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SUBGROUPS GENERATED BY TWO DEHN TWISTS
ON A NONORIENTABLE SURFACE

MICHAŁ STUKOW

Abstract. Let a and b be two simple closed curves on an ori-
entable surface S such that their geometric intersection number is
greater than 1. The group generated by corresponding Dehn twists
ta and tb is known to be isomorphic to the free group of rank 2.
In this paper we extend this result to the case of a nonorientable
surface.

1. Introduction

Let N be a smooth, nonorientable, compact surface. We will mainly fo-
cus on the local properties ofN ; hence, we allowN to have some boundary
components and/or punctures. Let H(N) be the group of all diffeomor-
phisms h : N → N such that h is the identity on each boundary com-
ponent and h fixes the set of punctures (setwise). By M(N) we denote
the quotient group of H(N) by the subgroup that comprises the maps
isotopic to the identity with an isotopy which fixes the boundary point-
wise. M(N) is known as the mapping class group of N . The mapping
class group M(S) of an orientable surface S is defined analogously, but
we consider only orientation preserving maps. Usually, we will use the
same letter to denote a map and its isotopy class.

Important elements of the mapping class groupM(S) are Dehn twists.
Dehn twists generate M(S); thus, obtaining a good understanding of
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possible relations between them is important. One of the basic results in
this direction is the following theorem.

Theorem 1.1 (Ishida [3]). If a and b are simple closed curves on an
orientable surface S such that the geometric intersection number of a and
b is greater than 1, then the group generated by Dehn twists ta and tb is
free of rank 2.

The main goal of this paper is to extend the above result to the case
of a nonorientable surface: see Theorem 13.2. Let us mention that Dan
Margalit observed that if we lift the statement of Theorem 13.2 to the ori-
ented double cover S, then we obtain some special cases of the well-known
conjecture [4] that two elements of the Torelli subgroup of S either com-
mute or generate a free group. For more details about this correspondence
see [6].

The paper is organized as follows. In §2, we establish some basic nota-
tion. Section 3 contains some examples that show how the nonorientable
case differs from the orientable one. In §4 we recall some language in-
troduced in [5], namely the notion of adjacent and joinable segments.
Sections 5, 6, and 8 are devoted to the study of properties of curves in the
neighborhood of a ∪ b. The main theorem of the paper (Theorem 13.2)
is proved in §13. This proof is based on five propositions (7.1, 9.12, 10.4,
11.3, and 12.3) that are proved in §7 and sections 9 to 12.

2. Preliminaries

By a circle on N we mean an oriented simple closed curve that is
disjoint from the boundary of N . Usually, we identify a circle with its
image. If two circles a and b intersect, then we always assume that they
intersect transversely. According to whether a regular neighborhood of
a circle is an annulus or a Möbius strip, we call the circle two-sided or
one-sided, respectively.

We say that a circle is generic if it bounds neither a disk with fewer
than two punctures nor a Möbius strip without punctures. It is known
([5, Corollary 4.5]) that if N is not a closed Klein bottle, then the circle
a is generic if and only if ta has infinite order inM(N).

For any two circles a and b we define their geometric intersection num-
ber as follows:

I(a, b) = inf{|a′ ∩ b| : a′ is isotopic to a}.
We say that circles a and b form a bigon if a disk exists whose boundary
is the union of an arc of a and an arc of b. The following proposition
provides a useful tool for checking if two circles are in a minimal position
(with respect to |a ∩ b|).
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Proposition 2.1 (Epstein [1]). Let a and b be generic circles on N . Then
|a ∩ b| = I(a, b) if and only if a and b do not form a bigon.

3. Disappointing Examples

Let a and b be two circles in an oriented surface S such that I(a, b) ≥ 2.
The key observation that leads to the conclusion that Dehn twists ta and
tb generate a free group is the following lemma.

Lemma 3.1 ([3, Lemma 2.3]). Assume that circles a, b, c ⊂ S satisfy
I(a, b) ≥ 2. Then for any nonzero integer k

I(c, a) > I(c, b) =⇒ I(tka(c), a) < I(tka(c), b).

The above lemma allows us to apply the so-called “ping-pong lemma”
(Lemma 13.1) and easily conclude that 〈ta, tb〉 is a free group.

Relations between Dehn twists and geometric intersection numbers are
known to become more complicated if we allow the surface to be non-
orientable. Some results in this direction were obtained in [5], but they
were too weak to prove a nonorientable version of the above lemma. The
main goal of this section is to show that there is a reason for this condi-
tion, namely, Lemma 3.1 is not true on nonorientable surfaces. Moreover,
finding general families of counterexamples is possible. Hence, no easy fix
seems to exist for this situation (for a nontrivial fix, see propositions 7.1,
9.12, 10.4, 11.3, and 12.3).

Example 3.2. Let a, b, and c be two-sided circles indicated in Figure
1. (Shaded disks are crosscaps; that is, the interiors are to be removed
and the boundary points are to be identified by the antipodal map.) In

Figure 1. Circles a, b, and c – Example 3.2.

particular, I(a, b) = 2 and I(c, a) = 8 > I(c, b) = 4. However, checking
the following is straightforward:

I(ta(c), a) = 8 > I(ta(c), b) = 4.

The above example can be generalized in the obvious way (by changing
c) to the example where I(a, b) = 2, I(c, a) = 2n > I(c, b) = n, and
I(ta(c), a) = 2n > I(ta(c), b) = n, where n ≥ 1.
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Example 3.3. Let a, b, and c be two-sided circles indicated in Figure 2.

Figure 2. Circles a, b, c – Example 3.3.

In particular, I(a, b) = 8 and I(c, a) = 2 > I(c, b) = 1. However, checking
the following is straightforward:

I(ta(c), a) = 2 > I(ta(c), b) = 1.

The above example can be generalized in the obvious way (by changing
b) to the example where I(a, b) = 2n, I(c, a) = 2 > I(c, b) = 1, and
I(ta(c), a) = 2 > I(ta(c), b) = 1, where n ≥ 1.

The above examples are disappointing, because they show that the
geometric intersection number is too weak to notice the action of a twist.
Moreover, this situation can happen for arbitrary large complexity [that
is, for arbitrary large values of I(a, b) and I(c, a)].

Example 3.4. Let a and c be two-sided circles as indicated in Figure 3.

Figure 3. Circles a and c – Example 3.4.

The action of ta on c is trivial because a bounds a Möbius strip; this is
the case even though I(a, c) = 8 (or in general I(a, c) = 2n, n ≥ 1). Such
a situation cannot happen on an oriented surface S; if I(a, c) > 0 for some
curve c on S, then ta is automatically nontrivial.
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4. Joinable Segments of a and b

For the rest of the paper assume that a and b are two generic two-sided
circles in a nonorientable surface N such that |a ∩ b| = I(a, b) ≥ 2.

Following [5], by a segment of b (with respect to a), we mean any
unoriented arc p of b that satisfies a ∩ p = ∂p. Similarly, we define an
oriented segment of b. If p is an oriented segment, then by −p, we denote
the segment equal to p as an oriented segment but with the opposite
orientation.

We call a segment p of b one-sided (two-sided) if the union of p and
an arc of a connecting ∂p is a one-sided (two-sided) circle. An oriented
segment is one-sided (two-sided) if the underlying unoriented segment is
one-sided (two-sided).

If P,Q ∈ a ∩ b are two intersection points of a ∩ b consecutive on b,
then by PQ we denote an oriented segment of b with endpoints P and
Q. Oriented segments PP ′ and QQ′ of b are called adjacent if both are
one-sided and an open disk ∆ exists on N with the following properties

(1) ∂∆ consists of the segments PP ′ and QQ′ of b and the arcs PQ
and P ′Q′ of a;

(2) ∆ is disjoint from a ∪ b (Figure 4).

Figure 4. Adjacent segments of b.

Oriented segments p 6= q are called joinable if oriented segments p1, . . . ,
pk exist such that p1 = p, pk = q, and pi is adjacent to pi+1 for i =
1, . . . , k − 1 (Figure 5).

Unoriented segments are called adjacent (joinable) if they are adjacent
(joinable) as oriented segments for some choice of orientations.

In exactly the same way, we define segments of a (with respect to b)
and their properties.

Remark 4.1. The main reason for the importance of adjacent/joinable
segments of b is that they provide natural reductions of the intersection
points of ta(b) and b (Figure 5).

In fact, as observed in [5], these segments are the only nontrivial source
of such reductions.
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Figure 5. Joinable segments of b and reduction of in-
tersection points of b and ta(b).

Let us recall some basic properties of joinable segments.

Proposition 4.2 ([5, lemmas 3.4, 3.7, and 3.8]).
(1) Initial (terminal) points of oriented joinable segments of b are on

the same side of a.
(2) Let p and q be oriented segments such that q begins at the terminal

point of p (this includes the case q = −p). Then p and q are not
joinable.

Still following [5], by a double segment of b, we mean an unordered pair
of two different oriented segments of b that have the same initial point.
Exactly I(a, b) double segments exist, which correspond to intersection
points of a and b.

Two double segments are called joinable if an oriented segment p exists
in the first double segment and q exists in the other such that p and q are
joinable.

Studying the action of a twist ta on a circle b is important in order
to obtain some obstructions for possible reductions of intersection points
between ta(b) and b. The basic result in this direction is the following
proposition.

Proposition 4.3 ([5, Lemma 3.9]). Suppose I(a, b) ≥ 2. Then, for each
double segment P , a double segment Q 6= P exists, which is not joinable
to P .

5. Curves in the Neighborhood of a ∪ b

A regular neighborhood Na∪b of a ∪ b is fixed. Topologically, Na∪b is
the union of regular neighborhoods Na and Nb of a and b, respectively.
By changing Na, Nb, and Na∪b into their closures, we can assume that all
these sets are closed. If we define

Na\b = Na \Nb, Nb\a = Nb \Na, Na∩b = Na ∩Nb,

then
Na∪b = Na ∪Nb = Na\b ∪Nb\a ∪Na∩b,
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where each three sets on the right-hand side consist of I(a, b) disks with
disjoint interiors. These disks correspond to the intersection points of a
and b (Figure 6).

Figure 6. Neighborhood of a ∪ b as the union of
3 · I(a, b) rectangles.

We consider these disks as rectangles with two opposite sides parallel
to a and the other two parallel to b. The rectangles in Na\b and Nb\a have
a one-to-one correspondence with the segments of a and b, respectively.

If r is one of the rectangles that constitutes Na∪b and c is a circle in
Na∪b that intersects a ∪ b transversally, then by an arc of r ∩ c, we mean
a connected component of r ∩ c.

Let C be the family of generic circles on N that satisfy the following
properties:

(1) Each circle in C is contained in Na∪b and intersects a∪b transver-
sally.

(2) Each intersection point of c and a ∪ b is contained in Na∩b.
(3) If c ∈ C and r is one of the rectangles in Na∪b, then each arc of

c ∩ r has endpoints on two different sides of r.
The third condition simply means that c does not turn back when crossing
a rectangle. Each generic circle contained in Na∪b is obviously isotopic to
a circle in C.

Let c ∈ C and let r be one of the rectangles in Na∪b. If an arc of c
contained in r crosses both sides of r parallel to a, then we say that r
contains an arc of c parallel to b.

If every rectangle in Nb contains an arc of c parallel to b, then we say
that c winds around b. Clearly, the sufficient condition for a circle c ∈ C to
wind around b is that each rectangle in Na∩b contains an arc of c parallel
to b.

If r is a rectangle in Nb\a and r contains an arc q of c parallel to b,
then we say that q is a segment of c. Moreover, if p is a segment of b that
corresponds to r, then we say that q is parallel to p. Similarly, we define
segments of c parallel to segments of a.
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Lemma 5.1. Let c ∈ C such that c winds around b, and let a′ be one of
the components of ∂Na. If |c ∩ a| = I(c, a) and ∆ is a bigon formed by c
and a′, then ∆ ⊂ Na.

Proof. Suppose that a bigon ∆, which is not contained in Na, with sides
p ⊂ a′ and q ⊂ c exists. If ∆ and Na are on the same side of p (Figure 7),
then we can find a smaller bigon ∆′ ⊂ ∆ with sides p′ ⊂ ∂Na and q′ ⊂ c

Figure 7. Case of ∆ and Na being on the same side of
a′ – Lemma 5.1.

such that ∆′ and Na are on different sides of p′ (because ∆ \ Na 6= ∅).
Hence, we can assume that ∆ and Na are on different sides of p.

