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L-NORMALITY

LUTFI KALANTAN AND MAHA MOHAMMED SAEED

Abstract. A topological space X is called L-normal if there exist
a normal space Y and a bijective function f : X −→ Y such that the
restriction f|A : A −→ f(A) is a homeomorphism for each Lindelöf
subspace A ⊆ X. We will investigate this property and produce
some examples to illustrate the relation between L-normality and
other weaker kinds of normality.

A. V. Arhangel’skĭı introduced in 2012, when he was visiting the De-
partment of Mathematics at King Abdulaziz University, a new, weaker
version of normality, called C-normality [8]. A topological space X is
called C-normal if there exist a normal space Y and a bijective func-
tion f : X −→ Y such that the restriction f|C : C −→ f(C) is a
homeomorphism for each compact subspace C ⊆ X. We use the idea
of this definition to introduce another new, weaker version of normal-
ity and call it L-normality. The purpose of this paper is to investigate
this property. We prove that normality implies L-normality but the con-
verse is not true in general. We present some examples to show relation-
ships between L-normality and other weaker versions of normality such
as C-normality, almost normality, mild normality, quasi-normality, and
π-normality. Throughout this paper, we denote an ordered pair by ⟨x, y⟩,
the set of positive integers by N, and the set of real numbers by R. A T4

space is a T1 normal space, a Tychonoff space is a T1 completely regular
space, and a T3 space is a T1 regular space. We do not assume T2 in the
definition of compactness and we do not assume regularity in the defini-
tion of Lindelöfness. For a subset A of a space X, intA and A denote
the interior and the closure of A, respectively. An ordinal γ is the set of
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all ordinals α such that α < γ. The first infinite ordinal is ω0, the first
uncountable ordinal is ω1, and the successor cardinal of ω1 is ω2.

1. L-normality

Definition 1.1. A topological space X is called C-normal if there ex-
ist a normal space Y and a bijective function f : X −→ Y such that
the restriction f|C : C −→ f(C) is a homeomorphism for each compact
subspace C ⊆ X [8]. A topological space X is called L-normal if there
exist a normal space Y and a bijective function f : X −→ Y such that
the restriction f|A : A −→ f(A) is a homeomorphism for each Lindelöf
subspace A ⊆ X.

A function f : X −→ Y witnessing the C-normality of X need not be
continuous. But it will be if it has the property that for each convergent
sequence xn −→ x in X we have f(xn) −→ f(x). This happens if X is a
Hausdorff sequential space or a k-space. Similarly, a function f : X −→ Y
witnessing the L-normality of X need not be continuous. But it will be
if X is of countable tightness.

Theorem 1.2. If X is L-normal and of countable tightness and f : X −→
Y is a witness of the L-normality of X, then f is continuous.

Proof. Let A be any non-empty subset of X. Let y ∈ f(A ) be arbitrary.
Let x ∈ X be the unique element such that f(x) = y. Then x ∈ A. Pick a
countable subset A0 ⊆ A such that x ∈ A0. Let B = {x}∪A0; then B is a
Lindelöf subspace of X, and hence f|B : B −→ f(B) is a homeomorphism.
Now, let V ⊆ Y be any open neighborhood of y; then V ∩f(B) is open in
the subspace f(B) containing y. Thus, f−1(V )∩B is open in the subspace
B containing x. Thus, (f−1(V )∩B)∩A0 ̸= ∅. So (f−1(V )∩B)∩A ̸= ∅.
Hence, ∅ ̸= f((f−1(V ) ∩ B) ∩ A) ⊆ f(f−1(V ) ∩ A) = V ∩ f(A). Thus,
y ∈ f(A). Therefore, f is continuous. �

Since any compact space is Lindelöf, then any L-normal space is C-
normal. The converse is not true in general. Obviously, no Lindelöf non-
normal space is L-normal. So, no countable complement topology on an
uncountable set X is L-normal, but it is C-normal because the only com-
pact subspaces are the finite subspaces, and the countable complement
topology is T1, so compact subspaces are discrete. Hence, the discrete
topology on X and the identity function will witness C-normality. We
will give more Tychonoff C-normal spaces which are not L-normal.

By definition, it is clear that a Lindelöf L-normal space must be normal.
If X is countable, then X may not be L-normal, for example, (Q , τ 0 ),
where τ 0 is the particular point topology [14]. It is also obvious that any
normal space is L-normal, just by taking X = Y and f to be the identity
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function. The converse is not true in general. Here is an example of a
Tychonoff L-normal space which is neither normal nor locally Lindelöf.

