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SOME RESULTS ON THE REPRESENTATION SPACE
AND STRONG TRIODS

ENRIQUE CASTAÑEDA-ALVARADO, NORBERTO ORDOÑEZ,
AND MARCO A. RUIZ

Abstract. The representation space of nondegenerate continua
was studied for the first time by José G. Anaya, et al. (On
representation spaces, Topology Appl. 164 (2014), 1–13). In this
paper we show that the character of the representation space of all
nondegenerate continua is equal to ℵ0. We introduce the concept
of strong triod, which helps us to characterize the interior of the
class of triods in the family of locally connected continua under sur-
jective mappings which is a partial answer to Problem 3.16 in the
above paper. Also, we characterize the interior of the class of triods
under surjective confluent mappings, which answers affirmatively
Problem 4.11(2) in the same paper.

1. Introduction

A continuum is a nonempty compact connected metric space. In [2]
the authors define the closure operator Clα on the set N (where N de-
notes the class of nondegenerated continua and α is a class of mappings
with the composition property, see Definition 2.2), and so the concept of
representation started to be a subject of interest to several authors. In
[1], we find a complete study of some properties of (N , τα); for example,
the authors show that (N , τα) is not a T0 space and its weight is c, but
they only prove that ℵ0 is an upper bound of the character of (N , τα) (see
[1, Theorem 3.2]).
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José G. Anaya, et al. also investigate the problem of characterizing the
interior and closure of some classes of continua. For example, they char-
acterize the interior and closure of the classes of locally connected, hered-
itarily unicoherent, unicoherent, arc-like, and circle-like continua (see [1,
propositions 3.9, 3.10, and 3.11]). However, there are still open prob-
lems about how to characterize the interior and closure of many classes
of continua.

In [5], the authors show that (N , τα) is pathwise connected. They also
show the existence of a continuum L such that its closure in (N , τα) is N
(in other words, the density of (N , τα) is one).

Here we continue with the study of the representation space of continua.
In §2, we describe the topology of (N , τα) and we mention some of its
known properties. In §3, we prove that the character of (N , τα) is equal
to ℵ0. In §4, we introduce the definition of strong triod, and, using
this concept, we characterize the interior of the class of triods for locally
connected continua, which is a partial answer to [1, Problem 3.16]. At
the end of this section, we present some interesting open problems and
conjectures related to the class of strong triods and their relationship to
indecomposable continua. In §5, we characterize the interior of triods
under confluent mappings, thereby answering [1, Problem 4.11(2)].

2. Preliminaries

In this section we describe the topology of the representation space and
we introduce some basic definitions and general results that we are going
to use throughout this paper.

Definition 2.1. Given two topological spaces X and Y and a cover U of
X, we say that a mapping f : X → Y is a U-mapping if there is an open
cover V of Y such that {f−1(V ) : V ∈ V} refines U .

Definition 2.2. Let C be a class of topological spaces and let α be a class
of mappings between elements of C. We say that α has the composition
property if

(1) for every X ∈ C, the identity mapping idX : X → X is in α,
(2) if f : X → Y and g : Y → Z are in α, then g ◦ f is in α.

Definition 2.3. Let C be a class of topological spaces, let P be a subset
of C, and let α be a class of mappings having the composition property.
Given X ∈ C, we write X ∈ Clα(P) if, for every open cover U of X, there
is a space Y ∈ P, and a U-mapping f : X → Y that belongs to α.

Theorem 2.4 ([1, Theorem 2.4]). The operator Clα satisfies the following
Kuratowski axioms of the closure operator:

(1) A ⊂ Clα(A),
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(2) Clα(A) = Clα(Clα(A)),
(3) Clα(A ∪ B) = Clα(A) ∪ Clα(B),
(4) Clα(∅) = ∅.

As a consequence of Theorem 2.4, we have that for every family C of
topological spaces and for every class α of mappings between elements of C
with the composition property, we introduce a topology τα on C generated
by the operator Clα, where open sets in τα are the sets P ⊂ C that satisfy
C − P = Clα(C − P). We denote τα the topology on C generated by α.

Notice that to define the closure operator, we use topological properties
of the considered sets only, so homeomorphic spaces are not distinguish-
able in our topological spaces. Therefore, it is natural to assume that the
set C does not contain two different homeomorphic spaces.