If c intersects the interior of p, then we can pass to a smaller bigon that
is still not contained in Na. Hence, we can assume that p ∩ c consists of
two points A and B (note that q may still intersect a′).

Let rA and rB be rectangles of Na∩b that correspond to A and B,
respectively. If rA = rB , then the segments of q that start at A and B
terminate at the same rectangle of Na∩b (Figure 8). Hence, we can pass

Figure 8. The case of rA = rB – Lemma 5.1.

to a smaller bigon ∆′ ⊂ ∆ by removing these segments of q. The obtained
bigon ∆′ is still not contained in Na because this would imply that c is not
in C (c would need to turn back in one of the rectangles of Na). Hence,
we can assume that rA 6= rB .

Let cA, cB ⊂ Na be arcs of c that start at A and B, respectively.
Recall that we assumed that c winds around b. Hence, rA and rB

contain arcs of c that are parallel to b. Therefore, cA either crosses a in
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rA or cA turns in rA in the direction of p, and after running parallel to
p, c must turn and cross a in rB . In fact, c cannot turn towards p and
it cannot cross rB because rB contains an arc of c parallel to b (Figure
9(i)). Similar analysis applied to cB shows that the arc of c ∩ Na that

Figure 9. Configurations of arcs – lemmas 5.1 and 5.2.

contains cB must intersect a; it can do it in rB , or in rA after running
parallel to p. However, this implies that c and a form a bigon, which is a
contradiction. �

Lemma 5.2. Let A and B be the endpoints of an arc b′ contained in one
of the components of ∂Nb ∩Na. Let c ∈ C be such that c winds around a,
and let q ⊂ c be an arc with endpoints A and B which starts and ends on
the same side of the component of ∂Nb containing b′. Then b′ and q do
not form a bigon with interior disjoint from b ∪ c.

Proof. Suppose to the contrary that b′ and q form a bigon ∆ with interior
disjoint from b∪c and consider the arcs of q that start at A and B (Figure
9(ii)). If these arcs enter some rectangle r of Na∪b, then they must be
parallel in r; that is, they are disjoint and intersect the same sides of r.
Clearly, this condition is true for rectangles in Na∪b \Na∩b (since c ∈ C)
and for rectangles in Na∩b; this follows from our assumptions that the
interior of ∆ is disjoint from b ∪ c and that c winds around a.

However, this implies that the arcs of q which start A and B will never
meet. �

Let c ∈ C and p be one of the arcs of c ∩ Na. Four different possible
configurations of p exist (Figure 10) and are referred to as types A–D.

Remark 5.3. If c winds around b, then arcs of c ∩Na of types B–D can
pass through only one rectangle in Na\b. Otherwise, c would intersect
itself.
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Figure 10. Possible configurations of arcs of c ∩Na.

6. Rigidity of Circles in C

Remark 6.1. As we mentioned in Remark 4.1, adjacency between seg-
ments of b is the only nontrivial source of reductions of the intersection
points between b and ta(b). However, if we consider the intersection points
between b and ta(c) for c ∈ C, then other kinds of reductions exist. For
example, if ∆ is a component of N \ Na∪b, which is a disk, then ta(c)
and b may reduce along ∆ (Figure 11). As we will see later, this type

Figure 11. Exterior hexagon ∆ and the reduction of
intersection points between b and ta(c).

of reduction is rather exceptional, but we need additional definitions to
control it.

Suppose that ∆ is a component of N \ Na∪b, which is a disk. If the
boundary of ∆ intersects exactly n boundaries of rectangles r1, r2, . . . , rn
inNa∩b, then we say that ∆ is an exterior n-gon with vertices r1, r2, . . . , rn
(Figure 11). Note that r1, . . . , rn does not need to be pairwise distinct (∆
may intersect ri in each of its four corners).

Let p be an arc of c ∈ C, which is parallel to b in a rectangle r of
Na∩b. Fix some orientation of p and follow p to the rectangle r1 of Na∩b
following r. We say that p is rigid in r with respect to b if p is parallel to
b in r1. Equivalently (from the perspective of p intersecting Na), p is of
type A in r and r1.

We say that c ∈ C winds strongly around b if for every rectangle r in
Na∩b an oriented arc p that is parallel to b in r exists such that both p
and −p are rigid in r. Equivalently, for each of the three rectangles r1,
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r2, and r3 of Na∩b, which are consecutive along b, an arc of c∩Nb exists,
which is parallel to b in r1, r2, and r3. In particular, if a circle c ∈ C winds
strongly around b, then c winds around b.

Let R be a double segment of b and let p 6= q be oriented segments
of b that are not contained in R and do not start at the same point of
a ∩ b. Assume also that p and q start on different sides of a. If we fix an
orientation of Na, then two possible mutual positions of p, q, and R exist
(Figure 12). We say that the triple {p, q,R} is positively oriented if the
configuration is as in Figure 12(i).

Figure 12. Two possible orientations of {p, q,R}.

As we will see later, some special configurations of generic two-sided
circles a and b exist in N , which will require additional analysis (see
sections 9–12). These special configurations are defined by the following
properties:

(S1) I(a, b) ≥ 4 and oriented segments p and q of b exist, which start
on different sides of a such that each double segment of b contains
an oriented segment joinable to p or q (see Figure 38 in §9).

(S2) I(a, b) ≥ 4 and oriented segments p and q of b, and a double seg-
ment R of b exist, such that a and b are not in the special position
(S1), p and q start on different sides of a, p starts and terminates
on different sides of a, each double segment of b different from R
contains an oriented segment joinable to p or q, and {p, q,R} is
positively oriented (see Figure 38 in §9).

(S3) I(a, b) ≥ 4 and there are oriented segments p and q of b and
a double segment R of b such that p starts and terminates on
one side of a, q starts and terminates on the other side of a,
each double segment of b different from R contains an oriented
segment joinable to p or q, and {p, q,R} is positively oriented (see
Figure 42 in §10).

If one of the ordered pairs of circles (a, b) or (b, a) satisfies one of the
above conditions, then we say that the unordered pair {a, b} is special.

Let Xa be the set of isotopy classes of circles c in N which satisfy the
following conditions:
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(1) c ∈ C,
(2) I(c, a) = |c ∩ a| and I(c, b) = |c ∩ b|,
(3) I(c, a) < I(c, b),
(4) c winds strongly around a.

Similarly, we define Xb by requiring (1)–(2) above and additionally
(3′) I(c, b) < I(c, a),
(4′) c winds strongly around b.

7. The Case of I(a, b) ≥ 4 and {a, b} Is Not Special

The main goal of this section is to prove the following proposition.

Proposition 7.1. Let a and b be two generic two-sided circles in N such
that I(a, b) ≥ 4 and {a, b} is not special. Then for any integer k 6= 0 we
have

tka(Xb) ⊆ Xa and tkb (Xa) ⊆ Xb.

Proof. Of course proving that tka(Xb) ⊆ Xa is sufficient. No canonical
choice exists for the orientation of the neighborhood Na. However, in our
figures, we will assume that tka twists to the right.

Construction of tka(c). Fix a circle c ∈ Xb. It is enough to prove that
tka(c) ∈ Xa.

We begin by constructing the circle d = tka(c). Outside Na and on each
arc of d ∩ Na of type D, d is equal to c. For each arc of c ∩ Na of types
A–C, d circles |k| times around a. In particular, d winds around a and

I(d, a) = |d ∩ a| = |c ∩ a| = I(c, a)

|d ∩ b| = I(c, a) · I(a, b) · |k|.
Now the problem is that d may not be an element of C and d does not
need to be in a minimal position with respect to b.

Before we start to reduce d, observe that if an arc of d enters Na and
turns to the left, then after passing through one rectangle in Na\b, it must
turn back or leave Na through the same side of Na as it entered (Figure
13). In fact, arcs of d turning to the left in Na came from arcs of c∩Na of

Figure 13. Arcs of d turning to the left in Na.
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types C and D. As we observed in Remark 5.3 such arcs can pass through
only one rectangle in Na\b.

Reduction of type I. Suppose that one of the rectangles r in Na∪b con-
tains an arc p of d such that the endpoints of p are on the same side of
r (d turns back in r). Clearly, this situation cannot happen for r being
one of the rectangles in Nb\a (because in such a rectangle, d coincides
with c) or r being a rectangle in Na\b (by construction, d runs parallel
to a in each such rectangle). Hence, r must be a rectangle in Na∩b and p
must intersect the b-side of r (otherwise, c would not be an element of C).
Hence, we have the situation illustrated in Figure 14, and we can replace

Figure 14. Reduction of type I.

d with the circle d′ shown in the same figure. In such a case, we say that
we reduced d by a reduction of type I.

Reductions of type I correspond to arcs of c∩Na of type C. Hence, on
each arc of d ∩Na, at most one reduction of type I exists.

Let d1 be the circle obtained from d by performing all possible reduc-
tions of type I. In particular, d1 ∈ C.

Remark 7.2. The only arcs of d1∩Na that turn to the left after entering
Na are arcs that correspond to (in fact, are equal to) arcs of c ∩ Na of
type D.

We now argue that d1 winds around a. In fact, if we fix a rectangle
r in Na∩b and r′ is another rectangle in Na∩b, then (because c winds
around b) r′ contains an arc q of c parallel to b (Figure 15). Now tka(q)

Figure 15. Action of ta on an arc q in a rectangle r′.
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is strictly monotone in Na with respect to a. Hence, this arc does not
admit a reduction of type I. In particular, tka(q) gives an arc of d1, which
is parallel to a in r.

For further reference, note the following observation.

Lemma 7.3. Let q ⊂ d1 be an arc with endpoints A,B ∈ ∂Na such that
q ∩ b = ∅. Assume also that q intersects both Na\b and Nb\a. Then q is
an arc of c.

Proof. By construction, d1 coincides with c in every rectangle of Nb\a and
if q enters Na in a rectangle r (Figure 16), then q must leave r through

Figure 16. Configuration of arcs – Lemma 7.3.

the b-side of r given that d1 winds around a. Afterwards, q goes through
one rectangle of Na\b, and then it must turn and leave Na (because q
cannot intersect b). Hence, each arc of q ∩Na is an arc of type D, which
proves that q is an arc of c. �

Reduction of type II. Suppose that there exist arcs p and q of b and d1,
respectively, such that

• p and q form a bigon with interior disjoint from b ∪ d1,
• p \Na∩b is a subarc of a two-sided segment of b.

In such a case, we can remove the bigon formed by p and q (Figure 17),
and we say that we reduced d1 to d′1 by a reduction of type II.

Figure 17. Reduction of II.
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Let us describe the possible reductions of type II in more detail. Let
A and B be vertices of the bigon ∆ formed by p and q, and let rA and
rB be the rectangles of Na∩b that contain A and B, respectively. By
Lemma 5.2, the arc qA ⊂ q, which connects A with the boundary of Na,
is either entirely contained in rA or it passes through one rectangle of Na\b
and then leaves Na (it can pass at most one rectangle of Na\b because
otherwise it would intersect b). In other words, the situation illustrated
in Figure 18 is not possible. The same is true for the arc qB ⊂ q, which

Figure 18. Types II and III reductions – impossible
configuration of arcs.

connects B with the boundary of Na. For the same reason, either both
arcs qA and qB are entirely contained in rA and rB , or each of them passes
through one rectangle of Na\b.

Given that we assume that p corresponds to a two-sided segment of b,
at one endpoint of q, say B, q turns to the left as it enters Na. We claim
that q consists of qA, qB , and a single segment of c parallel to b. In order
to prove this statement, showing that qB is entirely contained in rB is
sufficient. Suppose to the contrary that qB passes through a rectangle of
Na\b (Figure 19). Given that qB turns to the left after entering Na, by

Figure 19. Reduction of type II – impossible configu-
rations of arcs.

Remark 7.2, this arc must be an arc of type D. Hence, after crossing p in
B it must follow an arc t of d1, which turns left in rB and leaves Na (it
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must leave Na in rB by Remark 5.3). After leaving Na, t runs parallel to
p in a rectangle of Nb\a. In particular, qB and t are arcs of c (given that
(qB ∪ t)∩Na is an arc of type D). Moreover, by Lemma 7.3, q \ (qA ∪ qB)
is also an arc of c. Hence, (q \ qA)∪ t ⊂ c and an arc of ∂Na form a bigon
∆′ not contained in Na (Figure 20). This finding contradicts Lemma 5.1.