Example 1.3. We modify the Dieudonné plank [14] to define a new
topological space. Let

X = ((ω2 + 1)× (ω0 + 1)) \ {⟨ω2, ω0⟩}.

Write X = A ∪B ∪N , where A = {⟨ω2, n⟩ : n < ω0}, B = {⟨α, ω0⟩ : α <
ω2}, and N = {⟨α, n⟩ : α < ω2 and n < ω0}. The topology τ on X is
generated by the following neighborhood system: For each ⟨α, n⟩ ∈ N , let
B(⟨α, n⟩) = {{⟨α, n⟩}}. For each ⟨ω2, n⟩ ∈ A, let B(⟨ω2, n⟩) = {Vα(n) =
(α, ω2]× {n} : α < ω2}. For each ⟨α, ω0⟩ ∈ B, let B(⟨α, ω0⟩) = {Vn(α) =
{α}×(n, ω0] : n < ω0}. Then X is a Tychonoff non-normal space which is
not locally compact nor locally Lindelöf as any basic open neighborhood
of any element in A is not Lindelöf. Now, a subset C ⊆ X is Lindelöf if
and only if C is countable because if C is uncountable, then either C ∩B
or C ∩ N is uncountable, then a basic open set for each element in C
would give an open cover for C which has no countable subcover.

Now, define Y = X = A ∪ B ∪ N . Generate a topology τ ′ on Y by
the following neighborhood system: Elements of B ∪ N have the same
local base as in X. For each ⟨ω2, n⟩ ∈ A, let B(⟨ω2, n⟩) = {{⟨ω2, n⟩}}.
Then Y is a T4 space because it is paracompact. Consider the identity
function id : X −→ Y . Let C ⊂ X be any Lindelöf subspace. Then
id|C : C −→ id(C) = C is a bijective. Let ⟨a, b⟩ be any element in
C. If ⟨a, b⟩ ∈ N , then {⟨a, b⟩}, which is open in C as a subspace of X
and Y , will give that id|C is continuous. If ⟨a, b⟩ ∈ B and W is any
basic open set of ⟨a, b⟩ in C as a subspace of Y , then W is also a basic
open set of ⟨a, b⟩ in C as a subspace of X; hence, id|C is continuous.
If ⟨a, b⟩ ∈ A, then the smallest open neighborhood of ⟨a, b⟩ in C as a
subspace of Y is {⟨a, b⟩}. Since C is Lindelöf in X, then it is countable.
Write (ω2 × {b}) ∩ C = {⟨αk, b⟩ : k ∈ K where K is countable }. Pick
β < ω2 such that αk < β for each k ∈ K. Then Vβ(b) is a basic open
set of ⟨a, b⟩ in X; hence, Vβ(b) ∩C = {⟨a, b⟩} is an open neighborhood of
⟨a, b⟩ in C as a subspace of X. Thus, id|C is continuous. From the three
cases, we conclude that id|C is continuous. Since the topology on X is
coarser than the topology on Y , then the inverse function of id|C is also
continuous. We conclude that id|C is a homeomorphism. Therefore, the
modified Dieudonné plank X is L-normal.

Theorem 1.4. L-normality is a topological property.

Proof. Let X be an L-normal space and X ∼= Z. Let Y be a normal
space and f : X −→ Y be a bijective such that f|C : C −→ f(C) is a
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homeomorphism for each Lindelöf subspace C of X. Let g : Z −→ X be
a homeomorphism. Then f ◦ g : Z −→ Y satisfies all requirements. �

Theorem 1.5. L-normality is an additive property.

Proof. Let Xα be an L-normal space for each α ∈ Λ. We show that their
sum ⊕α∈ΛXα is L-normal. For each α ∈ Λ, pick a normal space Yα and
a bijective function fα : Xα −→ Yα such that fα|Cα

: Cα −→ fα(Cα) is a
homeomorphism for each Lindelöf subspace Cα of Xα. Since Yα is normal
for each α ∈ Λ, then the sum ⊕α∈ΛYα is normal ([3, 2.2.7]). Consider the
function sum (see [3, 2.2.E]), ⊕α∈Λfα : ⊕α∈ΛXα −→ ⊕α∈ΛYα defined by
⊕α∈Λfα(x) = fβ(x) if x ∈ Xβ , β ∈ Λ. Now, a subspace C ⊆ ⊕α∈ΛXα is
Lindelöf if and only if the set Λ0 = {α ∈ Λ : C∩Xα ̸= ∅} is countable and
C∩Xα is Lindelöf in Xα for each α ∈ Λ0. If C ⊆ ⊕α∈ΛXα is Lindelöf, then
(⊕α∈Λfα)|C is a homeomorphism because fα|C∩Xα

is a homeomorphism
for each α ∈ Λ0. �

Theorem 1.6. If X is T3 separable L-normal and of countable tightness,
then X is normal (T4).

