-NORMALITY

LUTFI KALANTAN AND MAHA MOHAMMED SAEED

ABSTRACT. A topological space X is called L-normal if there exist
a normal space Y and a bijective function f : X — Y such that the
restriction f, : A — f(A) is a homeomorphism for each Lindel6f
subspace A C X. We will investigate this property and produce
some examples to illustrate the relation between L-normality and
other weaker kinds of normality.

A. V. Arhangel’skil introduced in 2012, when he was visiting the De-
partment of Mathematics at King Abdulaziz University, a new, weaker
version of normality, called C-normality [8]. A topological space X is
called C'-normal if there exist a normal space Y and a bijective func-
tion f : X — Y such that the restriction fj, : C — f(C) is a
homeomorphism for each compact subspace C' C X. We use the idea
of this definition to introduce another new, weaker version of normal-
ity and call it L-normality. The purpose of this paper is to investigate
this property. We prove that normality implies L-normality but the con-
verse is not true in general. We present some examples to show relation-
ships between L-normality and other weaker versions of normality such
as C-normality, almost normality, mild normality, quasi-normality, and
m-normality. Throughout this paper, we denote an ordered pair by (z, y),
the set of positive integers by N, and the set of real numbers by R. A Ty
space is a 17 normal space, a Tychonoff space is a T; completely regular
space, and a T3 space is a T7 regular space. We do not assume T5 in the
definition of compactness and we do not assume regularity in the defini-
tion of Lindeléfness. For a subset A of a space X, intA and A denote
the interior and the closure of A, respectively. An ordinal ~ is the set of
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all ordinals « such that a < . The first infinite ordinal is wq, the first
uncountable ordinal is wq, and the successor cardinal of w; is ws.

1. L-NORMALITY

Definition 1.1. A topological space X is called C-normal if there ex-
ist a normal space Y and a bijective function f : X — Y such that
the restriction f|, : C — f(C) is a homeomorphism for each compact
subspace C C X [8]. A topological space X is called L-normal if there
exist a normal space Y and a bijective function f : X — Y such that
the restriction f|, : A — f(A) is a homeomorphism for each Lindel6f
subspace A C X.

A function f: X — Y witnessing the C-normality of X need not be
continuous. But it will be if it has the property that for each convergent
sequence z, — x in X we have f(z,) — f(z). This happens if X is a
Hausdorff sequential space or a k-space. Similarly, a function f : X — Y
witnessing the L-normality of X need not be continuous. But it will be
if X is of countable tightness.

Theorem 1.2. If X is L-normal and of countable tightness and f : X —>
Y is a witness of the L-normality of X, then f is continuous.

Proof. Let A be any non-empty subset of X. Let y € f( A) be arbitrary.
Let € X be the unique element such that f(x) = y. Then x € A. Pick a
countable subset Ay C A such that x € Ag. Let B = {z}UAp; then Bis a
Lindel6f subspace of X, and hence f|, : B — f(B) is a homeomorphism.
Now, let V' C Y be any open neighborhood of y; then V' N f(B) is open in
the subspace f(B) containing y. Thus, f~(V)NB is open in the subspace
B containing x. Thus, (f~1(V)NB)NAg # 0. So (f~1(V)NB)NA# .
Hence, 0 # f((f~1(V)NB)NA) C f(f~*(V)NA) =Vn f(A). Thus,
y € f(A). Therefore, f is continuous. a

Since any compact space is Lindeldf, then any L-normal space is C-
normal. The converse is not true in general. Obviously, no Lindel&f non-
normal space is L-normal. So, no countable complement topology on an
uncountable set X is L-normal, but it is C-normal because the only com-
pact subspaces are the finite subspaces, and the countable complement
topology is T, so compact subspaces are discrete. Hence, the discrete
topology on X and the identity function will witness C-normality. We
will give more Tychonoff C-normal spaces which are not L-normal.