Figure 20. Reduction of type II – extending ∆ to ∆′.

Therefore, we proved that if d′1 and d1 differ by a reduction of type
II that corresponds to the bigon formed by arcs p and q of b and d1,
respectively, then p and q are in the same rectangle of Nb\a, and q is
parallel to p. This condition means that d1 and d′1 intersect rectangles in
Na∪b in exactly the same way. Hence, d′1 ∈ C and d′1 winds around a.

Let d2 be the circle obtained from d1 by performing all possible reduc-
tions of type II. As we observed, d2 ∈ C and d2 winds around a.

Remark 7.4. In the following, we use Lemma 7.3 with d2 instead of d1.
This approach is somewhat problematic, because some arcs of d1 that
satisfy the assumptions of that lemma may admit reductions of type II.
To solve this problem, we mimic reductions of type II on the level of
c. To be more precise, if q is an arc of c ∩ Nb\a which as an arc of d1
admits a reduction of type II, then we push q so that it coincides with
the corresponding arc of d2 (Figure 21). Then we extend this push to the

Figure 21. Applying reductions of type II to c.

isotopy of c. If c2 is a circle obtained from c by all possible reductions
of type II (in the sense described above), then c2 still winds around b.
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Hence, it satisfies the assumptions of Lemma 5.1. Moreover, we have the
following replacement for Lemma 7.3.

Lemma 7.5. Let q ⊂ d2 be an arc with endpoints A,B ∈ ∂Na such that
q ∩ b = ∅. Assume also that q intersects both Na\b and Nb\a. Then q is
an arc of c2.

Reduction of type III. Suppose that there exist arcs p and q of b and
d2, respectively, such that

• p and q form a bigon with interior disjoint from b ∪ d2,
• p \Na∩b is a subarc of a one-sided segment of b.

In such a case we can remove the bigon formed by p and q; see Figure 22.
We say that we reduced d2 to d′2 by a reduction of type III.

Figure 22. Reduction of type III.

Let us attempt to understand reductions of type III in further detail.
Let A and B be the vertices of the bigon ∆ formed by p and q, and let

rA and rB be the rectangles of Na∩b that contain A and B, respectively.
By Lemma 5.2, the arc qA ⊂ q that connects A with the boundary of Na is
either entirely contained in rA or it passes through one rectangle of Na\b
and then leaves Na (it can pass through at most one rectangle of Na\b
because otherwise it would intersect b). In other words, the situation
illustrated in Figure 18 is not possible. The same is true for the arc
qB ⊂ q, which connects B with the boundary of Na. For the same reason,
either both arcs qA and qB are entirely contained in rA and rB , or each
arc passes through one rectangle of Na\b.

If q \ (qA ∪ qB) intersects Na, then by Lemma 7.5, this is an arc of c2
(see Remark 7.4). In particular, all components of (q \ (qA ∪ qB)) ∩ Na

are arcs of type D (on arcs of other types, d2 does not coincide with c2).
Observe also that q turns to the right when it enters Na (because q is

one-sided, it enters Na in the same way on both ends). In fact, qA and qB
would be arcs of type D otherwise (Remark 7.2), which are not involved
in reductions of type II. Hence, qA and qB would be arcs of c (Figure 23).
Therefore, the whole q would be an arc of c, and that would imply that c
and b form a bigon.
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Figure 23. Reduction of type III – impossible configu-
ration of arcs.

Remark 7.6. Observe that d′2 ∈ C. In fact, if d′2 turns back in one of
the rectangles r of Na∪b, then r must be a rectangle that contains one
of the vertices of the bigon, which leads to the reduction. (In all other
rectangles, we either did not change anything, or d′2 runs parallel to b in
them.) Since d′2 enters r through the a-side, after turning back, it must
leave r also through the a-side. Hence, we have the situation shown in
the right-hand side of Figure 24. The left-hand side of the same figure
shows how the situation looked before the reduction.

Figure 24. Reduction of type III – impossible configu-
ration of arcs.

Let t be an arc of d2 following q past the intersection point p ∩ q ∩ r.
Arc t turns right in r and leaves r as an arc parallel to p; see Figure 25.
The same figure shows how the reduction disk ∆ can be deformed to the

Figure 25. Reduction of type III – impossible configu-
ration of arcs.

closed disk ∆′ with boundary composed of q, t, and an arc of ∂Na. Note
that q ∩∆′ is an arc of c2 by Lemma 7.5 and t is an arc of c2 because d2
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intersects r as an arc of type D. Therefore, the existence of ∆′ contradicts
Lemma 5.1. Hence, we proved that d′2 ∈ C (in particular, d′2 does not
admit reductions of type I).

Remark 7.7. Reduction of type III does not create any new arcs of
d′2 ∩Na which turn to the left after entering Na. This reduction does not
affect the segments of d′2 which run parallel to two-sided segments of b.
Hence, d′2 does not admit reductions of type II.

Before we go further, we divide possible reductions of type III into
three subtypes. Let p and q be arcs of b and d2, respectively, which define
a reduction of type III.

• If p and q enter Na in the same rectangles of Na∩b, then we say
that p and q define a reduction of type IIIa.

• If p and q enter Na in different rectangles of Na∩b and q meets
a single rectangle of Nb\a, then we say that p and q define a
reduction of type IIIc.

• Otherwise, we say that p and q define a reduction of type IIIb.

Reduction of type IIIa. Let d3 be the circle obtained from d2 by per-
forming all possible reductions of type IIIa. As we already observed,
d3 ∈ C and d3 does not admit reductions of types I, II, and IIIa (remarks
7.6 and 7.7). Moreover, d3 intersects the rectangles of Na∪b in exactly the
same way as d2; hence, d3 winds around a.

Remark 7.8. We now follow Remark 7.4 to obtain a version of Lemma 7.3
for d3. As in the construction of c2, we mimic the reductions of type IIIa
on c2 (Figure 26). However, we do not need to mimic all reductions of

Figure 26. Applying reductions of type IIIa to c2.

type IIIa. To be more precise, we apply to c2 only these reductions of
type IIIa, which are determined by an arc q of c2, which enters Na on
one side as an arc of type D (q cannot enter Na on both sides as an arc
of type D; this condition would imply that c and b bound a bigon). If q
is an arc of c that enters Na on both sides as an arc of types A–C, then
the corresponding arc of d3 does not satisfy the assumptions of Lemma
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7.3 (on both ends, it intersects b). Hence, we do not consider these arcs
as they do not mimic the setup of Lemma 7.3.

Let c3 be the arc obtained from c2 by reductions of type IIIa described
above. Since c3 still winds around b, it satisfies the assumptions of Lemma
5.1. As a replacement for Lemma 7.3, we have the following lemma.

Lemma 7.9. Let q ⊂ d3 be an arc with endpoints A,B ∈ ∂Na such that
q ∩ b = ∅. Assume also that q intersects both Na\b and Nb\a. Then, q is
an arc of c3.

Reduction of type IIIb. Let d′3 be the circle obtained from d3 by a
single reduction of type IIIb. As in the general definition of the reduction
of type III, by A and B we denote vertices of the bigon formed by p and
q; rA and rB are rectangles of Na∩b that contain A and B, respectively;
and qA and qB are arcs of q that connect A and B with the boundary of
Na.

Remark 7.10. By definition, q \ (qA ∪ qB) is not a single segment of
d3 parallel to b. Hence, it intersects Na at least once. By Lemma 7.9,
q \ (qA ∪ qB) is an arc of c3, so it intersects Na only in arcs of type D (on
arcs of other types, d3 does not coincide with c3).

The existence of a bigon with vertices A and B between d3 and b implies
that q and p bound an exterior n-gon ∆ (see §6 and the right-hand side
of Figure 27). Moreover, if the reduction is not of type IIIc, then n ≥ 6.

Figure 27. Exterior hexagon ∆ and the reduction of
intersection points between b and ta(c).

In such a case, an oriented arc s of c which is of type A in a rectangle r
of Na∩b (see the left-hand side of Figure 27) and which is rigid in r with
respect to b cannot yield an arc of d3 which allows a reduction of type
IIIb (because if we follow s to the next rectangle r′ of Na∩b, then s is of
type A in r′ and not of type D).

Remark 7.11. Our assumption that c winds strongly around b (see §6)
implies that for each rectangle r of Na∩b, an arc s of c exists which is
of type A in r and such that s yields an arc of d3, which does not allow
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reductions of type IIIb on either side of r; for such s, an arc of c that is
rigid on both sides of r should be selected.

Lemma 7.12. If s′ is an arc of c of type A in a rectangle r of Na∩b, then
s′ can yield a reduction of type IIIb only on one side of r.

Proof. Suppose to the contrary that s′ yields an arc s of d3 which allows
reductions of types IIIb on both sides of r and assume that r1, r, and
r2 are rectangles of Na∩b that are consecutive along b (Figure 28). By

Figure 28. Configuration of arcs – Lemma 7.12.

Remark 7.10, s coincides with s′ in r1 and r2 and enters each of these
rectangles as an arc of type D. However, this condition implies that each
arc t of c that is of type A in r must enter either r1 or r2 as an arc of type
D (because it must follow s′ along the boundary of one of the exterior
n-gons leading to reductions of s). This contradicts our assumption that
c winds strongly around b. �

Lemma 7.13. The arcs of c∩Na that correspond to qA and qB are arcs
of types A or B.

Proof. If, for example, qA came from an arc of c of type D, then by Lemma
7.9, q \ qB is an arc of c3 and if we follow this arc past the point A, we
obtain an arc of c3 which, together with an arc of ∂Na, bounds a disk ∆
that is not contained in Na (Figure 29(i)); this contradicts Lemma 5.1.

Figure 29. Reduction of type IIIb – impossible config-
urations of arcs.
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As for arcs of type C, if, for example, q \ qB was formed from the arc q′
of c of type C and r is the rectangle of Na∩b in which qA meets ∂Na, then
all the arcs of c that are parallel to b in r are on one side of q′ in r and
they are bounded along the boundary of ∆ by q′ (Figure 29(ii)). Hence,
all these arcs must lead to arcs of d3, which allow a reduction of type
IIIb across ∆. In particular, if we follow these arcs along the boundary of
∆, then they enter Na as arcs of type D. However, this contradicts our
assumption that arcs that are rigid with respect to b exist on both sides
of r (because c winds strongly along b).

Hence, we proved that qA and qB were formed from arcs of c which are
of types A or B in rA and rB . �

Note that the distinction between types B and C of arcs of c∩Na is a
consequence of our assumption that ta twists to the right in Na.

Remark 7.14. As a consequence of Lemma 7.13, if q′ is an arc of d′3
obtained from q by a reduction of type IIIb, then the arcs of d′3 ∩ Na

that follow q′ (on each end) are not arcs of type D (because they intersect
a). Hence, q′ is not involved in any further reductions of d′3 of type IIIb
(Remark 7.10). In other words, no cascade reductions of type IIIb exist;
each arc of d3 ∩Nb\a is involved in at most one such reduction. However,
q′ may be further reduced by reductions of type IIIc. We postpone this
problem to the analysis of reductions of type IIIc.

Remark 7.15. If q′ is as in the previous remark (that is, q′ is an arc of
d′3 obtained from q by a reduction of type IIIb), then q′ does not admit a
reduction of type IIIa. This conclusion follows because the arcs of d′3∩Na

that follow q′ (on each end) do not intersect b in rectangles of Na∩b in
which they enter Na (Figure 22). The only arc of d′3 ∩Nb\a in which d′3
differs from d3 is q′. Thus, no new reductions of type IIIa exist on other
arcs of d′3 ∩Nb\a.

Let d4 be the circle obtained from d3 by performing all possible reduc-
tions of type IIIb. As we observed in the general analysis of reductions
of type III, d4 ∈ C (Remark 7.6) and d4 does not admit any reductions
of types I and II (remarks 7.6 and 7.7). We also proved that d4 does not
admit reductions of type IIIa (Remark 7.15).