Using the concept of ε-mapping, we give a simpler form to work with
the topology of the representation space.

Definition 2.5. Let X and Y be metric spaces and let f : X → Y be a
surjective mapping. If ε > 0, then f is called an ε-mapping provided that
f is continuous and the diam(f−1(y)) < ε for all y ∈ Y .

Proposition 2.6 ([1, Proposition 2.8]). If X is a metric compact space,
P is a class of topological spaces, and α is a set of mappings, then the
following two conditions are equivalent:

(1) X ∈ Clα(P);
(2) for every ε > 0, there is a space Y ∈ P and an ε-mapping f :

X → Y that belongs to α.

Remark 2.7. Let P be a class of compact metric spaces and let α be any
class of mappings with the composition property. Then by Proposition
2.6, X ∈ intα(P) if and only if there is an ε > 0 such that for each
ε-mapping f : X → Y where f ∈ α, then Y ∈ P.

Lemma 2.8 ([8, Lemma 2.4.20]). Let X and Y be continua and ε <
0. If f : X → Y is an ε-mapping, then there exists δ > 0 such that
diam(f−1(U)) < ε for each subset U of Y with diam(U) < δ.

For the purpose of this article, we will adopt the following symbols:

• N - nondegenerated continua.
• LC - locally connected continua.
• A - surjective mappings.
• F - surjective confluent mappings.
• M - surjective monotone mappings.
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3. The Character of (N , τA)

In [1, Theorem 3.2], the authors investigate the character of the space
(N , τα) and show that it is less than or equal to ℵ0. The purpose of this
section is to show that the character of (N , τA) is equal to ℵ0.

Definition 3.1. The character of a point x in a topological space (X, τ)
is defined as the smallest cardinal number of the form |B(x)|, where B(x)
is a base for (X, τ) at the point x, and is denoted by χ(x, (X, τ)).

The character of a topological space (X, τ) is defined as the supremum
of all numbers χ(x, (X, τ)) for x ∈ X and is denoted by χ((X, τ)).

The next theorem shows an upper bound of χ((N , τA)).

Theorem 3.2 ([1, Theorem 3.2]). If α is any class of mappings with the
composition property, then χ((N , τα)) ≤ ℵ0.

Definition 3.3. Let X be a compactum space. A cover U of X is said
to be essential provided that no proper subfamily of U covers X.

Definition 3.4. Let G be a connected graph. A continuum X has a
G-structure if, for every ε > 0, there are an (essential) cover CG =
{L1, . . . , Ln} of G by connected subgraphs Li and an essential cover
CX = {C1, . . . , Cn} of X by nondegenerated subcontinua Ci satisfying
the following conditions for distinct i, j, k ∈ {1, . . . , n}:

(1) diam(Li) < ε,
(2) Ci ∩ Cj 6= ∅ if and only if Li ∩ Lj 6= ∅,
(3) |Li ∩ Lj | ≤ 1,
(4) Li ∩ Lj ∩ Lk = ∅,
(5) Ci ∩ Cj ∩ Ck = ∅.

Definition 3.5. Let X and Y be continua. We say that X is Y -like if,
for any ε > 0, there exists an ε-mapping f : X → Y .

Theorem 3.6 ([6, Theorem 9]). If X is a locally connected continuum
and G is a connected graph, then X has a G-structure if and only if G is
X-like.

Theorem 3.7 ([6, Theorem 27]). If a space X is Y -like and GX ⊂ X is
a graph (can be non-connected), then there exists a graph GY ⊂ Y such
that GX is GY -like.

In R2, let v = (0, 0) and an = 1
n (cos(

π
n ), sin(

π
n )) for all n ∈ N. If vai

denotes the convex segment from v to ai for all i ∈ N, then we define

Fn =

n⋃
i=1

vai, for all n ∈ N,
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Fω =

∞⋃
i=1

vai.

Notice that
• Fn is a simple n-od, for all n ∈ N (in the classical sense [9, Defi-

nition 9.8]);
• Fω is a dendrite;
• diam(vai) =

1
n , for all n ∈ N.

Since N does not contain two different homeomorphic spaces, in this
section, we are going to suppose that Fω and Fn for all n ∈ N are the
spaces which represent the homeomorphism classes of these spaces.