By definition, it is clear that a Lindel6f L-normal space must be normal.
If X is countable, then X may not be L-normal, for example, (Q, 7g),
where T is the particular point topology [14]. It is also obvious that any
normal space is L-normal, just by taking X =Y and f to be the identity
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function. The converse is not true in general. Here is an example of a
Tychonoff L-normal space which is neither normal nor locally Lindelof.

Example 1.3. We modify the Dieudonné plank [14] to define a new
topological space. Let

X = ((wo +1) x (wo + 1)\ {{wz,w0) }-

Write X = AUBUN, where A = {{w2,n) : n <wp}, B={{o,wp):ax <
wo}, and N = {(o,n) : @ < wy and n < wp}. The topology 7 on X is
generated by the following neighborhood system: For each (o, n) € N, let
B({a,n)) = {{{a,n)}}. For each {wq,n) € A, let B({w2,n)) = {Va(n) =
(a,wa] x {n} : a < wa}. For each (a,wp) € B, let B({a,wp)) = {Vi(a) =
{a} x (n,wp] : n < wp}. Then X is a Tychonoff non-normal space which is
not locally compact nor locally Lindel6f as any basic open neighborhood
of any element in A is not Lindel6f. Now, a subset C' C X is Lindelof if
and only if C' is countable because if C' is uncountable, then either C N B
or C' N N is uncountable, then a basic open set for each element in C
would give an open cover for C' which has no countable subcover.

Now, define Y = X = AU BU N. Generate a topology 7" on Y by
the following neighborhood system: Elements of B U N have the same
local base as in X. For each (wa,n) € A, let B({we,n)) = {{{w2,n)}}.
Then Y is a T, space because it is paracompact. Consider the identity
function id : X — Y. Let C' C X be any Lindel6f subspace. Then
id|, : C — id(C) = C is a bijective. Let (a,b) be any element in
C. If {(a,b) € N, then {(a,b)}, which is open in C as a subspace of X
and Y, will give that id., is continuous. If (a,b) € B and W is any
basic open set of (a,b) in C as a subspace of Y, then W is also a basic
open set of (a,b) in C as a subspace of X; hence, id|., is continuous.
If (a,b) € A, then the smallest open neighborhood of (a,b) in C as a
subspace of Y is {(a,b)}. Since C is Lindel6f in X, then it is countable.
Write (we x {b}) N C = {{ay,b) : k € K where K is countable }. Pick
B < wg such that o < § for each k € K. Then V3(b) is a basic open
set of (a,b) in X; hence, Vg(b) N C' = {{a,b)} is an open neighborhood of
(a,b) in C as a subspace of X. Thus, id|, is continuous. From the three
cases, we conclude that id|., is continuous. Since the topology on X is
coarser than the topology on Y, then the inverse function of id, , is also
continuous. We conclude that id|. is a homeomorphism. Therefore, the
modified Dieudonné plank X is L-normal.

Theorem 1.4. L-normality is a topological property.

Proof. Let X be an L-normal space and X = Z. Let Y be a normal
space and f : X — Y be a bijective such that f, : C — f(C) is a
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homeomorphism for each Lindel6f subspace C of X. Let g : Z — X be
a homeomorphism. Then fog:Z — Y satisfies all requirements. O

Theorem 1.5. L-normality is an additive property.

Proof. Let X, be an L-normal space for each o € A. We show that their
sum PyeprXeq is L-normal. For each o € A, pick a normal space Y, and
a bijective function f, : X, — Y, such that fa\c :Cq — [a(Cy) is a
homeomorphism for each Lindel6f subspace C,, of X «. Since Y, is normal
for each o € A, then the sum @, Y, is normal ([3, 2.2.7]). Consider the
function sum (see [3, 2.2.E]), ®aecrfa : PacaXa — Paca Yo defined by
Bacafo(z) = fa(z) if x € Xg,8 € A. Now, a subspace C C Baecr X, is
Lindeldf if and only if the set Ag = {a € A : CNX, # 0} is countable and
CNX, is Lindel6f in X, for each o € Ag. If C' C ®oer X, is Lindeldf, then
(Paerfa)|e is a homeomorphism because fa‘cﬁxa is a homeomorphism
for each o € Ag. O

Theorem 1.6. If X is T5 separable L-normal and of countable tightness,
then X is normal (Ty).