Remark 7.16. A segment q of d4 obtained by a reduction of type IIIb
cannot enter Na as an arc of type D (Lemma 7.13). We will show later
(Lemma 7.20) that in such a case, arcs that follow/precede q in Na must
intersect b. Hence, Lemma 7.9 remains valid with d3 replaced by d4 (arcs
modified by a reduction of type IIIb cannot satisfy assumptions of that
lemma).
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Reduction of type IIIc. Let d′4 be the circle obtained from d4 by a
single reduction of type IIIc. As in the general definition of the reduction
of type III, by A and B we denote vertices of the bigon formed by p and
q; rA and rB are rectangles of Na∩b that contain A and B, respectively;
and qA and qB are arcs of q that connect A and B with the boundary of
Na.

Remark 7.17. Reduction of type IIIc may be considered a special case
of a reduction of type IIIb, where the exterior disk is a rectangle. For this
reason, these two types of reductions have some common properties:

• the arcs of c that correspond to qA and qB cannot be of type D
(Lemma 7.13);

• if an arc q′ is an arc of d′4 obtained by a reduction of type IIIc,
then q′ is not involved in reductions of type IIIa or IIIb (remarks
7.14 and 7.15);

• d′4 does not admit reductions of type IIIa or IIIb.
Because the proofs of the above properties can be copied verbatim from
the analysis of the reduction of type IIIb, we skip the proofs.

Let d5 be the circle obtained from d4 by performing all possible reduc-
tions of type IIIc. As we observed in the general analysis of reductions of
type III, d5 ∈ C (Remark 7.6) and d5 does not admit any reductions of
types I and II (Remark 7.7). As we noted above (Remark 7.17), d5 also
does not admit reductions of types IIIa and IIIb.

Remark 7.18. As in Remark 7.16, a segment q of d5 obtained by a
reduction of type IIIc cannot enter Na as an arc of type D. We will show
later (Lemma 7.20) that in such a case, arcs that follow/precede q in Na

must intersect b. Hence, Lemma 7.9 remains valid with d3 replaced by d5.
(Arcs modified by a reduction of type IIIc cannot satisfy assumptions of
that lemma).

Remark 7.19. An arc s of d4∩Na can be involved in multiple reductions
of type IIIc (Figure 30); that is, the arcs that start at the end-points of
s can be involved in several reductions of type IIIc. However, all these
reductions can change the initial and the terminal rectangles r1 and r2 of
s only to the rectangles joinable to r1 and r2, respectively (see §4).

Lemma 7.20. Let s′ be an arc of c∩Na of type A, B, or C, and let s be
the arc of d5 ∩Na which corresponds to s′. Then s is parallel to a in at
least one rectangle of Na∩b.

Proof. Let s′′ be the arc of d3 that corresponds to s′ (that is, s′′ is obtained
from tka(s′) by reductions of types I, II, and IIIa), and let p and q be
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Figure 30. Cascade reductions of type IIIc.

segments of b that correspond to the segments of d5 that start at the
endpoints of s.

Assume first that s′ is an arc of type C. Arcs of this type do not allow
reductions of type IIIb (Lemma 7.13). Hence, the only type of reductions
that could decrease the number of rectangles in which s′′ is parallel to
a is the reduction of type IIIc. If we assume that no rectangles of Na∩b
exist in which s is parallel to a, then each double segment of b must
contain a segment joinable either to p or q (Remark 7.19). However, this
implies that a and b are in the special position (S1), which contradicts
our assumption that {a, b} is not special.

If s′ is an arc of type A or B, then the situation is completely analogous.
If s′ is of type A, then s′′ can admit on one side one reduction of type
IIIb (Lemma 7.12), and if s′ is of type B, then s′′ can admit reductions
of type IIIb on both sides (one on each side – Remark 7.14). Hence, the
assumption that no rectangle of Na∩b exists in which s is parallel to a
implies that a and b are in the special position (S1). �

Strong winding of d5. We need to show that for each three rectangles
r1, r, and r2 of Na∩b, which are consecutive along a, an arc of d5 exists,
which is parallel to a in r1, r, and r2. Without loss of generality, we can
assume that the configuration of rectangles is as in Figure 31; that is, r2

Figure 31. Intersection of tka(s′) with rectangles of Na∩b.

is on the right of r. Let p and q be segments of b such that p goes up
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from r2 and q goes down from r1, and let R be the double segment of b
that corresponds to r.

Let r′ be any rectangle of Na∩b that is different from r1, r, and r2 (such
rectangles exist given that I(a, b) ≥ 4), and let s′ be an arc of c ∩ Na∩b
that is rigid on both sides of r′ (it exists because c winds strongly around
b). If s is an arc of d3 that corresponds to s′, then s does not allow
reductions of type IIIb on either side of r′. Hence, it can only be reduced
by reductions of type IIIc. By Remark 7.19, if we assume that s can be
reduced so that the corresponding arc of d5 is not parallel to a in r1 or r2,
then one of the segments of b that starts in r′ must be joinable to either
p or q.

From the above analysis, if we assume that each arc s′ of c ∩ Na∩b
leads to an arc s of d5 ∩ Na that is not parallel to a in either r1 or r2,
then each double segment of b different from R is joinable either to p or
q. Moreover, the triple {p, q,R} is positively oriented (see §6). Hence, we
are in the special position (S2) or (S3), which is a contradiction.

Bigons formed by d5 and b. Let us prove that d5 and b are in the
minimal position so they do not form any bigon. Suppose on the contrary
that ∆ is a bigon with vertices A and B bounded by arcs p and q of d5
and b, respectively. By taking the innermost bigon, we can assume that
the interior of ∆ is disjoint from d5 ∪ b.

Since d5 winds around a, each rectangle of Na∩b contains an intersec-
tion point of d5 and b. Hence, q is either an arc of b in a single rectangle
rA,B in Na∩b, or q is a segment of b that connects two different rectangles
rA and rB of Na∩b. In the second case, d5 would admit a reduction of
type II or III (depending on whether q is two-sided or not). Hence, we
concentrate on the first possibility. If ∆ is contained in Na, then d5 admits
a reduction of type I, which is not possible. Hence, ∆ is not contained in
Na.

Let p′ be the subarc of p, which is obtained from p by removing the
arcs contained in Na that connect A and B with the boundary of Na

(Figure 32). By Lemma 7.9 and Remark 7.18, the arc p′ of d5 is in fact

Figure 32. Bigon ∆ between b and d5.

an arc of c3. Hence, the existence of ∆ contradicts Lemma 5.1
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Counting intersection points between d5 and b. To finish the proof, we
need to show that I(d5, b) > I(d5, a). The idea is to show that associated
intersection points of d5 ∩ b exist for each intersection point of d5 ∩ a.

These arcs of d∩Na that intersect a have a one-to-one correspondence
to arcs of c ∩Na that intersect a, hence to arcs of types A–C. Moreover,
all reductions we performed on d preserved this bijection because, during
the reductions, we did not create any new arcs that intersect a and we
did not remove any of the existing ones.

By Lemma 7.20, each arc s of d5 ∩Na that corresponds to an arc s′ of
c∩Na of type A–C is parallel to a in at least one rectangle of Na∩b. Hence,
it intersects b at least once. Moreover, because d5 winds strongly around
a, some arcs s of d5 ∩ Na intersect b in at least three points. Therefore
I(d5, b) > I(d5, a). �

8. Weak Rigidity

The proof of Proposition 7.1 is based on the notion of strong winding:
For each three rectangles r1, r2, r3 that are consecutive on a, an arc of
c∩Na exists, which leads to an arc of d5 ∩Na parallel to a in r1, r2, and
r3.

This assertion can fail in special cases (S1)–(S3).

Example 8.1. Let a and b be two circles that are in the special position
(S1), as shown in Figure 33(i). Segments p1 and p2 are adjacent; thus,

Figure 33. Possible failure in the proof of Proposition
7.1 – Examples 8.1 and 8.2.

the arcs of d, which are obtained from arcs of c of type A in the rectangle
r2, may admit a reduction of type IIIc. Hence, none of these arcs may be
parallel to a in r1. Similarly, all arcs of d that are obtained from arcs of
c of type A in r3 may reduce by reductions of type IIIc. Hence, none of
these arcs may be parallel to a in r4. Therefore, a possibility is that no
arc of d5 ∩ Na which is parallel to a in r1 and r4 exists (hence, d5 does
not wind strongly around a).
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Example 8.2. Let a and b be two circles that are in the special position
(S3) as shown in Figure 33(ii). Segments p1 and p2 are adjacent. Thus,
the arcs of c ∩Na which are of type A in r1 or r2 give arcs of d that can
be reduced so that the resulting arcs of d5∩Na are not parallel to a in r1.
Similarly, arcs of c∩Na that are of type A in r3 or r yield arcs of d5 ∩Na

that are not parallel to a in r3. Therefore, a possibility is that no arc of
d5 ∩Na which is parallel to a in r1 and r3 exists (hence, d5 does not wind
strongly around a).

To overcome the abovementioned problems, we redefine the rigidity of
arcs slightly.

Let r1, r2, r3, r4, r5, and r6 be rectangles of Na∩b that are consecutive
vertices of an exterior hexagon ∆ (consecutive here means consecutive
along ∂∆). Suppose also that q is an arc of a circle c ∈ C as in Figure
35(i); that is, q is of type A in r1 and r4, q is of type D between r2 and
r3, and the segment of b that connects r5 and r6 is one-sided. In such a
case we say that q is a one-sided boundary 3-segment of ∆.

Remark 8.3. Let ∆ be an exterior hexagon and let q be an arc of c,
which leads to an arc q′ of d3 and allows a reduction of type IIIb across ∆
(Figure 35(i)). According to the definition of the reduction of type IIIb,
if q enters Na as an arc of type A (on both ends), then q is a one-sided
boundary 3-segment of ∆.

Let q be an arc of c ∈ C that is parallel to b in a rectangle r1 of Na∩b.
Some orientation of q is fixed, and q is followed to the rectangles r2, r3,
and r4 of Na∩b following r1. We say that q is weakly rigid in r1 with
respect to b if either

• q is rigid with respect to b in r1, or
• q does not intersect a in r2 and r3, q is parallel to b in r4, and
q is not a one-sided boundary 3-segment of an exterior hexagon
(Figure 34).

Figure 34. Arc q of c which is weakly rigid in a rectangle
r1 of Na∩b.
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If c winds around b, then equivalently (from the perspective of q inter-
secting Na), q is of type A in r1 and then either q is of type A in r2 or q is
of type D between r2 and r3; q is of type A in r4; and q is not a one-sided
boundary 3-segment of an exterior hexagon.

The following lemma shows that from the point of view of the proof of
Proposition 7.1, weakly rigid arcs are as good as rigid arcs.

Lemma 8.4. Suppose that c ∈ C winds around b and let q be an oriented
arc of c which is weakly rigid in a rectangle r1 of Na∩b. Then tka(q) does
not admit a reduction of type IIIb.

Proof. Suppose that q, after leaving r1, goes around the boundary of an
exterior n-gon ∆ and then enters Na in a rectangle r4 of Na∩b as an arc
of type A (Figure 35(i)). If q leads to an arc that admits a reduction of

Figure 35. Reductions of types IIIb and IIIc.

type IIIb, then q between r1 and r4 must follow n
2 − 2 rectangles of Na\b.

Hence, it must n
2 − 2 times enter Na as an arc of type D. However, by

the definition of weak rigidity, q can intersect Na as an arc of type D only
once. Hence, n = 6, and by Remark 8.3, q is a one-sided boundary 3-
segment of ∆. However, this contradicts the assumption that q is weakly
rigid in r1. �

The next lemma shows that the reductions of types IIIb and IIIc pro-
duce arcs that are good candidates for weakly rigid arcs.

Let c, d3, and d5 be as in the proof of Proposition 7.1; that is, c ∈ C
winds around b, d3 is obtained from tka(c) by all possible reductions of
types I–IIIa, and d5 is obtained from d3 by all possible reductions of
types IIIb and IIIc. Assume also that c is such that the statements of
Lemma 7.13 and Remark 7.17 hold true.

Lemma 8.5. Suppose that each arc of c ∩Na of types A–C gives an arc
of d5 ∩ Na that is parallel to a in at least one rectangle of Na∩b. Let q
be an oriented arc of d5 which starts in a rectangle t of Na∩b as an arc
parallel to a; then it follows a to the next rectangle of Na∩b and then it



SUBGROUPS GENERATED BY TWO DEHN TWISTS 179

follows an arc obtained from an arc of d3 \Na by reductions of types IIIb
and/or IIIc (Figure 35(ii)). If q is not a one-sided boundary 3-segment
of an exterior hexagon, then q is weakly rigid in t with respect to a.