Proof. Let Y be a normal space and f : X −→ Y be a bijective witness
to L-normality of X. Then f is continuous because X is of countable
tightness. Let D be a countable dense subset of X. We show that f is
closed. Let H be any non-empty closed proper subset of X. Suppose
that f(p) = q ∈ Y \ f(H); then p ̸∈ H. Using regularity, let U and V
be disjoint open subsets of X containing p and H, respectively. Then
U ∩ (D ∪ {p}) is open in the Lindelöf subspace D ∪ {p} containing p, so
f(U ∩ (D ∪ {p})) is open in the subspace f(D ∪ {p}) of Y containing q.
Thus, f(U ∩ (D ∪ {p})) = f(U)∩ f(D ∪ {p}) = W ∩ f(D ∪ {p}) for some
open subset W in Y with q ∈ W .

We claim that W ∩ f(H) = ∅. Suppose otherwise, and take y ∈ W ∩
f(H). Let x ∈ H such that f(x) = y. Note that x ∈ V . Since D
is dense in X, D is also dense in the open set V . Thus, x ∈ V ∩D.
Now since W is open in Y and f is continuous, f−1(W ) is an open set
in X; it also contains x. Thus, we can choose d ∈ f−1(W ) ∩ V ∩ D.
Then f(d) ∈ W ∩ f(V ∩D) ⊆ W ∩ f(D ∪ {p}) = f(U ∩ (D ∪ {p})). So
f(d) ∈ f(U) ∩ f(V ), a contradiction.

Thus, W ∩f(H) = ∅. Note that q ∈ W . As q ∈ Y \f(H) was arbitrary,
f(H) is closed. So f is a homeomorphism and X is normal. �

We conclude from the above theorem that the Niemytzki plane [14]
and Mrówka space Ψ(A), where A ⊂ [ω0]

ω0 is mad [2], are examples
of Tychonoff spaces which are not L-normal. L-normality is not multi-
plicative because, for example, the Sorgenfrey line is T4, but its square is
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Tychonoff separable first countable space which is not L-normal because
it is not normal. Also, L-normality is not hereditary: take any compacti-
fication of the Sorgenfrey line square. We still do not know if L-normality
is hereditary with respect to closed subspaces.

Recall that a Dowker space is a T4 space whose product with I, I =
[0, 1] with its usual metric, is not normal. Mary Ellen Rudin [10] used the
existence of a Suslin line to obtain a Dowker space which is hereditarily
separable and first countable. Using CH, I. Juhász, K. Kunen, and Rudin
constructed a first countable hereditarily separable real compact Dowker
space [4]. W. Weiss [15] constructed a first countable separable locally
compact Dowker space whose existence is consistent with MA + ¬ CH
[15]. By Theorem 1.6, such spaces are consistent examples of Dowker
spaces whose product with I are not L-normal.

Since any second countable space is Lindelöf and any T3 second count-
able space is metrizable [3, 4.2.9], we conclude with the following theorem.

Theorem 1.7. Every T1 second countable L-normal space is metrizable.

2. L-normality and Other Properties

Now, we study some relationships between L-normality and some other
weaker versions of normality. First, we recall some definitions.

Definition 2.1. A subset A of a space X is a closed domain [3], also called
regularly closed or κ-closed, if A = intA. A space X is mildly normal [13],
also called κ-normal [11], if, for any two disjoint closed domains A and B
of X, there exist two disjoint open sets U and V of X such that A ⊆ U
and B ⊆ V ; see also [9] and [5]. A space X is called almost normal [12],
[7] if, for any two disjoint closed subsets A and B of X one of which is
closed domain, there exist two disjoint open subsets U and V of X such
that A ⊆ U and B ⊆ V . A subset A of a space X is called π-closed [6] if
A is a finite intersection of closed domains. A space X is called π-normal
[6] if, for any two disjoint closed subsets A and B of X one of which is
π-closed, there exist two disjoint open subsets U and V of X such that
A ⊆ U and B ⊆ V . A space X is called quasi-normal [16] if, for any
two disjoint π-closed subsets A and B of X, there exist two disjoint open
subsets U and V of X such that A ⊆ U and B ⊆ V ; see also [6].

