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A NEW ASPECT OF SPACES OF
COUNTABLE PSEUDOCHARACTER

VLADIMIR V. TKACHUK

Abstract. We introduce and study the spaces with κ-represen-
tative families of pseudo-networks for any infinite cardinal κ. We
show that the respective classes are invariant under arbitrary sub-
spaces, countable products, and lifted by condensations. Further-
more, the class of spaces with κ-representative families of pseudo-
networks is preserved by σ-products. It turns out that every space
of countable pseudocharacter has a representative family of pseudo-
networks. If X is a subspace of an ordinal, then X has an ω-
representative family of pseudo-networks. We also establish that if
a spaceX has a representative family of countable pseudo-networks,
then L(X) · ψ(X) ≤ ω implies that |X| ≤ c. This fact is new for
monotonically monolithic spaces; in addition, it generalizes the re-
spective results for spaces of countable tightness, monotonically
normal spaces, and spaces of countable Hausdorff pseudocharacter.

1. Introduction

If X is a topological space, and A ⊂ X, then the set A can be much
larger than A so any method of analyzing the properties of A could be
useful for understanding the behavior of the topology of X. It is probable
that A. V. Arhangel’skǐı had this idea in mind when he discovered the
class of monolithic spaces (see [3]). Recall that, for an infinite cardinal κ,
a space X is called κ-monolithic if nw(A) ≤ κ for every set A ⊂ X with
|A| ≤ κ. The space X is monolithic if it is κ-monolithic for any infinite
cardinal κ.
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264 V. V. TKACHUK

One cannot avoid dealing with monolithic spaces if function spaces or
compact spaces from functional analysis are under consideration. Not-
ing that many important classes of spaces have some stronger versions
of monolithity, V. V. Tkachuk introduced in [16] the class of monotoni-
cally monolithic spaces and proved that every subspace of a monotonically
monolithic space must have the D-property. The class of monotonically
monolithic spaces turned out to be reasonably large and with many nice
categorical properties. It was also proved in [16] that Cp(X) is mono-
tonically monolithic for any Lindelöf Σ-space X; this gave another good
reason to study monotonically monolithic spaces.

Later, monotone κ-monolithity was introduced in [1] for any infinite
cardinal κ. One of the results of [1] states that monotone κ-monolithity
is preserved by countable products and σ-products.

Gary Gruenhage proved in [9] that every monotonically ω-monolithic
compact space must be Corson compact and gave an example of a Cor-
son compact space that fails to be monotonically ω-monolithic. Tkachuk
showed in [17] that a monotonically monolithic compact space is not nec-
essarily Gul’ko compact. This great variety of applications that popped
up after monotonically monolithic spaces were introduced produced a sta-
ble interest in possible modifications and implications of monotone mono-
lithity.

In particular, Liang-Xue Peng defined in [12] the concept of weak mono-
tone monolithity and introduced semi-monotonically monolithic spaces in
[13]. He studied the general properties of these two notions and their
relationship with the D-property.

In [18], Tkachuk introduced the concept of κ-monotone pseudobase
assignment and κ-monotone pseudo-network assignment for any infinite
cardinal κ; these notions are obtained by replacing bases with pseudobases
and networks with closed pseudo-networks in the definition of monotone
monolithity.

The spaces from these new classes need not be κ-monolithic, but they
still keep a lot of properties of monotonically monolithic spaces. It was
proved in [18] that the classes of spaces with a κ-monotone pseudo-
network assignment are invariant under subspaces, countable products
and σ-products; in addition, they are inverse invariants for condensa-
tions. It was also established that a countably compact space X with
an ω-monotone pseudobase assignment is compact and metrizable. If a
countably compact space X has an ω-monotone pseudo-network assign-
ment, then X is monotonically monolithic and hence Corson compact.
In Lindelöf Σ-spaces, having a κ-monotone pseudo-network assignment is
equivalent to being monotonically κ-monolithic.
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In this paper we introduce the notion of representative families of
pseudo-networks in topological spaces. The class of spaces with such
a family is obtained if we omit closedness of pseudo-networks in the def-
inition of the monotone pseudo-network assignments. This gives a much
broader class which still has nice categorical properties. We prove that
any space of countable pseudocharacter has a representative family of
pseudo-networks and any subspace of an ordinal has an ω-representative
family of pseudo-networks. The class of spaces with a representative fam-
ily of pseudo-networks is invariant under subspaces, countable products,
and σ-products; in addition, it is inversely invariant under condensations.

