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ROTATION NUMBERS OF ELEMENTS IN
THOMPSON’S GROUP T

JEFFREY DILLER AND JAN-LI LIN

Abstract. We give a simple combinatorial proof that the rotation
number for each element in Thompson’s group T is rational.

1. Introduction

In 1965, Richard Thompson defined three groups which have furnished
counterexamples to various conjectures in group theory. One of these
T, which will be the subject of this article, is the group of dyadic circle
homeomorphisms f : S1 → S1. That is, if one takes S1 to be the interval
[0, 1] with endpoints identified, then

• f preserves the set of dyadic rational numbers (i.e., numbers of
the form p · 2q, p, q ∈ Z),
• f is linear except at a finite number of dyadic rational points,
• on each interval such that f is linear, the derivative (i.e., slope)

is a power of 2.
For more information on Thompson’s groups, see [5], [9], [10]. (Notice
that the group T is denoted by G in [9] and [10].)

The rotation number [11] of an orientation preserving circle homeomor-
phism f : S1 → S1 is the quantity

ρ(f) = lim
n→∞

f̃n(x)

n
mod Z,
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where f̃ : R → R is any lift of f to the universal cover R, and x ∈ R is
any initial point. Modulo Z, the limit does not depend on the choices of
f̃ and x, and it is an important dynamical invariant for f . In particular,
ρ(f) is rational if and only if f has a periodic point. In 1987, Étienne
Ghys and Vlad Sergiescu [10] proved the following theorem.

Theorem A.

I. For every element f in Thompson’s group T, the rotation number
ρ(f) is rational.

II. For every rational number r, there is an element f ∈T such that
ρ(f) = r mod Z.

However, as Ghys pointed out in [9], their proof is very indirect, and there
is a need for a better proof. Several simpler proofs were given later in
articles by Isabelle Liousse [12] and Danny Calegari [4] and in the thesis
of Francesco Matucci [13]. An approach via revealing pairs, implicit in
[2], was discussed at length during a 2007 Luminy talk by Collin Bleak.
The goal of this paper is to provide another elementary combinatorial
proof of Theorem A. It is similar in many respects to those of Calegari
and Matucci, but ours uses a different description of T as the group of
piecewise linear automorphisms of Z2, and where Calegari uses Thurston’s
notion of a train track, ours uses combinatorial ideas connected with fans,
i.e., partitions of Z2 ⊂ R2 into rational convex cones. Like his proof, ours
provides an effective way to compute rotation numbers for elements in T.

Fans in R2 arise naturally in the study of toric surfaces, and the ele-
ments of T arise, in particular, (see [14], [8]) as “tropicalizations” of plane
birational maps preserving the (C∗)2-invariant two form dx∧dy

xy . The ideas
in this paper descend from our recent work [7, Theorem E] concerning dy-
namics of such maps and an older result of Charles Favre and the first
author [6, Theorem 0.1]. Nevertheless, the presentation here is purely
combinatorial, based on an analysis of how elements of T act on fans and
their refinements, and it makes no appeal to algebraic geometry.

The rest of the paper proceeds as follows. We introduce terminology
and notation associated to cones, fans, and piecewise linear automor-
phisms of Z2 in section 2, concluding with a description of the relation-
ship between piecewise linear automorphisms and dyadic circle homeo-
morphisms. In section 3 we establish a key result (Proposition 3.3) about
decomposing piecewise linear automorphisms. Section 4 then concludes
with the proof of Theorem A.
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2. Piecewise Linear Automorphisms of Z2

Let R+ := {x ∈ R |x ≥ 0} denote the set of non-negative real numbers.
A ray in R2 is a rational one dimensional cone, i.e., a set of the form
τ = R+v for some v ∈ Z2 \ {0}. The first lattice point v ∈ τ ∩ (Z2 \ {0})
is called the generator of τ . We will call one dimensional cones with
(possibly) irrational slope real rays. A sector is a rational two dimensional
cone, i.e., a convex set σ = R+v1+R+v2 for some v1, v2 ∈ Z2\{0} linearly
independent over R. The rays τi = R+vi, i = 1, 2, bounding σ are called
facets of σ. The sector σ is regular if the generators v1 and v2 of the facets
of σ form a basis for Z2, i.e., if |det[v1 v2]| = 1.