Proof. Let q′ be an arc of d3, which can be reduced to the arc q of d5
by reductions of types IIIb and/or IIIc. Assume that the endpoints of q′
are A,B ∈ d3 ∩ b and let rA and rB be rectangles of Na∩b that contain
A and B, respectively. By the general properties of reductions of type III
(see Lemma 7.13 and Remark 7.17), both ends of q′ were formed from
the arcs of c intersecting a (hence, not arcs of type D). Therefore, by
our assumption, both ends of q after entering Na must run parallel to a
in at least one rectangle of Na∩b. Orient q from rA to rB and extend q
on both ends so that it starts and terminates in rectangles r′A and r′B of
Na∩b, which, respectively, precede and follow rA and rB along q. From
the point of view of q intersecting Nb, this arc is of type A in r′A; then it
intersects Nb as an arc of type D, and then it is again an arc of type A
(in r′B). This finding means that if this arc is not a one-sided boundary
3-segment of an exterior hexagon, then q is weakly rigid in r′A. �

We say that c ∈ C is weakly rigid with respect to b if each arc p of c
that is parallel to b in a rectangle r of Na∩b is weakly rigid with some
choice of orientation.

Remark 8.6. If c is weakly rigid with respect to b, then by Lemma 8.4,
c satisfies the statement of Lemma 7.12. Hence, the assumption that c is
weakly rigid with respect to b serves as a replacement for Lemma 7.12.

We say that c ∈ C winds weakly around b if, for every rectangle r of
Na∩b and each choice of orientation for the collection P of arcs of c that
are parallel to b in r, a weakly rigid arc exists in P .

Remark 8.7. In the proof of Proposition 7.1, the assumption that c
winds strongly around b was used to conclude that in each rectangle r of
Na∩b an arc s of c exists, which is of type A in r and which leads to an arc
of d3 ∩Na that does not allow a reduction of type IIIb on either side of r
(Remark 7.11). By Lemma 8.4, weak winding provides a slightly weaker
conclusion: For each a-side of r, an arc s of c exists, which is of type A
in r and which yields an arc of d3 that does not allow a reduction of type
IIIb on the chosen side of r (for such s, choose an arc of c that is weakly
rigid on the chosen side of r).

Remark 8.8. Remark 8.7 implies that the proof of Lemma 7.13 remains
valid if we replace the notion of strong winding with the notion of weak
winding. In fact, that proof was based on the fact that if r is a rectangle
r of Na∩b, then for each a-side of r, an arc s of c exists, which is of type
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A in r and which yields an arc of d3 that does not allow a reduction of
type IIIb on the chosen side of r.

Let X̂a be the set of isotopy classes of circles c in N which satisfy the
following conditions:

(1) c ∈ C,
(2) I(c, a) = |c ∩ a| and I(c, b) = |c ∩ b|,
(3) I(c, a) < I(c, b),
(4) c is weakly rigid with respect to a,
(5) c winds weakly around a.

Similarly, we define X̂b by requiring (1)–(2) above and additionally
(3′) I(c, b) < I(c, a),
(4′) c is weakly rigid with respect to b,
(5′) c winds weakly around b.

Lemma 8.9. Let c ∈ X̂b and assume that a and b are not in the special
position (S1), (S2), or (S3). Let d5 be as in the proof of Proposition 7.1
and let s′ be an arc of c∩Na of type A, B, or C. If s is the arc of d5 ∩Na

which corresponds to s′, then s is parallel to a in at least two rectangles
of Na∩b.

Proof. Let s′′ be the arc of d3 that corresponds to s′ (that is, s′′ is obtained
from tka(s′) by reductions of types I, II, IIIa), and let p and q be segments
of b that correspond to the segments of d5 that start at the endpoints of
s.

Assume first that s′ is an arc of type C. Arcs of this type do not allow
reductions of type IIIb (Lemma 7.13 and Remark 8.8). Hence, the only
type of reduction that could decrease the number of rectangles in which
s′′ is parallel to a is the reduction of type IIIc. If we assume that no
rectangles of Na∩b exist in which s is parallel to a, then each double
segment of b must contain a segment joinable either to p or q (Remark
7.19). But this implies that a and b are in the special position (S1), which
contradicts our assumption. Analogously, if we assume that s is parallel
to a in only one rectangle r of Na∩b and R is the double segment of b that
corresponds to r, then each double segment of b that is different from
R contains an oriented segment joinable to p or q. Moreover, the triple
{p, q,R} must be positively oriented. Hence, a and b are in the special
position (S2) or (S3), which again is a contradiction.

If s′ is an arc of type A or B, then the situation is completely analogous.
If s′ is of type A, then s′′ can admit on one side one reduction of type IIIb
(Lemma 7.12, remarks 8.6 and 7.14), and if s′ is of type B, then s′′ can
admit reductions of type IIIb on both sides (one on each side – Remark
7.14). Hence, the assumption that no rectangle of Na∩b exists in which s
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is parallel to a implies that a and b are in the special position (S1), and
if we assume that s is parallel to a in only one rectangle of Na∩b, then a
and b are in the special position (S2) or (S3). �

Lemma 8.10. Let c ∈ X̂b and assume that a and b are not in the special
position (S1), (S2), or (S3). If d5 is as in the proof of Proposition 7.1,
then d5 winds weakly around a.

Proof. We need to show that for each rectangle r of Na∩b and for each
orientation of arcs parallel to a in r, an arc of d5 exists, which is parallel
to a in r and is weakly rigid with respect to the chosen orientation of arcs
in r.

Fix r and let r1 be the rectangle of Na∩b following r along a with
respect to the chosen orientation of arcs in r. Without loss of generality,
we can assume that the configuration of rectangles is as in Figure 36;

Figure 36. Intersection of tka(s′) with rectangles of Na∩b.

that is, r1 is on the right of r. Next, follow a, with the chosen orientation
of arcs in r, to the first rectangle r2 of Na∩b such that the top oriented
segments of b in r1 and r2 are not joinable (r2 exists by Proposition 4.3).
If r2 = r, then each double segment of b contains a segment joinable to
the top segment of r1 or to the bottom segment of r. Hence, a and b are
in the special position (S1). Therefore, r2 6= r.

Let r3 be the rectangle of Na∩b that follows r2. If r3 = r, then a and
b are in a special position (if the top segment of r1 is joinable to the top
segment of r or if the bottom segment of r2 is joinable with the bottom
segment of r, then we are in the special position (S1); otherwise, we are
in the special position (S2) or (S3)). Hence, r3 6= r.

Let s′ be an arc of c ∩Na that is parallel to b in r2 and that is weakly
rigid on the top side of r2 (it exists because c winds weakly around b).
Under this assumption, the segment s1 of tka(c) that starts at the top
endpoint of s′ does not allow a reduction of type IIIb (Lemma 8.4). It
may allow reductions of type IIIc, but they cannot reach r1, because r2
is not joinable to r1.
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Now, we concentrate on the segment s2 of tka(c) starting at the bottom
endpoint of s′. Let pi and qi, for i = 1, 2, 3, be segments of b, which go
up and down from ri, respectively. Segment s2 may admit a reduction of
type IIIb and some reductions of type IIIc, but if these reductions reach
r, then either all double segments of b contain a segment joinable to p1
or q2 (this case happens when s2 can be reduced by reductions of type
IIIc), or only one double segment of b (corresponding to r2) exists, which
does not contain a segment joinable to p1 or q3 (this happens when s2
is reduced by a reduction of type IIIb and then by reductions of type
IIIc). According to our assumption that a and b are not special, such a
situation is not possible. Hence, the reductions on s2 cannot reach r, and
as a consequence, the arc s of d5, that corresponds to s′, is parallel to a
in r and r1. �

9. The Special Cases (S1) and (S2)

The common feature of cases (S1) and (S2) is the existence of oriented
segments p and q starting on different sides of a, such that each double
segment (or each double segment except one in case (S2)) contains a
segment joinable to p or q. In case (S1) this implies the possibility that
some arcs of c∩Na of types A–C may lead to arcs of d5∩Na, which do not
intersect b (see the proof of Lemma 7.20). We will show below (Lemma
9.13) that such reductions are not possible.

The second problem in cases (S1) and (S2) is that d5 may not wind
strongly around a. We deal with this problem by replacing the notion of
strong winding with the notion of weak winding defined in the previous
section.

Lemma 9.1. Let π : M → S1 be a bundle over S1 with fiber I = [0, 1]
and which is homeomorphic to a Möbius strip. If a simple oriented arc
c in M is monotone with respect to the fixed orientation of S1 and has
endpoints in ∂M , then c intersects every fiber in at most two points.

Proof. If c intersects some fiber in at least three points, then c winds
infinitely many times around the core of M (Figure 37(i)). �

Lemma 9.2. Let a and b be two generic two-sided circles in N such that
I(a, b) ≥ 4, and assume that oriented segments p and q of b, which start
on different sides of a, exist, such that each double segment of b contains
an oriented segment joinable to p or q (that is, a and b are in the special
position (S1)). Then p is joinable to −q.

Proof. Suppose first that p starts and terminates on the same side of a. In
such a case, by Proposition 4.2, segments that start at the terminal points
of segments joinable to p must be joinable to q, and vice versa. However,
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Figure 37. Impossible configurations of arcs – lemmas
9.1 and 9.2.

this implies that b is a circle on an annulus (that is, the union of twisted
rectangles given by adjacency; see Figure 37(ii)). This contradicts the
assumption that I(a, b) ≥ 4.

Hence, p starts and terminates on two different sides of a. But then
the segment starting at the terminal point of p cannot be joinable to q
(because p and q begin on two different sides of a), and it cannot be
joinable to p (by Proposition 4.2). Hence, −p must be joinable to q. �

Remark 9.3. Let a, b, and p be as in the above lemma and let p1, p2, . . . , pn
be all oriented segments of b joinable to p. The union of adjacency disks
between p1, p2, . . . , pn provides a rectangle Γ. We can assume that p goes
up from a and that p1 and pn are on the boundary of Γ, where pn leaves
Na to the left of p1. By Lemma 9.2, q is equal to one of the segments:
−p1,−p2, . . . ,−pn. Hence, without loss of generality, we can assume that
q = −p1. The other two boundary arcs of Γ are arcs a1 and a2 of a.
Observe that by Proposition 4.2, a1 ∩ a2 = ∅; hence, a \ (a1 ∪ a2) consists
of two arcs and the configuration of a and b is as in the left part of Figure
38.

Figure 38. Configuration of arcs in cases (S1) and (S2).

Lemma 9.4. Let a and b be two generic two-sided circles in N such that
I(a, b) ≥ 4, and assume that oriented segments p and q of b and a double
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segment R of b exist, such that a and b are not in the special position (S1),
p and q start on different sides of a, p starts and terminates on different
sides of a, each double segment of b different from R contains an oriented
segment joinable to p or q, and {p, q,R} is positively oriented (that is, a
and b are in the special position (S2)). Then p is joinable to −q.

Proof. Our first claim is that an oriented segment of b exists, which is
joinable to p and such that it neither starts nor terminates in R (that is,
neither p nor −p is a segment of R). Given that I(a, b) ≥ 4, at least three
intersection points of a∩b different from R exist. Hence, at least two arcs
s and t, which do not start in R, are joinable to p or joinable to q. If both
these arcs are joinable to p, then at least one of them cannot terminate
in R (given that they terminate on the same side of a). Hence, our claim
follows. Now assume that these two arcs are joinable to q. If q starts and
terminates on different sides of a, then the roles of p and q are symmetric,
and we can prove our claim by relabeling p to q, and vice versa. Hence,
assume that q starts and terminates on the same side of a. Let s′ and t′
be oriented segments of b that follow s and t, respectively (Figure 39(i)).

Figure 39. Configuration of arcs, Lemmas 9.4 and 9.8.

By Proposition 4.2, none of −s, −t, s′, or t′ is joinable to q and by
our assumptions −s and −t are not joinable to p (because p and q start
on different sides of a). Hence, at least one of s′ or t′ is joinable to p. If
both s′ and t′ are joinable to p, then our claim follows because only one
of them can terminate in R. If only one of them, say s′, is joinable to p,
then R corresponds to the terminal point of t. Hence, s′ cannot terminate
in R, which again proves our claim.