We also show that a Lindelöf space of countable pseudocharacter with
a representative family of countable pseudo-networks has cardinality at
most 2ω; this generalizes practically all known positive answers to a fa-
mous question of Arhangel’skĭı and gives a new result for monotonically
monolithic spaces.

2. Notation and Terminology

All spaces are assumed to be Tychonoff. Given a space X, the family
τ(X) is its topology and τ(x,X) = {U ∈ τ(X) : x ∈ U} for all x ∈ X;
given any set A ⊂ X, let τ(A,X) = {U ∈ τ(X) : A ⊂ U}. If X is
a set, then exp(X) = {Y : Y ⊂ X}; we will also need the subfamilies
[X]<κ = {Y ∈ exp(X) : |Y | < κ} and [X]≤κ = {Y ∈ exp(X) : |Y | ≤ κ}
of exp(X) for any cardinal κ.

Say that a family F of subsets of a space X is a network in X if, for
any U ∈ τ(X), there exists F ′ ⊂ F such that U =

∪
F ′. The cardinal

nw(X) = min{|F| : F is a network of X} is called the network weight of
X.

A family G of subsets of X is called a network (base) at a point x ∈ X
if (G ⊂ τ(X) and) for any U ∈ τ(x,X) there exists G ∈ G such that
x ∈ G ⊂ U . Given a set A in a space X say that a family N of subsets of
X is an external network (base) of A in X if (all elements of N are open
in X and) N is a network at every x ∈ A.

As usual, R is the real line with its natural topology. Every ordinal is
identified with the set of its predecessors and carries the interval topology.

Suppose that κ is an infinite cardinal and we have sets X and Y . Given
a family A ⊂ exp(X), a family B ⊂ exp(Y ), and a map φ : A → B, say
that φ is κ-monotone if

(a) |φ(A)| ≤ |A| · ω whenever A ∈ A and |A| ≤ κ;
(b) if A,B ∈ A and A ⊂ B, then φ(A) ⊂ φ(B);
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(c) if λ ≤ κ is a cardinal, {Aα : α < λ} ⊂ A is a family such that
Aα ⊂ Aβ whenever α < β, and A =

∪
α<λAα ∈ A, then φ(A) =∪

α<λ φ(Aα).

For an infinite cardinal κ, say that a space X is monotonically κ-
monolithic if, to any set A ⊂ X with |A| ≤ κ, we can assign an external
network O(A) of the set A in such a way that the assignment O is κ-
monotone. A space X is monotonically monolithic if it is monotonically
κ-monolithic for any infinite cardinal κ.

Given a space X say that a family N is a pseudo-network (pseudobase)
at a point x ∈ X if (N ⊂ τ(X) and) {x} =

∩
N . The family N is a

pseudo-network (pseudobase) in X if, for any x ∈ X, it contains a pseudo-
network (pseudobase) at x. If x ∈ X, then ψ(x,X) is the minimal infinite
cardinal κ such that there exists a pseudobase at x of cardinality κ; also,
the cardinal ψ(X) = sup{ψ(x,X) : x ∈ X} is called the pseudocharacter
of X. We use the Russian term condensation for a continuous bijection.
A space X condenses onto a space Y if there exists a condensation f :
X → Y .

The Lindelöf number of X is L(X) = min{κ : every open cover of
X has a subcover of cardinality ≤ κ} + ω. The tightness at a point
x ∈ X is the cardinal t(x,X) = min{κ : for every Y ⊂ X with x ∈ Y ,
there is A ⊂ Y with |A| ≤ κ and x ∈ A} and the tightness of X is
t(X) = sup{t(x,X) : x ∈ X}+ ω.

If X is a space, then a map N : X → τ(X) is called a neighborhood
assignment if x ∈ N(x) for any x ∈ X. Say that X is a D-space if,
for every neighborhood assignment N : X → τ(X), there exists a closed
discrete set D ⊂ X such that

∪
{N(x) : x ∈ D} = X.