Lemma 3.8. If n ∈ N, then Fn is not Fn−1-like.

Proof. Let n ∈ N and suppose that Fn is Fn−1-like. Let 0 < ε < 1
n .

By Theorem 3.6, there exist an essential cover CFn = {L1, . . . , Lk} of Fn
by connected subgraphs Li and an essential cover CFn−1 = {C1, . . . , Ck}
of Fn−1 by nondegenerated subcontinua Ci satisfying the following con-
ditions for distinct i, j, l ∈ {1, . . . , k}:

(1) diam(Li) <
1
n ,

(2) Ci ∩ Cj 6= ∅ if and only if Li ∩ Lj 6= ∅,
(3) |Li ∩ Lj | ≤ 1,
(4) Li ∩ Lj ∩ Ll = ∅,
(5) Ci ∩ Cj ∩ Cl = ∅.
Without loss of generality, we can suppose that ai ∈ Li for all i ∈

{1, . . . , n}. Since diam(var) = 1
r for all r ∈ {1, . . . , n}, we have that

Li ⊂ vai − {v} for all i ∈ {1, . . . , n}. Let i ∈ {1, . . . , n}; by (3) and (4),
there exists a unique j0 ∈ {n + 1, . . . , k} such that Li ∩ Lj0 6= ∅, and by
(2), it follows that Ci ∩ Cj 6= ∅ if and only if j = j0; this implies that
there exists t ∈ {1, . . . , n− 1} such that at ∈ Ci.

Let {C1, . . . , Cn}. Since Li ∩Lj = ∅ for all i, j ∈ {1, . . . , n} with i 6= j,
by (2), we have that Ci ∩ Cj = ∅ for all i, j ∈ {1, . . . , n} with i 6= j.
But by the pigeonhole principle, there exists t ∈ {1, . . . , n− 1} such that
at ∈ Ci∩Cj for some i, j ∈ {1, . . . , n} with i 6= j, which is a contradiction.
This ends the proof of this lemma. �

Corollary 3.9. If n,m ∈ N and m < n, then Fn is not Fm-like.

Proof. This is a consequence of Lemma 3.8 �

Lemma 3.10. If n ∈ N, then Fω is not Fn-like.

Proof. Let n ∈ N. Since Fn+1 ⊂ Fω and from the fact that if G is
a subgraph of Fn, then G is homeomorphic to an arc or Fk for some
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k ∈ {1, . . . , n}, by Corollary 3.9, there is no graph G ⊂ Fn such that
Fn+1 is G-like. By Theorem 3.7, we conclude the result. �

Remark 3.11. Let n,m ∈ N with m ≥ n, and let fmn : Fω → Fm be
defined as

fmn (x) =


x if x ∈

⋃m
i=1 vai.

v if x ∈
⋃∞
i=m+1 vai.

It is clear that fmn is a 1
n -mapping.

Proposition 3.12. {Fω} is not an open set in (N , τA).

Proof. It is enough to show that Fω ∈ ClA(N − Fω). Let ε > 0 and let
n,m ∈ N be such that 1

n < ε and m > n. Notice that the mapping fmn :
Fω → Fm as defined in Remark 3.11 is an ε-mapping and by Proposition
2.6, we have that Fω ∈ ClA(N − Fω). �

Let X ∈ N and n ∈ N, we denote
N(X,n) = {f(X) : f ∈ A and f is an 1

n -mapping}
and

NX = {N(X,n) : n ∈ N}.

Lemma 3.13. If X ∈ N , then NX is a local base of X in (N , τA).

Proof. It is clear that X ∈ N(X,n) for each n ∈ N.
We shall prove that N(X,n) is an open set of (N , τA) for all n ∈ N.
It is enough to show that ClA(N − N(X,n)) ⊂ N − N(X,n) for all

n ∈ N. Let n ∈ N and Y ∈ ClA(N − N(X,n)). Suppose that Y ∈
N(X,n); then there exists f : X → Y , a 1

n -mapping with f ∈ A. By
Lemma 2.8, there exists δ > 0 such that if U ⊂ Y with diam(U) < δ,
then diam(f−1(U)) < 1

n . Since Y ∈ ClA(N − N(X,n)), there exist
Z ∈ N −N(X,n) and g : Y → Z, a δ-mapping with g ∈ A. Notice that
g ◦ f : X → Z belongs to A and it is a 1

n -mapping. This shows that
Z ∈ N(X,n), which is a contradiction. Therefore, N(X,n) is an open set
for every n ∈ N.