Proof. Let Y be a normal space and f : X — Y be a bijective witness
to L-normality of X. Then f is continuous because X is of countable
tightness. Let D be a countable dense subset of X. We show that f is
closed. Let H be any non-empty closed proper subset of X. Suppose
that f(p) = q € Y\ f(H); then p ¢ H. Using regularity, let U and V
be disjoint open subsets of X containing p and H, respectively. Then
U N (DU{p}) is open in the Lindel6f subspace D U {p} containing p, so
f(UN(DU{p})) is open in the subspace f(D U {p}) of Y containing gq.
Thus, (U N(DU{p})) = £(U) N F(DU{p}) = W N £(DU{p}) for some
open subset W in Y with ¢ € W.

We claim that W N f(H) = . Suppose otherwise, and take y € W N
f(H). Let x € H such that f(z) = y. Note that z € V. Since D
is dense in X, D is also dense in the open set V. Thus, x € VN D.
Now since W is open in Y and f is continuous, f~1(W) is an open set
in X; it also contains z. Thus, we can choose d € f~}(W)NV N D.
Then f(d) e WN f(VND)CWnf(DU{p}) = f({UN(DU{p})). So
f(d) € f(U)N f(V), a contradiction.

Thus, WN f(H) = 0. Note that ¢ € W. As ¢ € Y\ f(H) was arbitrary,
f(H) is closed. So f is a homeomorphism and X is normal. O

We conclude from the above theorem that the Niemytzki plane [14]
and Mrowka space W(A), where A C [wo]*° is mad [2|, are examples
of Tychonoff spaces which are not L-normal. L-normality is not multi-
plicative because, for example, the Sorgenfrey line is Ty, but its square is
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Tychonoff separable first countable space which is not L-normal because
it is not normal. Also, L-normality is not hereditary: take any compacti-
fication of the Sorgenfrey line square. We still do not know if L-normality
is hereditary with respect to closed subspaces.

Recall that a Dowker space is a Ty space whose product with I, I =
[0, 1] with its usual metric, is not normal. Mary Ellen Rudin [10] used the
existence of a Suslin line to obtain a Dowker space which is hereditarily
separable and first countable. Using CH, I. Juhasz, K. Kunen, and Rudin
constructed a first countable hereditarily separable real compact Dowker
space [4]. W. Weiss [15] constructed a first countable separable locally
compact Dowker space whose existence is consistent with MA + — CH
[15]. By Theorem 1.6, such spaces are consistent examples of Dowker
spaces whose product with I are not L-normal.

Since any second countable space is Lindel6f and any T3 second count-
able space is metrizable [3, 4.2.9], we conclude with the following theorem.

Theorem 1.7. FEvery Ty second countable L-normal space is metrizable.

2. L-NORMALITY AND OTHER PROPERTIES

Now, we study some relationships between L-normality and some other
weaker versions of normality. First, we recall some definitions.

Definition 2.1. A subset A of a space X is a closed domain [3], also called
reqularly closed or k-closed, if A =intA. A space X is mildly normal [13],
also called k-normal [11], if, for any two disjoint closed domains A and B
of X, there exist two disjoint open sets U and V of X such that A C U
and B C V; see also [9] and [5]. A space X is called almost normal [12],
[7] if, for any two disjoint closed subsets A and B of X one of which is
closed domain, there exist two disjoint open subsets U and V of X such
that A C U and B C V. A subset A of a space X is called 7-closed [6] if
A is a finite intersection of closed domains. A space X is called m-normal
[6] if, for any two disjoint closed subsets A and B of X one of which is
m-closed, there exist two disjoint open subsets U and V of X such that
A CUand BCV. A space X is called quasi-normal [16] if, for any
two disjoint 7-closed subsets A and B of X, there exist two disjoint open
subsets U and V of X such that A C U and B C V; see also [6].