Given an infinite cardinal κ, a space X has a κ-monotone pseudo-
network (pseudobase) assignment if, to any finite set K ⊂ X, we can
assign a countable family O(K) of closed (open) subsets of X in such a
way that for any set A ⊂ X with |A| ≤ κ, if x ∈ A, then the family∪
{O(K) : K ∈ [A]<ω} contains a pseudo-network (pseudobase) at the

point x.
The unexplained topological notions can be found in [6]; R. Hodel’s

survey in [10] covers everything that is necessary for dealing with cardinal
invariants.

3. Representative Families of Pseudo-Networks

We will show that the answer to Arhangel’skĭı’s question about the
cardinality of Lindelöf spaces of countable pseudocharacter is positive for
spaces that have several kinds of monotone properties.



SPACES OF COUNTABLE PSEUDOCHARACTER 267

Definition 3.1. Say that a family B of subsets of a space X is an external
(closed) pseudo-network for a set Y ⊂ X if (all elements of B are closed in
X and), for any y ∈ Y , there exists a subfamily B′ ⊂ B with {y} =

∩
B′.

Definition 3.2. Given a space X and an infinite cardinal κ, say that
a collection M = {N (K) : K ∈ [X]<ω} is a κ-representative family of
pseudo-networks in X if every N (K) ⊂ exp(X) is countable and for any
set A ⊂ X with |A| ≤ κ, the family {N (K) : K ∈ [A]<ω} is an external
pseudo-network for A. The collection M is a representative family of
pseudo-networks in X if it is a κ-representative family of pseudo-networks
in X for any infinite cardinal κ.

Proposition 3.3. If a space X has a κ-monotone pseudo-network assign-
ment, then X has a κ-representative family of pseudo-networks. In par-
ticular, if X is monotonically κ-monolithic, then X has a κ-representative
family of pseudo-networks.

Proof. Just observe that a space X has a κ-monotone pseudo-network as-
signment if and only if it has a κ-representative family of closed pseudo-
networks. To finish the proof, note that monotone κ-monolithity of X
implies that X has a κ-monotone pseudo-network assignment by [18,
Proposition 3.12]. �

We omit an easy proof of the following fact because it can be carried
out by repeating the respective reasoning in [18].

Proposition 3.4. Given an infinite cardinal κ, a space X has a κ-
representative family of pseudo-networks if and only if, for any set A ⊂ X
with |A| ≤ κ, there exists a family N (A) of subsets of X such that N (A) is
an external pseudo-network for the set A and the assignment A→ N (A)
is κ-monotone.

If X is a space and F ⊂ exp(X), then a family U ⊂ τ(X) is called
an open expansion of F if U = {U(F ) : F ∈ F} and F ⊂ U(F ) for each
F ∈ F .

Proposition 3.5. (a) Every space with a countable pseudo-network
has a representative family of pseudo-networks;

(b) if X is a space and |X| ≤ c, then X has a representative family
of pseudo-networks;

(c) if X is a space and some pseudo-network P of X has a point-
countable open expansion, then X has a representative family of
pseudo-networks.

Proof. (a) If there exists a countable pseudo-network P in a space X,
then letting N (K) = P for any finite K ⊂ X, we obtain a representative
family of pseudo-networks in X.
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(b) Take a second countable topology µ on the space X. If P is a
countable base of (X,µ), then P is easily seen to be a pseudo-network
in X, so we can apply (a) to see that X has a representative family of
pseudo-networks.

(c) Consider a point-countable open expansion {O(P ) : P ∈ P} of the
pseudo-network P. Let N (K) = {P ∈ P : O(P ) ∩ K ̸= ∅}; it is clear
that the family N (K) ⊂ exp(X) is countable for every finite K ⊂ X. If
A ⊂ X and x ∈ A, then take any point y ̸= x. There exists P ∈ P such
that x ∈ P and y /∈ P . Pick any point a ∈ A ∩ O(P ); then P ∈ N ({a})
witnesses the fact that the family {N (K) : K ∈ [X]<ω} is a representative
family of pseudo-networks in X. �

Proposition 3.6. If a space X has an ω-representative family of pseudo-
networks, then |A| ≤ c for any countable set A ⊂ X.

Proof. Fix an ω-representative family {N (K) : K ∈ [X]<ω} of pseudo-
networks in X. If A ⊂ X is a countable set, then P =

∪
{N (K) : K ∈

[A]<ω} is a countable external pseudo-network of A. This implies that
the assignment x→ {P ∈ P : x ∈ P} is an injection from A to exp(P) so
|A| ≤ 2|P| ≤ c. �

Proposition 3.7. Assume that κ is an infinite cardinal and a space X
has a κ-representative family of pseudo-networks. Then

(a) every Y ⊂ X has a κ-representative family of pseudo-networks;
(b) if g : Z → X is a condensation, then Z has a κ-representative

family of pseudo-networks.