It is clear from the definitions that
normal =⇒ π-normal =⇒ almost normal =⇒ mildly normal.
normal =⇒ π-normal =⇒ quasi-normal =⇒ mildly normal.

Now, (R , CC ), where CC is the countable complement topology, is not
L-normal. But, since the only closed domains are ∅ and R, then it is
π-normal, hence quasi-normal, almost normal, and mildly normal. Here
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is an example of an L-normal space which is not mildly normal, hence
neither quasi-normal, almost normal, nor π-normal.

Example 2.2. The modified Dieudonné plank X is L-normal but not
mildly normal.

Proof. X is not normal because A and B are closed disjoint subsets which
cannot be separated by two disjoint open sets. Let E = {n < ω0 :
n is even } and O = {n < ω0 : n is odd }. Let K and L be subsets of
ω2 such that K ∩ L = ∅, K ∪ L = ω2, and the cofinality of K and L
are ω2; for instance, let K be the set of limit ordinals in ω2 and L be
the set of successor ordinals in ω2. Then K × E and L × O are both
open being subsets of N . Define C = K × E and D = L×O; then C
and D are closed domains in X, being closures of open sets, and they are
disjoint. Note that C = K × E = (K × E) ∪ (K × {ω0}) ∪ ({ω2} × E)
and D = L×O = (L×O)∪ (L×{ω0})∪ ({ω2}×O). Let U ⊆ X be any
open set such that C ⊆ U . For each n ∈ E there exists an αn < ω2 such
that Vαn(n) ⊆ U . Let β = sup{αn : n ∈ E}; then β < ω2. Since L is
cofinal in ω2, then there exists γ ∈ L such that β < γ and then any basic
open set of ⟨γ, ω0⟩ ∈ D will meet U . Thus, C and D cannot be separated.
Therefore, the modified Dieudonné plank X is L-normal but is not mildly
normal. �
Theorem 2.3. If X is a C-normal space such that each Lindelöf subspace
is contained in a compact subspace, then X is L-normal.

Proof. Let X be any C-normal space such that if A is any Lindelöf sub-
space of X, then there exists a compact subspace B such that A ⊆ B. Let
Y be a normal space and f : X −→ Y be a bijective function such that
f|C : C −→ f(C) is a homeomorphism for each compact subspace C of
X. Now, let A be any Lindelöf subspace of X. Pick a compact subspace
B of X such that A ⊆ B; then f|B : B −→ f(B) is a homeomorphism;
hence, f|A : A −→ f(A) is a homeomorphism as (f|B )|A = f|A . �

The next example is an application of the above theorem.

Example 2.4. Consider the product space ω1× (ω1+1). It is not almost
normal because the diagonal △ = {⟨α, α⟩ : α < ω1 } is a closed domain
which is disjoint from the closed set K = ω1 × {ω1} and they cannot be
separated by two disjoint open sets (see [7]). But ω1 × (ω1 + 1) is C-
normal being locally compact and local compactness implies C-normality
(see [8]).

Now we characterize all Lindelöf subspaces of ω1 × (ω1 + 1).

Claim 2.5. A subspace A of ω1 × (ω1 + 1) is Lindelöf if and only if A
has the following properties:
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(1) There is an α ∈ ω1 such that A ⊆ α× (ω1 + 1).
(2) If β ∈ ω1 and A∩({β}×(ω1+1)) is uncountable, then ⟨β, ω1⟩ ∈ A.

Proof. Let A be any Lindelöf subspace of ω1 × (ω1 + 1). If condition (1)
does not hold, then {[0, α]×(ω1+1) : α < ω1} would be an open cover for
A which has no countable subcover, a contradiction. Now, assume that
A is Lindelöf and satisfies condition (1) but not (2); i.e., there exists a
β ∈ ω1 such that A ∩ ({β} × (ω1 + 1)) is uncountable, but ⟨β, ω1⟩ ̸∈ A.
Pick α ∈ ω1 such that A ⊆ α × (ω1 + 1). It is clear that β ≤ α, but
we may assume, without loss of generality, that β < α. The family
{(β, α]× (ω1 +1)} ∪ {[0, β]× [0, γ] : ⟨β, γ⟩ ∈ A∩ ({β}× (ω1 +1))} ∪ {Uζ :
⟨ζ, ω1⟩ ∈ A, ζ < β and Uζ is a basic open neighborhood of ⟨ζ, ω1⟩} is an
open cover for A which has no countable subcover, a contradiction. Now
let A be any subset of ω1 × (ω1 + 1) that satisfies both conditions. Since
for any α ∈ ω1 we have that α is countable and for each basic open set
G of ⟨β, ω1⟩ we have that (A∩ ({β} × (ω1 + 1))) \G is countable, then it
is clear that A will be Lindelöf as a countable union of countable sets is
countable. So the claim is proved. �

We conclude from the above claim that each Lindelöf subspace A of
ω1 × (ω1 + 1) is contained in a compact subspace B of ω1 × (ω1 + 1) of
the form B = (α + 1) × (ω1 + 1), where α satisfies condition (1) above.
Thus, by Theorem 2.3, ω1 × (ω1 + 1) is L-normal.

We discovered that the Alexandroff duplicate space of an L-normal
space is L-normal. Recall that the Alexandroff duplicate space A(X) of
a space X is defined as follows: Let X be any topological space. Let
X ′ = X×{1}. Note that X∩X ′ = ∅. Let A(X) = X∪X ′. For simplicity,
for an element x ∈ X, we will denote the element ⟨x, 1⟩ in X ′ by x′, and for
a subset B ⊆ X, let B′ = {x′ : x ∈ B} = B×{1} ⊆ X ′. For each x′ ∈ X ′,
let B(x′) = {{x′}}. For each x ∈ X, let B(x) = {U ∪ (U ′ \ {x′}) : U is
open in X with x ∈ U }. Then B = {B(x) : x ∈ X} ∪ {B(x′) : x′ ∈ X ′}
will generate a unique topology on A(X) such that B is its neighborhood
system. A(X) with this topology is called the Alexandroff duplicate of X
[1].

Theorem 2.6. If X is L-normal, then its Alexandroff duplicate A(X) is
also L-normal.

Proof. Let X be any L-normal space. Pick a normal space Y and a bijec-
tive function f : X −→ Y such that f|C : C −→ f(C) is a homeomorphism
for each Lindelöf subspace C ⊆ X. Consider the Alexandroff duplicate
spaces A(X) and A(Y ) of X and Y , respectively. It is well known that the
Alexandroff duplicate of a normal space is normal; hence, A(Y ) is also nor-
mal. Define g : A(X) −→ A(Y ) by g(a) = f(a) if a ∈ X, and if a ∈ X ′, let
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b be the unique element in X such that b′ = a, then define g(a) = (f(b))′.
Then g is a bijective function. Now, a subspace C ⊆ A(X) is Lindelöf if
and only if C ∩ X is Lindelöf in X, and for each open set U in X with
C ∩X ⊆ U , we have that (C ∩X ′) \ U ′ is countable. Let C ⊆ A(X) be
any Lindelöf subspace. We show g|C : C −→ g(C) is a homeomorphism.
Let a ∈ C be arbitrary. If a ∈ C ∩X ′, let b ∈ X be the unique element
such that b′ = a. For the smallest basic open neighborhood {(f(b))′} of
the point g(a), we have that {a} is open in C and g({a}) ⊆ {(f(b))′}. If
a ∈ C ∩ X, let W be any open set in Y such that g(a) = f(a) ∈ W .
Consider H = (W ∪ (W ′ \ {(f(a))′})) ∩ g(C) which is a basic open
neighborhood of f(a) in g(C). Since f|C∩X

: C ∩ X −→ f(C ∩ X) is
a homeomorphism, then there exists an open set U in X with a ∈ U
and f|C∩X

(U ∩ C) ⊆ W ∩ f(C ∩ X). Now, (U ∪ (U ′ \ {a′})) ∩ C = G
is open in C such that a ∈ G and g|C (G) ⊆ H. Therefore, g|C is con-
tinuous. Now, we show that g|C is open. Let K ∪ (K ′ \ {k′}), where
k ∈ K and K is open in X, be any basic open set in A(X), then
(K ∩ C) ∪ ((K ′ ∩ C) \ {k′}) is a basic open set in C. Since X ∩ C is
Lindelöf in X, then g|C (K ∩ (X ∩ C)) = f|X∩C

(K ∩ (X ∩ C)) is open in
Y ∩ f(C ∩ X) since f|X∩C

is a homeomorphism. Thus, K ∩ C is open
in Y ∩ f(X ∩ C). Also, g((K ′ ∩ C) \ {k′}) is open in Y ′ ∩ g(C) being a
set of isolated points. Thus, g|C is an open function. Therefore, g|C is a
homeomorphism. �
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