A fan ∆ is a set of cones consisting of the zero-dimensional cone {0},
a finite sequence of rays τ0, τ1, · · · , τd given in counterclockwise order,
and the intervening sectors σj bounded by τj−1 and τj , 1 ≤ j ≤ d. The
support of ∆, denoted supp(∆), is the union of all cones in ∆. We assume
throughout that our fans are complete, i.e., the sectors σj in ∆ cover R2

(hence, τ0 = τd). A fan is regular if all its sectors are regular.
A continuous map F : R2 → R2 is piecewise linear if there exists a fan

∆ with sectors σ1, · · · , σd and linear transformations Li : R2 → R2, i =
1, · · · , d such that F |σi = Li|σi for all i = 1, · · · , d. Any fan satisfying the
above condition is said to be compatible with F . The map F is orientation
preserving if and only if each Li is. A piecewise linear automorphism of Z2

is an orientation preserving, piecewise linear homeomorphism F : R2 →
R2 such that F (Z2) = Z2. If F is a piecewise linear automorphism, then
all the maps Li in the definition must have det(Li) = 1, i.e., Li ∈ SL(2,Z).
It follows that if ∆ is a regular fan compatible with F , then the fan F (∆)
obtained by mapping forward all cones in ∆ is also regular, though it is
not necessarily compatible with F .

2.1. Equivalence between realizations of T.

In proving Theorem A we will always think of elements of T as piece-
wise linear automorphisms of Z2. Nevertheless, since T is more commonly
given as the group of dyadic circle homeomorphisms, we digress briefly to
indicate how to translate between the two points of view. Every piecewise
linear homeomorphism F : R2 → R2 induces a circle homeomorphism by
projectivizing. More precisely, F permutes the set R of real rays in R2,
which are parameterized by S1. If, moreover, F restricts to a bijection
Z2 → Z2, then the induced homeomorphism of S1 completely determines
F . It remains to give a homeomorphism φ : R → S1 that conjugates
(the projectivizations of) piecewise linear automorphisms of Z2 to dyadic
circle homeomorphisms. In the following, we will regard S1 as the interval
[0, 1] with endpoints identified and define a map φ : R→ [0, 1].
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This is accomplished locally as follows. Let I = [ a
2k
, a+1

2k
] be a dyadic

standard interval1 and σ ⊂ R2 be a regular sector generated by the (ori-
ented) basis v1, v2 ⊂ Z2. Taking Rσ ⊂ R to be the set of real rays in
σ, we define a homeomorphism φ : Rσ → I as follows, identifying each
rational ray with its generator v ∈ Z2. We first assign facets to endpoints:
φ(v1) = a

2k
and φ(v2) = a+1

2k
. Then we proceed inductively by averaging:

φ(v1 + v2) = 1
2 (φ(v1) + φ(v2)), and more generally, if φ is defined at two

primitive points (i.e., integral points where the two coordinates are co-
prime) v, v′ ∈ σ ∩ Z2 but at no points in the intervening sector, then we
set φ(v+v′) = 1

2 (φ(v)+φ(v′)). We check that this procedure results in an
order-preserving bijection between rational rays in σ and dyadic points in
I which therefore extends to an orientation-preserving homeomorphism
φ : Rσ → I. Note that when I = [0, 1] and σ is the cone generated by
(1, 0) and (1, 1) ∈ R2 with Rσ parameterized by the slope, φ is known as
Minkowski’s question mark function.

One globalizes φ by choosing any partition R2 = σ1 ∪ · · · ∪ σd into
regular sectors and a corresponding partition [0, 1] = I1 ∪ · · · ∪ Id into
standard dyadic intervals and defining φ|Rσj : Rσj → Ij sector-wise as
above.