Proof. If N : [X]<ω → [X]≤ω is an operator that witnesses the exis-
tence of a κ-representative family of pseudo-networks in X, then letting
N ′(K) = {F ∩ Y : F ∈ N (K)} for any finite K ⊂ Y , we obtain an oper-
ator that witnesses the existence of a κ-representative family of pseudo-
networks in Y ; this proves (a).

To settle (b), let NZ(K) = {g−1(F ) : F ∈ N (g(K))} for any finite set
K ⊂ Z. It is standard to verify that NZ is an operator that guarantees
the existence of a κ-representative family of pseudo-networks in Z. �

Proposition 3.8. Given an infinite cardinal κ, suppose that X is a space
such that t(X) ≤ κ. Then X has a κ-representative family of pseudo-
networks if and only if X has a representative family of pseudo-networks.

Proof. Let P denote the fact of existence of a representative family of
pseudo-networks in X and denote by Pκ its respective κ-version. Fix an
operator N : [X]<ω → [X]≤ω that witnesses Pκ and take an arbitrary
set A ⊂ X. If x ∈ A and y ̸= x, then we can find a set B ⊂ A such
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that |B| ≤ κ and x ∈ B. Since N witnesses Pκ, we can find a finite set
K ⊂ B for which x ∈ F ̸∋ y for some F ∈ N (K). Therefore, the family∪
{N (K) : K ∈ [A]<ω} is an external pseudo-network for the set A; i.e.,

N also witnesses P. �

Theorem 3.9. For any infinite cardinal κ, if Xn has a κ-representative
family of pseudo-networks for every n ∈ ω, then the space X =

∏
n∈ωXn

also has a κ-representative family of pseudo-networks.

Proof. Let Pκ denote the fact of existence of a κ-representative family of
pseudo-networks in X. Denote by pn the projection of the space X onto
Xn and take an operator On that witnesses the property Pκ in the space
Xn for each n ∈ ω. Given a finite set K ⊂ X, let O(K) = {p−1

n (F ) : n ∈ ω
and F ∈ On(pn(K))}. It is clear that O(K) is a countable family of
subsets of X.

To see that O witnesses the property Pκ in X, take a set A ⊂ X with
|A| ≤ κ and let An = pn(A) for any n ∈ ω. If x ∈ A and y ̸= x, then there
exists n ∈ ω such that x(n) ̸= y(n); since x(n) ∈ An, we can find a finite
set Q ⊂ An such that x(n) ∈ F ̸∋ y(n) for some F ∈ On(Q). Take a finite
set K ⊂ A such that Q = pn(K) and observe that G = p−1

n (F ) ∈ O(K).
Since also x ∈ G ̸∋ y, we proved that O witnesses the property Pκ in
X. �

Theorem 3.10. Given an infinite cardinal κ, every σ-product of spaces
with a κ-representative family of pseudo-networks has a κ-representative
family of pseudo-networks.

Proof. Suppose that a space Xt has a κ-representative family of pseudo-
networks for every t ∈ T and fix a point a ∈ X =

∏
{Xt : t ∈ T}. We

must prove that the σ-product Y = {x ∈ X : |{t ∈ T : x(t) ̸= a(t)}| < ω}
also has a κ-representative family of pseudo-networks.

For each t ∈ T , let pt : Y → Xt be the projection and choose an oper-
ator Ot : [Xt]

<ω → [Xt]
≤ω witnessing the existence of a κ-representative

family of pseudo-networks in the space Xt. There is no loss of generality
to assume that Xt ∈ Ot(K) ⊂ Ot(L) for any finite subsets K and L of
the space Xt such that K ⊂ L. For every x ∈ Y , denote by supp(x) the
set {t ∈ T : x(t) ̸= a(t)}. Given a set S ⊂ T , we will need the point
aS ∈

∏
t∈S Xt defined by aS(t) = a(t) for any t ∈ S.