Assume that s is a segment of b joinable to p, which does not start or
terminate in R. Then the segment that starts at the terminal point of p
cannot be joinable to q (because p and q begin on two different sides of
a), and it cannot be joinable to p (by Proposition 4.2). Hence, −p must
be joinable to q. �



SUBGROUPS GENERATED BY TWO DEHN TWISTS 185

Remark 9.5. Following the lines of the analysis conducted in Remark
9.3, we conclude that the configuration of a and b in case (S2) differs from
that in (S1) only by one additional double segment R, which intersects
a in one of the arcs of a \ (a1 ∪ a2) (a1 and a2 are defined as in Remark
9.3). Hence, the configuration is as in Figure 38. (Note that the mutual
position of p, q, and R is determined by the assumption that {p, q,R} is
positively oriented.)

For the rest of this section, we will use the notation introduced in
remarks 9.3 and 9.5; that is, p1 = p and pn are segments of b which,
together with arcs a1 and a2 of a, bound a rectangle Γ that contains all
segments of b joinable to p and p1 goes up from a and leaves Na to the
right of pn (Figure 38). Moreover, assume that p starts at A in a rectangle
rA of Na∩b and it terminates in B in a rectangle rB . Let r1 and r2 be
rectangles of Nb\a which precede and follow p, respectively.

Lemma 9.6. Suppose that a and b are in the special position (S1) and let
u1, . . . , un and v1, . . . , vn be the oriented segments of b which, respectively,
go down/up from the initial/terminal points of p1, . . . , pn. Then ui is not
joinable to uj for some i 6= j and vi is not joinable to vj for some i 6= j.

Proof. If, for example, all the ui are mutually joinable, then a and b are
circles on the annulus given by adjacency disks between pi and ui. This
contradicts the assumption that I(a, b) ≥ 4. �

Lemma 9.7. Suppose that a and b are in the special position (S2) and let
u1, . . . , un and v1, . . . , vn be the oriented segments of b which, respectively,
go down/up from the initial/terminal points of p1, . . . , pn. Then the seg-
ments that constitute R are joinable neither to u1 nor to v1. Moreover,
ui is not joinable to uj for some i 6= j and vi is not joinable to vj for
some i 6= j.

Proof. If a segment of R is joinable to u1 or v1, then a and b are in
the special position (S1), which is not possible. Next, suppose to the
contrary that all the ui are mutually joinable and all the vi are mutually
joinable. Given that I(a, b) ≥ 4, vi = −uj for some i and j. Hence, we can
assume that each vi is joinable to −u1. One of the ui must terminate in a
rectangle r that corresponds to R and also one of the vi must terminate
in r. However, given that vi is joinable to −ui, this situation contradicts
Proposition 4.2. �

Suppose that the component ofN\Na∪b, which is determined by p1 = p
and an arc of a \ (a1 ∪ a2), is an exterior n-gon ∆. Let t1 and t2 be these
boundary sides of r1 and r2, respectively, which enter rA and rB on the
right of b ∩ rA and b ∩ rB (Figure 38).
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Now we define two Möbius strips associated with p. The first one M1

is the union of the rectangle rp of Nb\a that contains p, rectangles rA and
rB , and a single rectangle rAB of Na\b that connects rA and rB . The
second one M2 is the union of rA, rB , rAB , and all the rectangles that
connect rA and rB along the boundary of ∆.

Finally, for the rest of this section, assume that c ∈ C and c winds
around b.

Lemma 9.8. Let s be an arc of type C of c ∩ Na which connects the
initial points of oriented segments p′ and q′ of c which run parallel to p1
and −p1, respectively. Then at least one of the oriented arcs of c ∩ Na

following p′ and q′ is an arc of type D which turns to the left as it enters
Na.

Proof. Two possible configurations of arcs p′ and q′ exist (they can pass
each other in two different ways). However, these configurations lead
to the same conclusions. Hence, assume that we have the configuration
shown in Figure 39(ii). Consider the arc t of c ∩ Na following p′. After
entering Na, this arc must turn to the left and is either of type C or of
type D. If t were of type C, then c would wind at least three times around
the core of the Möbius strip M1, which contradicts Lemma 9.1. Hence, t
is an arc of type D. �

Let t be a common boundary of a rectangle r in Na\b ∪ Nb\a and an
exterior n-gon ∆. We say that an arc q of c∩ r is a bounding segment for
∆ (with respect to t) if no arcs of c exist between t and q in r. Clearly,
c∩r is either empty or contains exactly one bounding segment for ∆ with
respect to t.

Lemma 9.9. Let rp be the rectangle in Nb\a that contains p. If s1 is an
arc of c that passes through r1, rA, and rp and is of type A in rA, and s2
is an arc of c which passes through r2, rB, and rp and is of type A in rB,
then either s1 ∩ r1 is not a bounding segment for ∆ with respect to t1 or
s2 ∩ r2 is not a bounding segment for ∆ with respect to t2.

Proof. Two possible configurations of arcs s1 and s2 exist (they can pass
each other in two different ways). However, these configurations lead
to the same conclusions. Hence, assume that we have the configuration
shown in Figure 40(i).

Consider the arc s of c ∩Na following s1. If s were an arc of type C,
then c would wind at least three times along the core of the Möbius strip
M1 and this would contradict Lemma 9.1. Hence, s is either of type A or
of type D. In the former case, s2 is not a bounding segment for ∆ with
respect to t2, and in the latter case, s1 is not a bounding segment for ∆
with respect to t1. �
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Figure 40. Configuration of arcs, Lemmas 9.9, 9.10 and 9.13.

If s is an arc of c ∈ C with endpoints in rA and rB that connects rA
and rB in M2 \ rp, then we say that s is a long bounding segment for ∆.

Lemma 9.10. Let s1 and s2 be oriented arcs of c ∩ Na of type B such
that the arc s of c that starts at the terminal point of s1 and terminates at
the starting point of s2 is a long bounding segment for ∆ (Figure 40(ii)).
Then the arcs of c which precede s1 and follow s2 are not long bounding
segments for ∆.

Proof. If, for example, the arc that precedes s1 were a long bounding
segment for ∆, then c would be a curve in the Möbius strip M2 which
winds at least three times along the core of M2; this contradicts Lemma
9.1. �

Lemma 9.11. Assume that an arc s of c ∩ Na of type B exists, which
starts in rA and terminates in rB. If s1 (or s2) is an arc of c that is of
type A in rA (or rB), then s1 (or s2) is not a bounding segment for ∆
with respect to t1 (or t2).

Proof. Given that c cannot intersect itself, s1 and s2 must enter Na on
the left of s (our point of view here is along s1/s2 towards rA/rB ; see
Figure 41(i)). �

Figure 41. Configuration of arcs, Lemma 9.11 and
Proposition 9.12.
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Now we are ready to adopt the proof of Proposition 7.1 to the special
cases (S1) and (S2). However, as we observed in Example 8.1, the notion
of rigidity is too strong in these cases. Hence, we replace it with the
notion of weak rigidity (see §8).

Proposition 9.12. Let a and b be two generic two-sided circles in N
such that I(a, b) ≥ 4 and {a, b} is not in the special position (S3). Then,
for any integer k 6= 0, we have

tka(X̂b) ⊆ X̂a and tkb (X̂a) ⊆ X̂b.

Proof. As we observed in Remark 8.8, the assumption about weak wind-
ing of c around b suffices to prove the statement of Lemma 7.13. As a
substitute for Remark 7.11, we have slightly weaker Remark 8.7. More-
over, as observed in Remark 8.6, the assumption that c is weakly rigid
with respect to b serves as a replacement for Lemma 7.12. Hence, in most
parts, we can copy verbatim the proof of Proposition 7.1, yet there are
some differences, which we study in detail below.

Suppose first that a and b are not in the special position (S1) or (S2).
In such a case, by lemmas 8.9 and 8.10, d5 is weakly rigid with respect
to a and d5 winds weakly around a. Moreover, Lemma 8.9 implies that
I(d5, b) > I(d5, a).

Therefore, for the rest of this section, we can concentrate on circles a
and b, which are in the special position (S1) or (S2) and are hence in the
situation described in lemmas 9.2 and 9.4 and remarks 9.3 and 9.5.

Counting intersection points between d5 and b. If we follow the proof of
Proposition 7.1, then the first place it can fail in cases (S1) and (S2) is the
proof of Lemma 7.20. However, as we will show below, even the stronger
statement of Lemma 8.9 holds true in cases (S1) and (S2). The possible
failure of the argument in Lemma 8.9 follows from the fact that an arc s′
of c∩Na of type A, B, or C may exist, which yields an arc s of d5∩Na that
is parallel to a in fewer than two rectangles of Na∩b. Moreover, the proof
of Lemma 8.9 provides a specific description of possible configurations of
p, q, and s′ that may lead to such a failure. Three possibilities exist in
the case (S1)/(S2): s′ may be an arc of type A in rA/rB , s′ may be an
arc of type B that connects rA and rB , or s′ may be an arc of type C that
connects rA and rB . The following lemma shows that in each of these
cases, strong restrictions are given for reductions of types IIIb/IIIc.

Lemma 9.13. Let c be as in the proof of Proposition 7.1.

(1) Let s be an arc of d3 ∩Na that corresponds to an arc s′ of c∩Na.
If s′ is an arc of type C with endpoints in rA and rB, then s can
admit a reduction of type IIIc only on one side of s′.
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(2) Let s be an arc of c, which is the innermost long bounding segment
for ∆ (that is, s is a bounding segment for ∆ in rectangles of
N(a∪b)\(a∩b)) and which leads to a reduction of type IIIb across
∆. Then the arcs of c ∩Na that precede/follow s are arcs of type
B.

(3) Suppose that a long bounding segment of c exists, which leads to
a reduction of type IIIb across ∆. Then no arc of c which is of
type A in rA or rB leads to a reduction of type IIIb across ∆.

(4) No arc of c∩Na that is of type A in rA or rB leads to a reduction
of type IIIb across ∆.

(5) If s1 is an arc of c of type B with endpoints in rA and rB, then
s1 can lead to a reduction of type IIIb only on one side of s1.

Proof.
(1) If s′ is an arc of type C, then by Lemma 9.8, at least one of the

arcs that precedes/follows s′ cannot lead to a reduction of type
IIIc (because it turns to the left as it enters Na).

(2) By Lemma 9.9, the arcs that precede/follow s cannot both be of
type A, and by Lemma 9.11, they are not arcs of types A and B.
Hence, both arcs must be of type B.

(3) If we choose the arc s of c that admits a reduction of type IIIb
across ∆ and is the innermost long bounding segment for ∆, then
by the previous point, we know that the arcs s1 and s2 of c that
precede/follow s are of type B in rA and rB (Figure 40(ii)). But
then, by Lemma 9.10, we know that the arcs that, respectively,
precede s1 and follow s2 do not admit reductions of type IIIb.
Hence, they are the obstacles for the arcs of type A in rA and rB
to admit such a reduction.

(4) The conclusion is a direct consequence of the previous point.
(5) At this point, we know that if an arc s of c admits a reduction of

type IIIb across ∆, then this must be a long bounding segment
that connects two arcs s1 and s2 of c ∩ Na of type B. But then,
by Lemma 9.10, the arc that precedes s1, which is different from
±s, does not admit reductions of type IIIb. �

The above lemma implies that even in cases (S1)/(S2), none of the arcs
s′ of c∩Na can be reduced so that the resulting arc s of d5∩Na is parallel
to a in fewer than two rectangles of Na∩b. Hence, Lemma 8.9 remains
valid in these cases. In particular, d5 is weakly rigid with respect to a
and I(d5, b) > I(d5, a).

Weak winding of d5. Finally, we need to show that d5 winds weakly
around a. Denote by rp1

= rA, rp2
, . . . , rpn

and rq1 = rB , rq2 , . . . , rqn the
rectangles of Na∩b, which contain the starting points of p1, p2, . . . , pn and
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−p1, . . . ,−pn, respectively (Figure 38). In case (S2), denote the rectangle
of Na∩b that corresponds to R by rR .