It is clear from the definitions that
normal = m-normal = almost normal = mildly normal.
normal = w-normal = quasi-normal = mildly normal.
Now, (R, CC), where CC is the countable complement topology, is not
L-normal. But, since the only closed domains are ) and R, then it is
m-normal, hence quasi-normal, almost normal, and mildly normal. Here
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is an example of an L-normal space which is not mildly normal, hence
neither quasi-normal, almost normal, nor m-normal.

Example 2.2. The modified Dieudonné plank X is L-normal but not
mildly normal.

Proof. X is not normal because A and B are closed disjoint subsets which
cannot be separated by two disjoint open sets. Let £ = {n < wy :
niseven} and O = {n < wy : nisodd}. Let K and L be subsets of
wy such that KN L = (), K UL = ws, and the cofinality of K and L
are wo; for instance, let K be the set of limit ordinals in ws and L be
the set of successor ordinals in ws. Then K x E and L x O are both
open being subsets of N. Define C' = K x F and D = L x O; then C
and D are closed domains in X, being closures of open sets, and they are
disjoint. Note that C = K x E = (K x E) U (K X {wo}) U ({w2} x E)
and D=L x 0= (LxO)U(LX{wp})U{wz} x0). Let U C X be any
open set such that C' C U. For each n € E there exists an «, < ws such
that V,,, (n) C U. Let 8 = sup{a, : n € E}; then 8 < wy. Since L is
cofinal in wq, then there exists v € L such that 8 < v and then any basic
open set of (y,wp) € D will meet U. Thus, C and D cannot be separated.
Therefore, the modified Dieudonné plank X is L-normal but is not mildly
normal. ]

Theorem 2.3. If X is a C-normal space such that each Lindeldf subspace
is contained in a compact subspace, then X is L-normal.

Proof. Let X be any C-normal space such that if A is any Lindel6f sub-
space of X, then there exists a compact subspace B such that A C B. Let
Y be a normal space and f : X — Y be a bijective function such that
fie : € — f(C) is a homeomorphism for each compact subspace C' of
X. Now, let A be any Lindel6f subspace of X. Pick a compact subspace
B of X such that A C B; then f|, : B — f(B) is a homeomorphism;
hence, f, : A — f(A) is a homeomorphism as (f},)|, = f|,- d

The next example is an application of the above theorem.

Example 2.4. Consider the product space wy X (w1 +1). It is not almost
normal because the diagonal A = {{a, @) : @ < wy } is a closed domain
which is disjoint from the closed set K = w; X {w;} and they cannot be
separated by two disjoint open sets (see [7]). But wy x (wy + 1) is C-
normal being locally compact and local compactness implies C-normality
(see [8]).

Now we characterize all Lindelof subspaces of wq x (w1 + 1).

Claim 2.5. A subspace A of wy X (w1 + 1) 4s Lindelof if and only if A
has the following properties:
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(1) There is an o € wy such that A C a X (w1 + 1).
(2) If B € w1 and AN({B} x (w1+1)) is uncountable, then (B,w1) € A.

Proof. Let A be any Lindel6f subspace of wy x (w1 + 1). If condition (1)
does not hold, then {[0, o x (w1 +1) : @ < w1} would be an open cover for
A which has no countable subcover, a contradiction. Now, assume that
A is Lindeldf and satisfies condition (1) but not (2); i.e., there exists a
B € wy such that AN ({#} x (w1 + 1)) is uncountable, but (8, w;) & A.
Pick o € wy such that A C a x (wy +1). It is clear that § < «, but
we may assume, without loss of generality, that 8 < «. The family
{(8,0] (w1 + 1)}U{[0, 8] x [0,4] : (8,7) € AN ({8} x (wn + 1))} U{U :
(C,w1) € A,¢ < B and Ug is a basic open neighborhood of ((,wq)} is an
open cover for A which has no countable subcover, a contradiction. Now
let A be any subset of wy x (wy + 1) that satisfies both conditions. Since
for any a € w1 we have that « is countable and for each basic open set
G of (B8, w1) we have that (AN ({8} X (w1 +1))) \ G is countable, then it
is clear that A will be Lindeldf as a countable union of countable sets is
countable. So the claim is proved. (Il