For any finite set K ⊂ Y , let S =
∪
{supp(x) : x ∈ K} and consider

the family H(K,S′) = {(
∏

t∈S′ Pt) × {aT\S′} : Pt ∈ Ot(pt(K)) for every
t ∈ S′} for any S′ ⊂ S; letting O(K) = {{a}} ∪

∪
{H(K,S′) : S′ ⊂ S},

we assign a countable family of subsets of Y to any finite set K ⊂ Y .
To see that O is an operator that witnesses the existence of a κ-

representative family of pseudo-networks in Y , take any set A ⊂ Y with
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|A| ≤ κ, a point x ∈ A, and y ∈ Y \{x}. Since {a} ∈ O(K) for any
finite K ⊂ Y , we can assume that x ̸= a, and hence the set supp(x) is
non-empty. It is easy to see that supp(x) ⊂ S =

∪
{supp(z) : z ∈ A}.

There exists an index t ∈ T such that x(t) ̸= y(t). It follows from
x(t) ∈ pt(A) that there exists a finite set K ⊂ A such that supp(x) ⊂ K
and x(t) ∈ F ̸∋ y(t) for some set F ∈ Ot(pt(K)).

If t ∈ S, then let Fs = Xs for every s ∈ supp(x)\{t}; it is immediate
that the set P = F ×

∏
{Fs : s ∈ supp(x)\{t}} × {aT\supp(x)} belongs to

O(K), so it follows from the inclusions x ∈ P ⊂ Y \{y} that the family∪
{O(L) : L ∈ [A]<ω} separates x from y.
Now, if t /∈ S, then let Fs = Xs for any s ∈ supp(x). As before, the set

P =
∏
{Fs : s ∈ supp(x)} × {aT\supp(x)} belongs to O(K) and it follows

from x ∈ P ⊂ Y \{y} that the family
∪
{O(L) : L ∈ [A]<ω} separates x

from y. �

Theorem 3.11. Any space of countable pseudocharacter has a represen-
tative family of pseudo-networks.

Proof. Choose a pseudobase Bx = {Ux
n : n < ω} at the point x such that

cl(Ux
n+1) ⊂ Ux

n for all x ∈ X and n ∈ ω. For every x ∈ X and n ∈ ω,
consider the set Gx

n = {y ∈ X : x ∈ Uy
n}; if K ⊂ X is a finite set, then

the family N (K) = {Gx
n : x ∈ K and n < ω} is countable. We will prove

that the operator N gives us a representative family of pseudo-networks
in X.

Take any set A ⊂ X and a point x ∈ A. If y ̸= x, then there
exists a number n ∈ ω such that x /∈ cl(Uy

n). There exists a point
z ∈ (Ux

n\cl(Uy
n)) ∩ A. Then x ∈ Gz

n and y /∈ Gz
n while Gz

n ∈
∪
{N (K) :

K ∈ [A]<ω}. Therefore, the family
∪
{N (K) : K ∈ [A]<ω} is an external

pseudo-network for A. �

Theorem 3.12. Any subspace of an ordinal has an ω-representative fam-
ily of pseudo-networks.

Proof. It follows from Proposition 3.7 that it suffices to prove our theorem
for ordinals, so fix an ordinal µ and denote by L the set of ω-cofinal non-
isolated elements of µ. For any α ∈ L, let Sα = {ξαn : n ∈ ω} be a
strictly increasing sequence converging to α and denote by Iαn the set
{β ∈ µ : ξαn < β ≤ α} for every n ∈ ω. For any ordinal β ∈ µ, let
Gβ = {{β}} ∪ {Gβ

n : n ∈ ω} where Gβ
n = {α ∈ L : β ∈ Iαn } for each n ∈ ω.

If K ⊂ µ is a finite set, then let N (K) =
∪
{Gβ : β ∈ K}.

To see that the operator N gives us an ω-representative family of
pseudo-networks take any countable set A ⊂ µ and α ∈ A. If α ∈ A,
then the set {α} belongs to

∪
{N (K) : K ∈ [A]<ω} and separates α from

any other point of µ.
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If α ∈ A\A, then α ∈ L; take any point β ̸= α. If β /∈ L, then pick a
point γ ∈ A ∩ Iα0 . Then α ∈ Gγ

0 and β /∈ Gγ
0 , so the set Gγ

0 ∈
∪
{N (K) :

K ∈ [A]<ω} separates α from β.
If β ∈ L, then it is easy to find n ∈ ω such that the sets Iαn and Iβn are

disjoint. Pick a point γ ∈ A ∩ Iαn and observe that α ∈ Gγ
n, but β /∈ Gγ

n,
so the set Gγ

n ∈
∪
{N (K) : K ∈ [A]<ω} separates α from β. �

Example 3.13. It follows from Proposition 3.6 that the space βω does
not have an ω-representative family of pseudo-networks because it is sep-
arable and has cardinality greater than c.