Now, let U be an open set of (N , τA) such that X ∈ U . We will show
that there exists n ∈ N such that N(X,n) ⊂ U . Suppose that, for every
n ∈ N, there exists fn(X) ∈ N(X,n) − U ; since fn : X → fn(X) is a
1
n -mapping for all n ∈ N, we have that X ∈ ClA(N −U) = N −U , which
is a contradiction. Therefore, there is n ∈ N such that N(X,n) ⊂ U . �

Lemma 3.14. If n ∈ N, then there exists m > n such that N(Fω,m) (
N(Fω, n) and |NFω

| = ℵ0.
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Proof. Let n ∈ N. By Remark 3.11, we have that fnn : Fω → Fn is a
1
n -mapping and so Fn ∈ N(Fω, n). By Lemma 3.10, there exists m > n

such that, for all mapping f : Fω → Fn, we have that f is not a 1
m -

mapping; therefore, Fn 6∈ N(Fω,m). Since m > n, we conclude that
N(Fω,m) ( N(Fω, n) and so |NFω | = ℵ0. �

Theorem 3.15. χ((N , τA)) = ℵ0
Proof. By Theorem 3.2, we have that χ((N , τA)) ≤ ℵ0.

To show the other inequality, we shall prove that χ(Fω, (N , τA)) = ℵ0.
Let β be a local base of Fω in (N , τA) and U1 ∈ β. By Lemma 3.13,
there exists n1 ∈ N such that N(Fω, n1) ⊂ U1, and by Lemma 3.14, there
exists n2 > n1 such that N(Fω, n2) ( N(Fω, n1). Since β is a local base,
we can choose U2 ∈ β such that U2 ⊂ N(Fω, n2). Notice that U1 6= U2.
Continuing with this process, we can obtain β1 = {U1, U2, . . .}, a subset
of β such that Uk 6= Ul for every k, l ∈ N and k 6= l. This shows that
|β| ≥ |NFω

| = ℵ0. Therefore, χ((N , τA)) = ℵ0. �

4. Strong Triods and the intA(T)

For the remainder of the paper, if X is a topological space and A ⊂ X,
then ClX(A) denotes the closure of A in X.

Definition 4.1. A continuum X is called a triod, provided that there is
a subcontinuumM of X such that X−M = K1∪K2∪K3, where Kj 6= ∅
for every j ∈ {1, 2, 3}, and ClX(Ki)∩Kj = ∅ for every j, i ∈ {1, 2, 3} and
j 6= i.

In [1, Problem 3.16], the authors ask the following problem.

Problem 4.2. Characterize the interior of the class of triods under sur-
jective mappings.

In this section we introduce the concept of strong triod and, with the
help of this class of spaces, we give a solution of [1, Problem 3.16] in the
class of locally connected continua.

Definition 4.3. A continuum X is called a strong triod provided that
there exists a subcontinuum Z of X such that X − Z = K1 ∪K2 ∪K3,
where Ki 6= ∅ for every i ∈ {1, 2, 3}, and ClX(Kj)∩ClX(Kl) = ∅ for every
j, l ∈ {1, 2, 3} and j 6= l.

A continuum X is decomposable provided that it can be written as
the union of two of its proper subcontinua. We say X is indecomposable
if it is not decomposable. We say X is hereditarily decomposable (inde-
composable) if each nondegenerate subcontinuum of X is decomposable
(indecomposable).
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Example 4.4. Let X = K1 ∪ K2 ∪ K3, where K1, K2, and K3 are
indecomposable continua, and Ki∩Kj = {p} for every i, j ∈ {1, 2, 3} and
i 6= j. It is easy to verify that X is a triod, but it is not a strong triod.

Throughout this paper
• T denotes the class of the triods.
• TF denotes the class of the strong triods.

Proposition 4.5. Let X be a locally connected continuum. Then X ∈ T
if and only if X ∈ TF .