We conclude from the above claim that each Lindeldf subspace A of
w1 X (w1 + 1) is contained in a compact subspace B of wy X (w3 + 1) of
the form B = (o + 1) x (wy + 1), where « satisfies condition (1) above.
Thus, by Theorem 2.3, wy X (w; + 1) is L-normal.

We discovered that the Alexandroff duplicate space of an L-normal
space is L-normal. Recall that the Alezandroff duplicate space A(X) of
a space X is defined as follows: Let X be any topological space. Let
X" = X x{1}. Note that XNX' = 0. Let A(X) = XUX'. For simplicity,
for an element x € X, we will denote the element (x, 1) in X’ by 2/, and for
asubset BC X, let B ={2' : 2 € B} = Bx{1} C X'. For each 2’ € X',
let B(z') = {{z'}}. For each z € X, let B(z) = {UU (U’ \ {«'}) : U is
open in X with x € U}. Then B = {B(x) : x € X} U{B(2') : 2’ € X'}
will generate a unique topology on A(X) such that B is its neighborhood
system. A(X) with this topology is called the Alexandroff duplicate of X

[1].
Theorem 2.6. If X is L-normal, then its Alexandroff duplicate A(X) is
also L-normal.

Proof. Let X be any L-normal space. Pick a normal space Y and a bijec-
tive function f : X — Y such that f, : C — f(C) is a homeomorphism
for each Lindel6f subspace C' C X. Consider the Alexandroff duplicate
spaces A(X) and A(Y) of X and Y, respectively. It is well known that the
Alexandroff duplicate of a normal space is normal; hence, A(Y") is also nor-
mal. Define g : A(X) — A(Y) by g(a) = f(a)ifa € X, and if a € X', let
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b be the unique element in X such that o’ = a, then define g(a) = (f(b))’.
Then g is a bijective function. Now, a subspace C C A(X) is Lindeldf if
and only if C' N X is Lindeldf in X, and for each open set U in X with
CNX CU, we have that (C N X')\ U’ is countable. Let C' C A(X) be
any Lindelof subspace. We show g/, : C' — ¢(C) is a homeomorphism.
Let a € C be arbitrary. If a € C N X', let b € X be the unique element
such that b = a. For the smallest basic open neighborhood {(f(b))'} of
the point g(a), we have that {a} is open in C and g({a}) C {(f(b))'}. If
a € CNX, let W be any open set in Y such that g(a) = f(a) € W.
Consider H = (W U (W' \ {(f(a))’})) N g(C) which is a basic open
neighborhood of f(a) in g(C). Since f, ., : CNX — f(CNX)is
a homeomorphism, then there exists an open set U in X with a € U
and fi,.(UNC) CWnNf(CNX). Now, (UUU'\{d'}))NnC =G
is open in C such that a € G and g|.(G) € H. Therefore, g is con-
tinuous. Now, we show that g, is open. Let K U (K’ \ {k'}), where
k € K and K is open in X, be any basic open set in A(X), then
(KNC)U((K'NnC)\ {k'}) is a basic open set in C. Since X N C is
Lindeldf in X, then g, (KN (X NC)) = fixre (KN (X NC)) is open in
Y N f(CNX) since f|,., is a homeomorphism. Thus, K N C is open
inYnNnf(XNC). Also, g((K'NC)\ {k'}) is open in Y' N g(C) being a
set of isolated points. Thus, g|, is an open function. Therefore, g, is a
homeomorphism. (|
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