Example 3.14. The ordinal ω1 with its interval topology is a first count-
able space so it has a representative family of pseudo-networks by The-
orem 3.11. However, it does not have an ω-monotone pseudo-network
assignment because it is a countably compact non-compact space (see
[18, Theorem 3.19]).

Example 3.15. Countable tightness of a compact space X is not suffi-
cient for having an ω-representative family of pseudo-networks, at least
consistently, because under V = L, V. V. Fedorchuk [8] constructed an
example of a hereditarily separable compact space X such that |X| > c. It
follows from Proposition 3.6 that X is a compact space of countable tight-
ness that does not have an ω-representative family of pseudo-networks.

Since Theorem 3.11 gives new information about spaces of countable
pseudocharacter, it is a must to find out what it can contribute to a
solution of the famous problem of Arhangel’skĭı on whether any space X
with L(X) ·ψ(X) ≤ ω must have cardinality at most c. There are several
consistent counterexamples, but the only one that does not use forcing
was recently constructed by Alan Dow in [5]. We will show that inside a
natural subclass of spaces with representative pseudo-networks, we have
a positive answer to Arhangel’skĭı’s problem.

Definition 3.16. Given an infinite cardinal κ, we will say that a space
X has a κ-representative family of countable pseudo-networks if, to any
finite set K ⊂ X, we can assign a countable family N (K) of subsets of
X such that, for any A ⊂ X with |A| ≤ κ, if x ∈ A, then there exists
a countable family A ⊂

∪
{N (K) : K ∈ [A]<ω} such that

∩
A = {x}.

The space X has a representative family of countable pseudo-networks if
it has a κ-representative family of countable pseudo-networks for every
infinite cardinal κ.

Proposition 3.17. If X is a space such that t(X) · ψ(X) ≤ ω, then X
has a representative family of countable pseudo-networks.
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Proof. Choose a pseudobase Bx = {Ux
n : n < ω} at the point x such that

cl(Ux
n+1) ⊂ Ux

n for all x ∈ X and n ∈ ω. For every x ∈ X and n ∈ ω,
consider the set Gx

n = {y ∈ X : x ∈ Uy
n}; if K ⊂ X is a finite set, then

the family N (K) = {Gx
n : x ∈ K and n < ω} is countable. We will

prove that the operator N gives us a representative family of countable
pseudo-networks in X.

Take any set A ⊂ X and a point x ∈ A. There exists a countable set
B ⊂ A such that x ∈ B. If y ̸= x, then there exists a number n ∈ ω such
that x /∈ cl(Uy

n). There exists a point z ∈ (Ux
n\cl(Uy

n))∩B. Then x ∈ Gz
n

and y /∈ Gz
n, while Gz

n ∈
∪
{N (K) : K ∈ [B]<ω}. Therefore, the family∪

{N (K) : K ∈ [B]<ω} is a countable external pseudo-network for A. �
Recall that a space X is said to have a countable Hausdorff pseudochar-

acter if, for every x ∈ X, we can find a countable pseudobase Bx at the
point x such that, for any distinct x, y ∈ X, there exist U ∈ Bx and
V ∈ By such that U ∩ V = ∅.
Proposition 3.18. If X is a space of countable Hausdorff pseudochar-
acter, then X has a representative family of countable pseudo-networks.

Proof. For every x ∈ X, take a pseudobase Bx = {Ux
n : n ∈ ω} at the

point x such that Ux
n+1 ⊂ Ux

n for all n ∈ ω and the family {Bx : x ∈ X}
witnesses that X has countable Hausdorff pseudocharacter.

For every x ∈ X and n ∈ ω, consider the set Gx
n = {y ∈ X : x ∈ Uy

n};
if K ⊂ X is a finite set, then the family N (K) = {Gx

n : x ∈ K and n < ω}
is countable. We will prove that the operator N gives us a representative
family of countable pseudo-networks in X.