Proof. We need only to prove that if X ∈ T, then X ∈ TF .
LetX ∈ T; then there exists a subcontinuum Z ofX such thatX−Z =

K1 ∪K2 ∪K3 where Kj 6= ∅ for every j ∈ {1, 2, 3} and ClX(Ki)∩Kj = ∅
for every j, i ∈ {1, 2, 3} and j 6= i.

Let pi ∈ Ki − Z for every i ∈ {1, 2, 3} and let U be an open set of
X such that Z ⊂ U ⊂ ClX(U) ⊂ X − {p1, p2, p3}. Since X is locally
connected, for every x ∈ Z, there is a connected open set Ux of X such
that x ∈ Ux ⊂ U . Let W = ClX(∪{Ux : x ∈ Z}). Notice that W is a
subcontinuum of X and Z ⊂ int(W ). Finally, it is easy to verify that
X−W = (K1−W )∪ (K2−W )∪ (K3−W ), where Ki−W 6= ∅ for every
i ∈ {1, 2, 3}, and ClX(Ki−W )∩ClX(Kj−W ) = ∅ for every i, j ∈ {1, 2, 3}
and i 6= j. �

Theorem 4.6. TF = intA(TF ).

Proof. We need only to prove that TF ⊂ intA(TF ).
Let X ∈ TF . By definition, there exists a subcontinuum Z of X such

that X − Z = K1 ∪ K2 ∪ K3, where Kj 6= ∅ for each j ∈ {1, 2, 3}, and
ClX(Ki) ∩ ClX(Kj) = ∅ for each j, i ∈ {1, 2, 3} and j 6= i. For every
i ∈ {1, 2, 3}, let ki ∈ Ki − Z and let ε > 0 be such that

ε < min{d(ClX(Ki),ClX(Kj)), d(ki, Z) : i, j ∈ {1, 2, 3} and i 6= j}}.

Let Y ∈ N be such that there is an ε-mapping f : X → Y with f ∈ A.
We are going to prove that Y ∈ TF . Since f ∈ A and by the election of
ε, it is easy to verify that

(1) f(Z) is a subcontinuum of Y ,
(2) Y − f(Z) = (f(K1)− Z) ∪ (f(K2)− Z) ∪ (f(K3)− Z), and
(3) f(ki) ∈ f(Ki), for every i ∈ {1, 2, 3}.
Therefore, we need only to prove that ClX(f(Ki)−f(Z))∩ClX(f(Kj)−

f(Z)) = ∅ for every i, j ∈ {1, 2, 3} and i 6= j.
Let i, j ∈ {1, 2, 3} with i 6= j and suppose that there is y ∈ ClX(f(Ki)−

f(Z))∩ClX(f(Kj)−f(Z)). Then there exist sequences {xn}∞n=1 inKi−Z
and {wn}∞n=1 in Kj − Z such that lim f(xn) = y and lim f(wn) = y; and
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we can suppose, without loss of generality, that limxn = x for some
x ∈ ClX(Ki) and limwn = w for some w ∈ ClX(Kj). By continuity of
f , we have that x,w ∈ f−1(y) and so d(x, y) < ε, which contradicts the
election of ε. This shows that Y ∈ TF .

We have shown that there exists ε > 0 such that if f ∈ A and f :
X → Y is an ε-mapping, then Y ∈ TF . By Remark 2.7, we have that
X ∈ intA(TF ). �

Corollary 4.7. TF ⊂ intA(T).

Proof. This follows from Theorem 4.6. �

Corollary 4.8. intA(T ∩ LC) = T ∩ LC.

Proof. This follows directly from Proposition 4.5 and Corollary 4.7. �

To finish this section we are going to present some interesting open
problems and conjectures about the concept of strong triods. In par-
ticular, the following conjecture implies a complete solution to Problem
4.2.

Conjecture 4.9. intA(T) = TF .

Since in locally connected continua the concepts of strong triod and
triod are the same, it is natural to ask for a classification of the triods
in this class of spaces. In this way, the following conjecture will be a
complete classification of triods in locally connected continua.