To see that φ conjugates piecewise linear automorphisms of Z2 to
dyadic circle maps, it suffices to verify the following additional fact. Let
φ : Rσ → I be the “local” version of φ defined above. Let σ′ be another
regular sector, I ′ another standard dyadic interval, and φ′ : Rσ′ → I ′ the
analogous homeomorphism. Then φ′ ◦ F = f ◦ φ, where F ∈ SL(2,Z) is
the unique element such that F (σ) = σ′, and f : R → R is the unique
increasing affine map such that f(I) = I ′.

3. Decomposition of Piecewise Linear Automorphisms
of Z2

A refinement of a fan ∆ is a fan ∆′ with the same support as ∆ and
such that for every cone σ′ ∈ ∆′, there exists σ ∈ ∆ such that σ′ ⊆ σ.
The following lemmas are well known in convex geometry, but we include
the proofs for completeness.

Lemma 3.1. Any fan admits a regular refinement.

Proof. It suffices to prove that any sector σ may be partitioned into reg-
ular sectors. If σ is not regular, then the ray generators u1 and u2 of
its facets must satisfy |det[u1 u2]| ≥ 2. This implies that there must

1A dyadic sub-interval I ⊂ [0, 1] is called standard if it is of the form I = [ a
2k

, a+1
2k

].
For example, the interval [ 1

4
, 1
2
] is dyadic and standard, whereas [ 1

4
, 3
4
] is dyadic but

not standard.
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be at least one primitive point w in the interior of the parallelogram
formed by u1 and u2. The ray R+w divides σ into two new sectors.
Since |det[w ui]| < |det[u1 u2]|, i = 1, 2, we see that finitely many such
subdivisions will result in a partition of σ into regular sectors. �

Let σ ∈ ∆ be a regular sector with its boundary rays generated by
u1, u2 ∈ Z2. Let τ ⊂ σ be the ray generated by some point u ∈ Z2 in the
interior of σ. Then σ \ τ is a union of two disjoint sectors σ1 and σ2. We
check that they are both regular if and only if u = u1 + u2. We then call
the fan ∆′ = (∆ \ {σ}) ∪ {σ1, σ2, τ} the simple split of ∆ at σ. If ∆ is
regular, then so is ∆′. Conversely, we call ∆ the simple merge of ∆′ at
σ1 and σ2.

Lemma 3.2. Suppose that ∆ and ∆′ are regular fans, and ∆′ refines ∆.
Then one can obtain ∆′ from ∆ by a sequence of simple splits.

Proof. We need to consider only the case where ∆ is the fan determined
by a single regular sector σ := R+u+R+v. Working inductively, it suffices
to show that either ∆′ includes the ray τ := R+(u+v) that barycentrically
subdivides σ, or ∆′ = ∆. If τ /∈ ∆′, then we let τ1 = R+(au + bv) and
τ2 = R+(cu+ dv) be the facets of the sector σ′ ∈ ∆′ that contains τ . We
may assume that a > b ≥ 0 and d > c ≥ 0 are all integers. Since σ′ is
regular, we get

1 = ad− bc ≥ (b+ 1)(c+ 1)− bc = b+ c+ 1.

Thus, b = c = 0 and a = d = 1, i.e., σ′ = σ and ∆′ = ∆. �

From now on, F will always denote a piecewise linear automorphism
of Z2. Our proof of Theorem A amounts to carefully analyzing how fans
transform under F . Note that if ∆ is a regular fan compatible with F ,
then the image fan F (∆) := {F (σ) : σ ∈ ∆} is also regular. If ∆′ is
another regular fan, then we say that F is an isomorphism from ∆ to ∆′

if F (∆) = ∆′. Similarly, we say that F is a simple split or a simple merge
of ∆′ if F (∆) is, accordingly, a simple split or a simple merge of ∆′. We
call F a simple map from ∆ to ∆′ if F is of one of these three types.