Take any set A ⊂ X and x ∈ A. Pick a point an ∈ A ∩ Ux
n for every

n ∈ ω. The family G = {Gan

k : n, k ∈ ω} ⊂
∪
{N (K) : K ∈ [A]<ω} is

countable. Take any y ∈ X\{x} and observe that there exists m ∈ ω such
that Uy

m ∩ Ux
m = ∅. It follows from am ∈ Ux

m\Uy
m that x ∈ Gam

m ∈ G and
y /∈ Gam

m ; i.e., we proved that G contains a pseudo-network at the point
x. �

It is easy to see that any first countable space has a countable Hausdorff
pseudocharacter so we have the following fact.

Corollary 3.19. Any first countable space has a representative family of
countable pseudo-networks.

Recall that a space X is monotonically normal if there exists a map

G : {(x,U) : x ∈ U ∈ τ(X)} → τ(X)

such that x ∈ G(x,U) for every x ∈ X and G(x, U)∩G(y, V ) ̸= ∅ implies
that y ∈ U or x ∈ V . It is an immediate consequence of the definition of
the operator G that G(x,U) ⊂ U .
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Corollary 3.20. If X is a monotonically normal space and ψ(X) ≤ ω,
then X has a representative family of countable pseudo-networks.

Proof. For every x ∈ X, fix a countable pseudobase Bx at the point x ∈ X
and let G be an operator that witnesses monotone normality of X. It is
clear that Cx = {G(x,U) : U ∈ Bx} is also a pseudobase at x for each
x ∈ X. Given distinct x, y ∈ X, take U ∈ Bx and V ∈ By such that x /∈ V
and y /∈ U ; then G(x,U) ∩ G(y, V ) = ∅. This shows that the collection
{Cx : x ∈ X} witnesses countable Hausdorff pseudocharacter of X, so we
can apply Proposition 3.18 to see that X has a representative family of
countable pseudo-networks. �

Theorem 3.21. For any infinite cardinal κ, if L(X) · ψ(X) ≤ ω and
the space X has a κ-monotone pseudo-network assignment, then X has a
κ-representative family of countable pseudo-networks.

Proof. For any finite K ⊂ X, fix a countable family N (K) of closed
subsets of X such that {N (K) : K ∈ [X]<ω} is a κ-representative family
of pseudo-networks. If x ∈ A for some A ⊂ X such that |A| ≤ κ, then
take a family F ⊂ {N (K) : K ∈ [A]<ω} such that

∩
F = {x}. There

exists a sequence {Un : n ∈ ω} ⊂ τ(x,X) such that
∩

n∈ω Un = {x}.
Given any n ∈ ω, the Lindelöf property of X\Un, together with the

fact that
∩

F = {x} ⊂ Un, implies that there exists a countable family
Fn ⊂ F such that

∩
F ⊂ Un. Therefore, F ′ =

∪
n∈ω Fn is a countable

pseudo-network at x contained in {N (K) : K ∈ [A]<ω}. �

Theorem 3.22. Given a space X, suppose that L(X) ·ψ(X) ≤ ω and X
has a c-representative family of countable pseudo-networks. Then |X| ≤ c.

Proof. Fix an operator N that provides a c-representative family of count-
able pseudo-networks in X. For every x ∈ X, take a countable family
Bx ⊂ τ(x,X) such that {x} =

∩
Bx. Pick a point x0 ∈ X arbitrarily

and let F0 = {x0}. Proceeding inductively, assume that β < ω1 and we
have constructed subsets {Fα : α < β} of the space X with the following
properties:
(1) |Fα| ≤ 2ω for each α < β;
(2) Fα ⊂ Fγ whenever α < γ < β;
(3) if γ < β and U ⊂

∪
{Bx : x ∈

∪
α<γ Fα} is a countable family such

that X\
∪
U ≠ ∅, then Fγ\

∪
U ̸= ∅;

(4) if γ < β and, for some countable family F ⊂
∪
{N (B) : B ∈

[
∪

α<γ Fα]
<ω}, we have F =

∩
F ̸= ∅, then Fγ ∩ F ̸= ∅.

The cardinality of the set F ′
β =

∪
α<β Fα does not exceed 2ω, and hence

the cardinality of the family A = {V ⊂
∪
{Bx : x ∈ F ′

β} : |V| ≤ ω and
X\

∪
V ̸= ∅} is at most 2ω; choose a point x(V) ∈ X\

∪
V for any V ∈ A.