Conjecture 4.10. Let X be a locally connected continuum. Then X ∈ T
if and only if X is not homeomorphic to any of the following spaces:

(1) I = {(x, 0) ∈ R2 : x ∈ [−1, 1]},
(2) S1 = {(x, y) ∈ R2 : x2 + y2 = 1},
(3) θ = S1 ∪ I,
(4) C = S1 ∪ {(x, 0) ∈ R2 : x ∈ [1, 2]},
(5) W = C ∪ {(x, y) + (3, 0) ∈ R : (x, y) ∈ S1}.

Keeping in mind the structure of strong triods and the examples that
we can construct, we can see that when a continuum is not locally con-
nected, then there exists a very strong relation between containing a de-
composable continuum and being a strong triod but no triod. In this
sense, we present the follow.

Conjecture 4.11. If X ∈ T − TF , then X contains at least two inde-
composable subcontinua.

Problem 4.12. Let X be a hereditarily decomposable continuum. Is it
true that X ∈ T if and only if X ∈ TF ?
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5. Confluent Map

The purpose of this section is to answer affirmatively the following
question.

Problem 5.1 ([1, Problem 4.11(2)]). Is it true that intF (T) = T?

Theorem 5.2. intF (T) = T.

Proof. We need only to prove that T ⊂ intF (T). Let X ∈ T. By defini-
tion, there exists a subcontinuum Z of X such that X−Z = K1∪K2∪K3,
where Ki 6= ∅ for every i ∈ {1, 2, 3, }, and ClX(Ki) ∩ Kj = ∅ for every
i, j ∈ {1, 2, 3} and j 6= i. Let xi ∈ Ki for every i ∈ {1, 2, 3}, and let
ε = min{d(xi, X −Ki) : i ∈ {1, 2, 3}} > 0.

Let Y ∈ N and let f : X → Y be an ε-mapping with f ∈ F . We are
going to show that Y ∈ T.

For every i ∈ {1, 2, 3}, we define Bi = Z ∪Ki.
Claim. f(Bi)∩f(Bj) is a connected subset of Y for every i, j ∈ {1, 2, 3}

and i 6= j.
Proof. Without loss of generality, we are going to prove that f(B1) ∩

f(B2) is a connected subset of Y .
Suppose on the contrary. Then there are two disjoint open subsets V

and W of Y such that f(B1)∩ f(B2) ⊂ V ∪W , (f(B1)∩ f(B2))∩V 6= ∅,
and (f(B1) ∩ f(B2)) ∩W 6= ∅. Since f(Z) is a subcontinuum of Y and
f(Z) ⊂ f(B1)∩ f(B2), we can assume that f(Z) ⊂ V ; therefore, we have
that f−1(f(Z)) ∩ f−1(W ) = ∅ and f−1(W ) ⊂

⋃3
i=1Ki.

We will see that f−1(f(B1)) ⊆ [K1 ∪K3 ∪ f−1(V )] ∪ [f−1(W ) ∩K2].
Let x ∈ f−1(f(B1)) and suppose that x 6∈ K1 ∪K3 ∪ f−1(V ). Therefore,
x ∈ K2, and we have that f(x) ∈ f(B1) ∩ f(B2) and so f(x) ∈ V ∪W .
Since x 6∈ f−1(V ), we obtain that f(x) ∈ W . Thus, x ∈ K2 ∩ f−1(W ).
This shows that f−1(f(B1)) ⊆ [K1 ∪K3 ∪ f−1(V )] ∪ [f−1(W ) ∩K2].

It is clear that [K1 ∪K3 ∪ f−1(V )] ∩ [f−1(W ) ∩K2] = ∅, Z ⊂ [K1 ∪
K3 ∪ f−1(V )], and f−1(f(B1)) ∩ [f−1(W ) ∩K2] 6= ∅.

Let C be a component of f−1(f(B1)) contained in f−1(W )∩K2; then
f(C) ⊂W , which implies that f(C)∩f(Z) = ∅, but this is a contradiction
because f is confluent. Therefore, f(B1) ∩ f(B2) is connected, and this
ends the proof of the claim.

Let Z ′ = [f(B1) ∩ f(B2)] ∪ [f(B1) ∩ f(B3)] ∪ [f(B2) ∩ f(B3)].
Notice that Z ′ is a subcontinuum of Y for which Y −Z ′ =

⋃3
i=1(f(Ki)−

Z ′), where, by the election of ε, we have that f(Ki) − Z ′ 6= ∅ for every
i ∈ {1, 2, 3}.