Regardless, we associate to F a partially defined, “approximate” map
F] : ∆ → ∆′ as follows: For each σ ∈ ∆, we take F]σ to be the smallest
cone in ∆′ containing F (σ). If no single cone in ∆′ contains F (σ), then
we leave F]σ undefined. Hence, F]τ is defined for all rays τ ∈ ∆, although
the image might be a sector or a ray, whereas, for each sector σ ∈ ∆, the
cone F]σ is either another sector or undefined. If G is another piecewise
linear automorphism of Z2 and G] : ∆′ → ∆′′ is an approximate map
of fans, then we have G]F]σ = (G ◦ F )]σ provided that the left side is
defined.
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Proposition 3.3. Let ∆ be a regular fan compatible with F . Then there
is a decomposition F = fn−1 ◦· · ·◦f0 into piecewise linear automorphisms
of Z2 and a corresponding sequence of regular fans ∆0, . . . ,∆n such that

• ∆0 = ∆n = ∆,
• ∆j is compatible with fj for 0 ≤ j ≤ n− 1,
• fj is a simple map from ∆j to ∆j+1.

Proof. First, set f0 = F and ∆1 = F (∆). Lemma 3.1 then gives a regular
common refinement ∆′ of ∆ and F (∆). Then by Lemma 3.2, we know
that we can obtain ∆′ from F (∆) by performing finitely many simple
splits; i.e., we have a sequence

∆
F // ∆1 = F (∆)

id // ∆2
id // · · ·

id // ∆k = ∆′

in which all but the first arrow represents a simple split, and the first
arrow is an isomorphism. Similarly, there is a sequence

∆k = ∆′
id // ∆k+1

id // · · ·

id // ∆n−1
id // ∆ = ∆n

such that each arrow is a simple merge, i = k, · · · , n− 1. Putting the two
sequences together completes the proof. �

4. Proof of Theorem A

We call a cone τ ∈ ∆ deterministic for the approximate self-map F] :
∆→ ∆ if all its approximate forward images (F])

jτ , j ≥ 1, are defined.

Proposition 4.1. For any piecewise linear automorphism F and any fan
∆, there exists a regular refinement ∆′ of ∆ such that ∆′ is regular and
compatible with F , and every ray in ∆′ is deterministic for F] : ∆′ → ∆′.

Proof. Let fj and ∆j be the maps and associated fans in the decom-
position of F from Proposition 3.3. Since ∆0 = ∆n, we may extend
these sequences of maps/fans periodically, e.g., fj := fj mod n for all
j ∈ N. Suppose that there exists a ray τ ∈ ∆ that is not deterministic
for F] : ∆ → ∆. In particular, we know F (∆) 6= ∆, so n ≥ 2. Then
by replacing τ with an approximate forward image, we may assume that
F]τ = σ is a sector and that (F])

kσ is undefined for k ∈ N large enough.
We may refine this observation using the decomposition of F . Namely,

there exist indices i < k ∈ N, and a ray τi ∈ ∆i such that
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(i) σi+1 := fi]τi ∈ ∆i+1 is a sector;
(ii) σj+1 := fj]σj ∈ ∆j+1 is well defined for j = i+ 1, · · · , k − 1, but

fk]σk is not defined;
(iii) i, τi, and k are chosen so that k − i is as small as possible given

the first two conditions.

That is, we attend to the following sequence:

τi ∈ ∆i
fi // σi+1 ∈ ∆i+1

fi+1 // · · ·

fk−1 // σk ∈ ∆k
fk // ∆k+1.

The idea is to inductively refine the fans ∆i+1, · · · ,∆k so that fk becomes
an isomorphism.

Condition (i), together with the fact that fi is simple from ∆i to ∆i+1,
means that τi+1 := fi(τi) is the unique ray that divides σi+1 into two
regular cones. Replacing σi+1 with these two cones and adding the ray
τi+1 to ∆i+1 turns the map fi : ∆i → ∆i+1 into an isomorphism from
∆i to ∆i+1. Note that in this and succeeding steps, we apply the same
refinement to all fans ∆i+`n equivalent mod n to ∆i. Since n ≥ 2 this
does not affect the outcome.