Let s′ be an arc of c that is of type A in rp1
, and let s′′ and s be

the corresponding arcs of d3 and d5, respectively. By Lemma 9.13, the
bottom part of s′′ does not allow a reduction of type IIIb. The top part
of s′′ may admit reductions of type IIIc which can reach at most rpn .
Hence, s is parallel to a in all the rectangles rq1 , . . . , rqn and rR in case
(S2). Moreover, if the reductions on the top part s′′t of s′′ reach rpn

, then
the corresponding arc st of d5 is two-sided with respect to b; that is, st,
together with an arc of b that connects the intersection points of st and b
is a two-sided circle (Figure 41(ii)). Hence, st is not a one-sided boundary
3-segment of an exterior hexagon, and by Lemma 8.5, s is weakly rigid
with respect to a on both sides of rqn in case (S1) and on both sides of
rR in case (S2). Moreover, s is rigid with respect to a on both sides of
rq2 , . . . , rqn−1

.
In exactly the same way, by considering the arc of c which is of type

A in rq1 , we prove that d5 is weakly rigid with respect to a on both sides
of rectangles rp2 , . . . , rpn . Hence, to finish the proof, we need to show the
existence of an arc of d5∩Na that is weakly rigid on both sides of rq1 and
an arc of d5 ∩Na that is weakly rigid on both sides of rp1

.
In case (S1), let s′ be an arc of c that is of type A in rpn

and that is
weakly rigid on both sides of rpn

. Let s′′ and s be the corresponding arcs
of d3 and d5, respectively. By Lemma 8.4, the bottom part of s′′ does not
allow a reduction of type IIIb. It may admit reductions of type IIIc, but
by Lemma 9.6, they cannot reach rp1

. The top part of s′′ does not admit
a reduction of type IIIb (Lemma 8.4) and it does not allow a reduction of
type IIIc (Proposition 4.2 and Remark 7.19). Hence, s is parallel to a in
rp1 , rq1 , and rq2 . Similarly, by taking an arc s′ of c that is weakly rigid
on both sides of rq1 , we construct an arc s of d5 that is parallel to a in
rp2

, rp1
, and rq1 .

In case (S2), by Lemma 9.7, we know that either the segments that
go down from the starting points of p1, . . . , pn or the segments that go
up from the terminal points of p1, . . . , pn are not mutually joinable. The
argument in both cases is completely analogous. Hence, the latter case is
assumed. Let s′ be an arc of c that is of type A in rqn and is weakly rigid
on both sides of rqn . Let s′′ and s be the corresponding arcs of d3 and d5,
respectively. By Lemma 8.4, the top part of s′′ does not allow a reduction
of type IIIb. It may admit reductions of type IIIc, but by our assumption
they cannot reach rq1 . The bottom part of s′′ does not admit a reduction
of type IIIb. Hence, s is parallel to a in rp2 , rp1 , and rq1 . Similarly, if s′′
is an arc of c that is of type A in rpn

and s is the corresponding arc of
d5, then s is parallel to a in rq1 and rq2 , and is either parallel to a in rp1
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or weakly rigid on the rp1 side of rq1 (Lemma 8.5). This completes the
proof that d5 winds weakly around a. �

10. The Special Case (S3)

Lemma 10.1. Let a and b be two generic two-sided circles in N such
that I(a, b) ≥ 4, and assume that oriented segments p and q of b and
a double segment R of b exist such that p starts and terminates on one
side of a; q starts and terminates on the other side of a; each double
segment of b, which is different from R, contains an oriented segment
joinable to p or q; and {p, q,R} is positively oriented (that is, a and b are
in the special position (S3)). Then the oriented arcs that constitute R are
joinable neither to p nor to q.

Proof. Suppose that in each double segment of b, an oriented segment
joinable either to p or to q exists. By Proposition 4.2, all segments that
start at endpoints of segments joinable to p and are not joinable to −p
are joinable to q. And vice versa, all segments that start at endpoints
of segments joinable to q and are not joinable to −q are joinable to p.
Hence, b is a circle on an annulus (which is a union of adjacency disks
between the segments joinable to p and q – see Figure 37(ii)). However,
this contradicts the assumption that I(a, b) ≥ 4. �

Remark 10.2. Let a and b be circles in the special position (S3), let
p1, p2, . . . , pn be all oriented segments of b joinable to p, and let q1, . . . , qm
be all oriented segments joinable to q. The union of adjacency disks
between p1, p2, . . . , pn gives a rectangle ∆p and the union of adjacency
disks between q1, q2, . . . , qm gives a rectangle ∆q. By Lemma 10.1, we
know that one of the segments p1, . . . , pn or q1, . . . , qm ends in R and is
followed by an arc that is joinable neither to p nor to q. Without loss of
generality, we can assume that p is above a, pn ends in R, p1 and pn are on
the boundary of ∆p, and q1 and qm are on the boundary of ∆q. Given that
all oriented segments p1, . . . , pn−1 must be followed by segments joinable
to q, and all segments q1, . . . , qm must be followed by segments joinable
to p, we can also assume that p1, . . . , pn−1 are followed by q1, . . . , qm,
respectively. Hence, the configuration is as in Figure 42. (Note that the
mutual position of p, q, and R is determined by the assumption that
{p, q,R} is positively oriented.)

For the rest of this section, we will use the notation introduced in the
above remark. Moreover, by r, rp, and rq, we denote the rectangles of
Na∩b that correspond, respectively, to R, the initial point of pn, and the
initial point of q1 (Figure 42).



192 M. STUKOW

Figure 42. Configuration of arcs in case (S3).

Lemma 10.3. No component of N \Na∪b is an exterior hexagon.

Proof. Given that the segment that connects the terminal point of pn
with the initial point of p1 is one-sided, checking that r can be a vertex
of an exterior n-gon only for n = 4, 8 is straightforward. All the other
exterior n-gons are rectangles. �

Let X̂a and X̂b be defined as in §8.

Proposition 10.4. Let a and b be two generic two-sided circles in N
such that I(a, b) ≥ 4. Then for any integer k 6= 0, we have

tka(X̂b) ⊆ X̂a and tkb (X̂a) ⊆ X̂b.

Proof. Observe first that if a and b are not in the special position (S3),
then the proposition coincides with Proposition 9.12. Therefore, we can
concentrate on the circles a and b, which are in the special position (S3)
and are hence in the situation described in Remark 10.2.

As in special cases (S1) and (S2), we observe that weak winding is
sufficient for repeating most of the proof of Proposition 7.1. Hence, we
follow the lines of the proof of Proposition 9.12 and we concentrate on
places where that proof can fail. The first such place is the proof that
d5 is weakly rigid with respect to a. In the proof of Proposition 9.12 we
obtained weak rigidity of d5 as a consequence of Lemma 8.9, which may
not be true in the case (S3).

However, as a replacement we have the following lemma.

Lemma 10.5. Let s′ be an arc of c∩Na of type A, B, or C, and let s be
the arc of d5 ∩Na which corresponds to s′.

(1) If s′ is an arc of type A in rp or s′ is an arc of type C that connects
rp and rq, then s is parallel to a in r.

(2) If I(a, b) = 4 and s′ is an arc of type A in r or s′ is an arc of
type C with the top part in r, then s is parallel to a in rp.

(3) If s′ is not as in previous points, then s is parallel to a in at least
two rectangles of Na∩b.
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Proof. Observe first that the boundary component of Na∪b that contains
pn and p1 cannot bound an exterior rectangle. Otherwise, a would bound
a Möbius strip. Hence, the segments of c, which run parallel to p1, do
not lead to reductions of types IIIb nor IIIc. Let s′′ be an arc of d3 that
corresponds to s′.

(1) If s′ is an arc of type A in rp, then the bottom part of s′′ can admit
a reduction of IIIb and then both sides of the obtained arc may
admit reductions of type IIIc. By Lemma 10.1, these reductions
cannot reach R. Hence, s is parallel to a in r.

The situation is completely analogous if s′ is an arc of type
C that connects rp and rq. (By Lemma 7.13, s′′ does not admit
reductions of type IIIb in this case.)

(2) If s′ is an arc of type A in r, then the top part of s′′ may admit
some reductions of type IIIc, which can reach at most rq. The
bottom part of s′′ may admit a reduction of type IIIb, but then
it does not admit any further reductions of type IIIc. Hence, s is
parallel to a in rp.

The situation is completely analogous if s′ is an arc of type
C with the top part in r. (By Lemma 7.13, s′′ does not admit
reductions of type IIIb in this case.)

(3) If s′ is not as in the previous points, then it is straightforward to
check that s is parallel to a either in the rectangles of Na∩b that
contain the initial points of pn−1 and pn or in the rectangles of
Na∩b that contain the terminal points of p1 and p2. �

As a consequence of the above lemma, we obtain that every arc s of
d5 that is parallel to a in a rectangle t of Na∩b is weakly rigid on one side
of t. In fact, if s is parallel to a in at least two rectangles of Na∩b, then
s is rigid in t. If s is parallel to a in only one rectangle of Na∩b, then s
was obtained from an arc of d3 by reductions of types IIIb and IIIc. In
such a case, by lemmas 8.5 and 10.3, s is weakly rigid on one side of t. In
particular, d5 is weakly rigid with respect to a.

Finally, we will show that d5 winds weakly around a. Let s′1 and s′2
be arcs of c of type A of Na∩b, with s′1 in rq and with s′2 in the rectangle
rp1

that contains the initial point of p1. Assume also that s′1 and s′2 are
weakly rigid below a, and let s′′1 and s′′2 and s1 and s2 be arcs of d3 and
d5 that correspond to s′1 and s′2, respectively. The arc s′′2 does not admit
any reductions of types IIIb and IIIc. Hence, s2 is parallel to a in all
rectangles of Na∩b except rp1

. The bottom part of s′′1 may admit some
reductions of type IIIc, but these reductions cannot reach r. Hence, s1 is
parallel to a in r and in all the rectangles of Na∩b between rp1

and rp.
This proves that d5 winds weakly around a. �
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11. The Case of I(a, b) = 3 with Nonorientable Na∪b

If I(a, b) = 3, then we still follow the proofs of propositions 7.1 and
9.12. However, as in the special case (S3), the problem is that, in general,
if I(a, b) = 3, then Lemma 8.9 is not true. Fortunately, this case is quite
special because of the following proposition.

Proposition 11.1. If a and b are two generic two-sided circles in a
surface N such that |a ∩ b| = I(a, b) = 3 and Na∪b is nonorientable, then
the exterior n-gons for Na∪b can exist only if n = 10 or n = 12.

Proof. If all segments of b are two-sided, then Na∪b is orientable. Hence,
one-sided segments of b exist, and two such segments p1 and p2 must exist.
If we denote the two-sided segment of b as p3, then we can assume that
p1, p2, and p3 are oriented so that p2 follows p1 and p3 follows p2.

If all segments p1, p2, and p3 start and terminate on different sides of
a, then the arc of a that connects the initial point of p1 with the initial
point of p2 starts and terminates on the same side of b. Hence, we can
interchange a with b, and we can always assume that at least one segment
of b starts and terminates on the same side of a. In such a case one of
the remaining segments must also start and terminate on the same side
of a, and the final segment must connect two different sides of a. Hence,
we have the configuration of arcs as in Figure 43. We still have two

Figure 43. Configurations of segments of b – Proposi-
tion 11.1.

possibilities: either p3 is a segment that connects two different sides of a
(Figure 43(i)) or p3 starts and terminates on the same side of a (Figure
43(ii)). Checking that in the first case the boundary of Na∪b is connected
and it is a 12-gon is straightforward. In the second case, the boundary of
Na∪b has two components: a bigon and a 10-gon. �

The above proposition implies that if I(a, b) = 3, then no adjacent
segments of b exist. Hence, no reductions of type IIIc exist. Moreover,
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the notion of weakly rigid arcs simplifies, given that no exterior hexagons
exist.

Let Xa be the set of isotopy classes of circles c in N , which satisfy the
following conditions:

(1) c ∈ C,
(2) I(c, a) = |c ∩ a| and I(c, b) = |c ∩ b|,
(3) I(c, a) < I(c, b),
(4) c winds weakly around a.

Similarly, we define Xb by requiring (1)–(2) above and additionally
(3′) I(c, b) < I(c, a),
(4′) c winds weakly around b.

The main difference between sets Xb and X̂b is the lack of the assump-
tion that c is weakly rigid with respect to b. As a replacement for this
assumption we have the following lemma.

Lemma 11.2. Let a and b be two generic two-sided circles in N such
that I(a, b) = 3 and c ∈ Xb. Let s be an arc of c ∩Na of type A and let
s′ be the arc of d3 that corresponds to s. Then s′ can admit a reduction
of type IIIb with only one orientation of s.