We shall prove that ClX(f(Ki) − Z ′) ∩ (f(Kj) − Z ′) = ∅ for every
i, j ∈ {1, 2, 3} with i 6= j. Suppose that there is y ∈ ClX(f(Ki) − Z ′) ∩
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(f(Kj) − Z ′) for some i, j ∈ {1, 2, 3} and i 6= j. Then we can choose a
sequence {xn}∞i=1 in Ki − f−1(Z ′) such that lim f(xn) = y; and without
loss of generality, we can suppose that limxn = x for some x ∈ ClX(Ki−
f−1(Z ′)) ⊂ Bi. Notice that y = f(x) ∈ f(Bi). Since y ∈ f(Kj) − Z ′,
there is w ∈ Kj − f−1(Z ′) ⊂ Bj such that f(w) = y, and so y = f(w) ∈
f(Bj). This shows that y ∈ Z ′, which is a contradiction. Therefore,
ClX(f(Ki)− Z ′) ∩ (f(Kj)− Z ′) = ∅, and we conclude that Y ∈ T.

We have shown that there is ε > 0 for which, if Y ∈ N and f : X → Y
is an ε-mapping with f ∈ F , then Y ∈ T. Therefore, by Remark 2.7, we
have that X ∈ intF (T). �

Corollary 5.3. intF (TF ) = TF .

Proof. Since F ⊂ A, the result follows from Theorem 4.6 and [1, Theorem
2.10(5)]. �

Corollary 5.4. The following equalities hold:
(1) intM(T) = T.
(2) intM(TF ) = TF .

Proof. SinceM ⊂ A, the results follow from Theorem 4.6 and [1, Theo-
rem 2.10(5)]. �

References

[1] José G. Anaya, Félix Capulín, Enrique Castañeda-Alvarado, Włodzimierz J.
Charatonik, and Fernando Orozco-Zitli, On representation spaces, Topology Appl.
164 (2014), 1–13.

[2] Jorge Bustamante, Raul Escobedo, and Janusz R. Prajs, On a closure operator for
mappings between compacta. Unpublished. 2004 Spring Topology and Dynamics
Conference March 25-27, 2004. University of Alabama at Birmingham (USA).

[3] Félix Capulín, Raúl Escobedo, Fernando Orozco-Zitli, and Isabel Puga, On ε-
properties in Selected Papers of the 2010 International Conference on Topology
and its Applications. Ed. D. N. Georgiou, S. D. Iliadis, and I. E. Kougiass. Patras,
Greece: Technological Educational Institute of Messolonghi, 2012. 54–70.

[4] Włodzimierz J. Charatonik and Anne Dilks, On self-homeomorphic spaces, Topol-
ogy Appl. 55 (1994), no. 3, 215–238.

[5] Włodzimierz J. Charatonik, Matt Insall, and Janusz R. Prajs, Connectedness of
the representation space for continua, Topology Proc. 40 (2012), 331–336.

[6] Daniel Cichoń, PawełKrupski, and Krzysztof Omiljanowski, Monotone maps, the
likeness relation and G-structures, Topology Appl. 155 (2008), no. 17-18, 2031–
2040.

[7] K. Kuratowski, Topology. Vol. I. New edition, revised and augmented. Translated
from the French by J. Jaworowski. New York-London: Academic Press; Warsaw:
PWN, 1966.

[8] Sergio Macías, Topics on Continua. Boca Raton, FL: Chapman & Hall/CRC,
2005.



248 E. CASTAÑEDA, N. ORDOÑEZ, AND M. A. RUIZ

[9] Sam B. Nadler, Jr. Continuum Theory. An Introduction. Monographs and Text-
books in Pure and Applied Mathematics, Vol. 158. New York: Marcel Dekker,
Inc., 1992.

Universidad Autónoma del Estado de México; Facultad de Ciencias, In-
stituto Literario 100, Col. Centro, C.P. 50000, Toluca, Estado de México;
México.

E-mail address, Castañeda: eca@uaemex.mx

E-mail address, Ordoñez: nordonezr@uaemex.mx

E-mail address, Ruiz: debianacol@gmail.com