Turning from fi to fi+1, we find two possible cases. If i+ 1 = k, then
fi+1(σi+1) is equal to the union of two adjacent sectors in ∆i+2. Since
the above refinement of ∆i+1 split σi+1 into two regular cones, fi+1 is
now an isomorphism from ∆i+1 to ∆i+2.

Otherwise, i+1 < k. If fi+1 was initially a merge, then there is another
ray τ̃i+1 ∈ ∆i+1 such that fi+1(τ̃i+1) /∈ ∆i+2. However, our minimality
assumption on k− i guarantees that the images fi+1(τ̃i+1) and fi+1(τi+1)
lie in different sectors. Hence, regardless of whether fi+1 is a merge or
not, fi+1(τi+1) divides σi+2 into two regular cones. So, as with ∆i+1, we
can refine ∆i+2 by splitting σi+2 into two regular sectors, the result being
that fi+1 remains a simple map. In this case, we move on to fi+2 and
repeat the process until we reach fk. In the end, fk is improved from a
split to an isomorphism, and maps fj with j 6≡ k mod n remain simple
of the same type as before.

If there remain rays in ∆ = ∆0 that are not deterministic for F], then
we repeat the process. Since there are only finitely many fj (modulo n),
finitely many repetitions lead to a situation in which either all rays in ∆
are deterministic or all fj are isomorphisms. In the latter case, F is itself
an isomorphism from ∆ to ∆, and all rays are deterministic anyhow. �

Finally, we can now prove the first part of Theorem A.
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Proof of Theorem A, part I. Given any piecewise linear automorphism F
of Z2, we first find any fan ∆ such that ∆ is compatible with F . Next,
we find a regular refinement ∆′ of ∆, then ∆′ is still compatible with
F . Finally, we find a further refinement ∆′′ such that every ray in ∆′′

is deterministic for F]. Observing how F acts on the rays and sectors of
∆′′, we see that one of the following will happen:

• There is never a ray mapped into a sector, so rays always map to
rays, and F is permuting the rays. In this case, some iterate of
every ray is going back to itself and F is of finite order.

• There is a ray that maps into a sector. Then σ must be deter-
ministic for F], and (F])

jσ, j ≥ 1, are all defined and are sectors.
Then again, we have finitely many sectors; there must be some
i < j such that (F])

iσ = (F])
jσ. As a consequence, there is a ray

in (F])
iσ that is fixed by F j−i, so the circle map induced by F

has a periodic point.
In either case, the rotation number of F is rational because there is a

periodic point. This completes the proof. �

Remark 4.2. Our proof also gives an algorithm for finding the rotation
number of a piecewise linear automorphism F . First, find a fan ∆ that
is compatible with F . Then find a regular refinement ∆′ of ∆ such that
every ray in ∆′ is deterministic for F]. This can be done effectively by
Lemma 3.1, Lemma 3.2, and Proposition 3.3. Tracing the orbit of each
ray in ∆′, as we did in the above proof, will locate the sectors containing
periodic (real) rays, and this will then give the rotation number of F .

Remark 4.3. We stress here that in the definition of piecewise linear
automorphism, the condition F (Z2) = Z2 is crucial for Theorem A to
hold. If we only require that F (Z2) ⊆ Z2, then it is easy to find a linear
map, e.g., F =

[
4 −3
3 4

]
such that the corresponding circle homeomorphism

has an irrational rotation number.

The second part of Theorem A can be proved by a concrete construc-
tion.

Proof of Theorem A, part II. It suffices to show that for any given integer
n ≥ 3, we can find a piecewise linear automorphism F of Z2 such that
ρ(F ) = 1/n. For each integer n ≥ 3, we can find a regular fan ∆ with n
sectors, say σ0, σ1, · · · , σn = σ0, arranged in the counterclockwise order.
Since each σi is regular, there is a unique Li ∈ SL2(Z) such that Li maps
σi bijectively onto σi+1, i = 0, · · · , n − 1, and maps the lattice points in
σi bijectively onto lattice points in σi+1. Define F as F |σi = Li|σi , i.e., F
is rotating the sectors, sending σi to σi+1. Then F is periodic of period
n, and therefore ρ(F ) = 1/n. �
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