Proof. Suppose to the contrary that s leads to reductions of type IIIb
with both orientations of s (that is, on both sides of a) and let r be
the rectangle of Na∩b that contains s. Observe first that both ends of
s′ must be involved in two different reductions of type IIIb; otherwise, s
would intersect a only once, which would contradict the assumption that
c winds around b. By Proposition 11.1, at most one exterior n-gon ∆
exists. Hence, both reductions on s′ must correspond to the same one-
sided segment p of b; this segment corresponds to one side of the bigon
defining a reduction. Therefore, if we follow s in both directions until we
obtain the arcs s1 and s2 of c∩Na which intersect a, then s1 and s2 must
enter Na in r. Moreover, the arcs of c that connect s with s1 and s2 run
through rectangles of Na∪b, which together with r, constitute a Möbius
strip strip M . Hence, s1 and s2 enter r on the same side of s (Figure
44(i)). Therefore, by Lemma 7.13 and Remark 8.8, at least one of the
arcs s1 or s2 must be an arc of type A, which leads to a contradiction
with Lemma 9.1. �

Proposition 11.3. Let a and b be two generic two-sided circles in N
such that I(a, b) = 3. Then for any integer k 6= 0, we have

tka(Xb) ⊆ Xa and tkb (Xa) ⊆ Xb.

Proof. As in the special case (S3), the main problem that may lead to the
failure of the proof of Proposition 9.12 is the fact that if I(a, b) = 3, then
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Figure 44. Configurations of segments of c and d3 –
Lemma 11.2 and Proposition 11.3.

Lemma 8.9 may not be true. However, as a replacement for that lemma,
we have the following slightly weaker result.

Lemma 11.4. Let s′ be an arc of c ∩ Na of type A, B, or C, and let s
be the arc of d5 ∩Na that corresponds to s′. Then, s is parallel to a in at
least one rectangle of Na∩b

Proof. Let s′′ be an arc of d3∩Na that corresponds to s′. If s′ is an arc of
type A, then by Lemma 11.2, s′′ may admit a reduction of type IIIb only
on one side of a. Hence, s is parallel to a in at least one rectangle of Na∩b.
If s′ is an arc of type B, then s′′ may admit reductions of type IIIb on
both sides of a, but this leads to same conclusion as above. Arcs of type
C do not allow reductions of type IIIb (see Lemma 7.13 and Remark 8.8).
Hence, in this case, s is parallel to a in exactly one rectangle of Na∩b. �

As a consequence of the above lemma and Proposition 11.1, we have
the following simplified version of Lemma 8.5.

Lemma 11.5. Let q be an oriented arc of d5 that starts in a rectangle t
of Na∩b as an arc parallel to a; then it follows a to the next rectangle of
Na∩b, and then it follows an arc s obtained from an arc of d3 \ Na by a
reduction of type IIIb. Then q is weakly rigid in t with respect to a.

Weak rigidity of d5. Fix a rectangle r in Na∩b and assume that the
orientation of arcs parallel to a in r is such that these arcs point to the
rectangle r1, which is on the right of r (if the orientation is opposite, we
can rotate the whole picture by 180◦; see Figure 44(ii)). Let s′ be an arc
of c ∩ Na of type A in a rectangle r2 of Na∩b different from r and r1,
and assume that s′ is weakly rigid in r2 with respect to b and with the
orientation pointing down (we use the assumption that c winds weakly
around b). The arc s′′ of d3 that corresponds to s′ is parallel to a in r and
r1. If this arc does not admit a reduction of type IIIb, then s′ is, in fact,
an arc of d5 and this arc is rigid in r. If, on the other hand, s′′ admits a
reduction of type IIIb, then this reduction must be on the top part of s′′.
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Hence, by Lemma 11.5, the arc s of d5 that corresponds to s′′ is weakly
rigid in r.

Counting intersection points between d5 and b. Lemma 11.4 guarantees
that for each intersection point of c and a, we have at least one intersection
point of d5 and b. To prove that I(d5, b) > I(c, a), we need to show that
for some arcs of c ∩ Na the corresponding arcs of d5 ∩ Na intersect b at
least twice.

In fact, by Proposition 11.1, at most one exterior n-gon exists. Hence,
all reductions of type IIIb must correspond to the same segment p of b;
this segment corresponds to one side of the bigon that defines a reduction.
Let rA and rB be the rectangles of Na∩b that contain the endpoints A
and B of p. Let r1 and r2 be rectangles of Na∩b that precede rA and rB ,
respectively, with respect to the twisting direction in Na; that is, r1 is
the right (left) neighbor of rA if p approaches a from above (from below),
similarly for r2 (see Figure 45). All arcs of c ∩Na of type A that lead to

Figure 45. Configuration of rectangles of Na∩b, Propo-
sition 11.3.

the reduction of type IIIb must be contained in either r1 or r2. Hence,
if we choose an arc s′ of c ∩ Na that is of type A in a rectangle r of
Na∩b different from r1 and r2, then the corresponding arc s′′ of d3 does
not admit reductions of type IIIb. Therefore, the arc s of d5 ∩ Na that
corresponds to s′ is parallel to a in two rectangles of Na∩b. �

12. The Case of I(a, b) = 2 with Nonorientable Na∪b

Checking that propositions 7.1 and 10.4 are false if I(a, b) = 2 and
Na∪b is nonorientable is not difficult. Hence, we need a slightly more
sophisticated analysis in that case.

The case in question is special because of the following proposition.

Proposition 12.1. If a and b are two generic two-sided circles in a
surface N such that |a ∩ b| = I(a, b) = 2 and Na∪b is nonorientable, then
no component of N \ (a ∪ b) is a disk.

Proof. Observe thatNa∪b is a Klein bottle with two boundary components
(Figure 46(i)). Hence, if one of the components of N \(a∪b) is a disk, then
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Figure 46. Klein bottle with two holes as a regular
neighborhood of a ∪ b.

one of the circles a or b bounds a Möbius strip , which is a contradiction.
�

For a circle c ∈ C define
J(c, a) = number of connected components of c \Na

J(c, b) = number of connected components of c \Nb.

Proposition 12.2. Let a and b be two generic two-sided circles in a
surface N such that |a ∩ b| = I(a, b) = 2 and Na∪b is nonorientable. If
c, c′ ∈ C such that c is isotopic to c′, then J(c, a) = J(c′, a) and J(c, b) =
J(c′, b).

Proof. Suppose first that |c ∩ c′| > 0 and let ∆ be a bigon formed by c
and c′. By taking the innermost bigon, we can assume that the interior
of ∆ is disjoint from c ∪ c′. Given that the boundary of Na∪b is disjoint
from c∪ c′, if a component of N \Na∪b intersects ∆, then this component
must be a disk. By Proposition 12.1, this case is not possible. Hence, ∆
is contained in Na∪b. Moreover, we can assume that the vertices of ∆ are
in the interior of rectangles of Na∪b.

Fix a rectangle r in Na\b ∪ Nb\a, and then let ∆r be a connected
component of ∆∩ r. Given that ∆ ⊂ Na∪b and c and c′ do not turn back
in any of the rectangles of Na∪b, ∆r must be a rectangle, a triangle, or a
bigon, with two sides being arcs of c and c′ (Figure 47). In any case, if

Figure 47. Arcs of c and c′ in a rectangle r.
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we remove the bigon ∆, that is, if we replace c′ with the circle c′′ isotopic
to c′ which is obtained by pushing c′ across ∆ (Figure 48(i)), then

J(c′′, a) = J(c′, a) and J(c′′, b) = J(c′, b).

Figure 48. Arcs of c and c′ in a rectangle r.

Therefore, we can assume that c and c′ are disjoint. This assumption
means that an annulus M in N with boundary curves c and c′ exists.

If a component of N \ Na∪b intersects M , then this component must
be an annulus with boundary curves isotopic to c and c′. In such a case,
N is a nonorientable surface of genus 4 (Figure 46(ii)) and

J(c, a) = J(c′, a) = 2 and J(c, b) = J(c′, b) = 2.

Finally, assume that M is contained in Na∪b. As in the case of a bigon
formed by c and c′, if r is a rectangle in Na\b∪Nb\a andMr is a connected
component of M ∩ r, then Mr must be a rectangle with two sides being
arcs of c and c′ that connect opposite sides of r (Figure 48(ii)).

This implies that Mr gives in r exactly one arc of c and one arc of c′.
This result means that J(c, a) = J(c′, a) and J(c, b) = J(c′, b). �

For two generic two-sided circles a and b in N such that |a ∩ b| =

I(a, b) = 2, we define X̃a as the set of isotopy classes of circles in N which
satisfy the following conditions:

(1) c ∈ C,
(2) J(c, a) < J(c, b),
(3) c winds around a.

Similarly, we define X̃b by requiring (1) above and additionally
(2′) J(c, b) < J(c, a),
(3′) c winds around b.
As an analog of Proposition 7.1, we have the following proposition.

Proposition 12.3. Let a and b be two generic circles in N such that
I(a, b) = 2 and Na∪b is nonorientable. Then for any integer k 6= 0, we
have

tka(X̃b) ⊆ X̃a and tkb (X̃a) ⊆ X̃b.
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Proof. As in the proof of Proposition 7.1, we concentrate on the inclusion
tka(X̃b) ⊆ X̃a. We begin by constructing the circle d = tka(c) and as before,
we assume that tka twists to the right in Na. We perform reductions of
type I on d, and as a result, we obtain a circle d1 ∈ C which winds around
a. Observe that by Proposition 12.2, showing that J(d1, b) > J(d1, a) is
sufficient (we do not need to focus on reductions of types II–III).

Let nA, nB , nC , and nD be numbers of arcs of c ∩ Na of types A, B,
C, and D, respectively (Figure 10). In particular,

J(d1, a) = nA + nB + nC + nD.

To determine the number J(d1, b), suppose first that |k| = 1. Each arc
of c ∩ Na of type A gives an arc of d1 which goes once around a and
therefore gives I(a, b) = 2 in J(d1, b). An arc of c ∩ Na of type B gives
I(a, b) + 1 = 3 in J(d1, b), and an arc of type C gives I(a, b)− 1 = 1. An
arc of c ∩ Na of type D does not change after the twist and gives 1 in
J(d1, b). Finally, if |k| > 1, then for each arc of c ∩Na of types A–C, we
have additional (|k| − 1) · I(a, b) = 2(|k| − 1) arcs of d1 \ Nb. Hence, we
proved the following formula:

J(d1, b) = 2nA + 3nB + nC + nD + 2(|k| − 1) · I(a, c).

Given that c winds around b, we have nA > 0. Hence, J(d1, b) > J(d1, a).
�

Remark 12.4. The proof of Proposition 12.3 can be repeated with min-
imal changes when I(a, b) ≥ 2 and no component of N \ Na∪b is a disk
or an annulus (for example if N = Na∪b). However, if disks are present
in the complement of Na∪b, then Proposition 12.2 is not true and the
situation becomes difficult.

13. Twists Generating a Free Group

Recall the so-called “Ping Pong Lemma” (see, for example, [2, Lem-
ma 3.15]).

Lemma 13.1. Suppose that a group G acts on a set Y , and Y1, Y2 ⊆ Y
are nonempty and disjoint. Let g1, g2 ∈ G such that for every nonzero
integer k,

gk1 (Y2) ⊆ Y1 and gk2 (Y1) ⊆ Y2.
Then the group generated by g1 and g2 is a free group of rank 2.

Theorem 13.2. Let a and b be two generic two-sided circles in a non-
orientable surface N . If I(a, b) ≥ 2, then the group generated by ta and
tb is isomorphic to the free group of rank 2.
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Proof. If I(a, b) ∈ {2, 3} and Na∪b is orientable, then we can repeat At-
sushi Ishida’s proof [3] without any changes.

Let (Ya, Yb) be equal to (X̂a, X̂b) or (Xa, Xb) or else (X̃a, X̃b), where
the sets X̂a, X̂b, Xa, Xb, X̃a, and X̃b are defined in sections 8, 11, and
12. Observe that Ya and Yb satisfy

Ya ∩ Yb = ∅, a ∈ Ya, b ∈ Yb.
Hence, if I(a, b) ∈ {2, 3} and Na∪b is nonorientable, or I(a, b) ≥ 4,

then the theorem follows from Lemma 13.1 and propositions 10.4, 11.3,
and 12.3. �
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