274 V. V. TKACHUK

The family B = {G : G ⊂
∪
{N (B) : B ∈ [F ′

β ]
<ω}, |G| ≤ ω and

∩
G ̸= ∅}

has cardinality at most 2ω; take a point y(G) ∈
∩
G for any G ∈ B. If we

let
Fβ = F ′

β ∪ {x(V) : V ∈ A} ∪ {y(G) : G ∈ B},
then it is immediate that the conditions (1)–(4) are still satisfied for all
α ≤ β, so our inductive procedure can be continued to construct a family
{Fβ : β < ω1} such that (1)–(4) hold for all β < ω1.

It follows from property (1) that the set F =
∪

β<ω1
Fβ has cardinality

not exceeding 2ω, so it suffices to prove that F = X. Our first step
is to show that F is closed in X. Striving for a contradiction, assume
that z ∈ F\F . Since {N (K) : K ∈ [X]<ω} is a c-representative family of
countable pseudo-networks, we can find a countable family G ⊂

∪
{N (B) :

B ∈ [F ]<ω} such that {z} =
∩
G. There exists an ordinal β < ω1 such

that G ⊂
∪
{N (B) : B ∈ [Fβ ]

<ω}; property (4) shows that Fβ+1∩
∩
G ̸= ∅,

and therefore z ∈ Fβ+1 ⊂ F , which is a contradiction. Therefore, the set
F is closed in X.

Finally, assume that F ̸= X, and hence we can take a point q ∈ X\F .
For every z ∈ F , pick a set Vz ∈ Bz such that q /∈ Vz. The open cover
{Vz : z ∈ F} of the set F has a countable subcover V and it follows from
q ∈ X\

∪
V that X\

∪
V ≠ ∅. There exists an ordinal β < κ+ such that

V ⊂
∪
{Bt : t ∈ Fβ}, so property (3) guarantees that Fβ+1\

∪
V ̸= ∅,

which contradicts the fact that Fβ+1 ⊂ F ⊂
∪
V. Therefore, F = X, and

hence |X| = |F | ≤ 2ω, as promised. �

Corollary 3.23 ([2]). If X is a space with L(X) · ψ(X) · t(X) ≤ ω, then
|X| ≤ c.

Corollary 3.24 ([11]). If a Lindelöf space X has countable Hausdorff
pseudocharacter, then |X| ≤ c.

Corollary 3.25 ([7]). If a Lindelöf space X is monotonically normal and
ψ(X) ≤ ω, then |X| ≤ c.

Corollary 3.26. If a space X has a c-monotone pseudo-network assign-
ment and L(X) · ψ(X) ≤ ω, then |X| ≤ c.

Corollary 3.27. If a Lindelöf space X of countable pseudocharacter is
monotonically c-monolithic, then |X| ≤ c.

Example 3.28. In [5], Dow, under Jensen’s principle ♢∗, constructed an
example of a Lindelöf space X such that ψ(X) = ω and |X| > ω1 = c.
Applying Theorem 3.11 and Theorem 3.22, we conclude that X has a rep-
resentative family of pseudo-networks but does not have a representative
family of countable pseudo-networks.
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4. Open Problems

The class of spaces with a representative family of pseudo-networks
appears for the first time in this work, but the author hopes that the
obtained results show that it is a nice and useful class. To convince the
reader that the topic is by no means exhausted, we list some interesting
open questions below.

Question 4.1. Suppose thatX is a Lindelöf monotonically ω1-monolithic
space of countable pseudocharacter. Is it true in ZFC that |X| ≤ c?

Question 4.2. Suppose that X is a sequential space. Must X have a
representative family of pseudo-networks?

Question 4.3. Suppose that X is a Fréchet–Urysohn space. Must X
have a representative family of pseudo-networks?

Question 4.4. Suppose that X is a sequential compact space. Must X
have a representative family of pseudo-networks?

Question 4.5. Suppose that X is a compact Fréchet–Urysohn space.
Must X have a representative family of pseudo-networks?

Question 4.6. Suppose thatX is a compact ω-monolithic space of count-
able tightness. Must X have a representative family of pseudo-networks?

Question 4.7. Suppose that X is a Corson compact space. Must X have
a representative family of pseudo-networks?

Question 4.8. Suppose thatX is a linearly ordered compact space. Must
X have an ω-representative family of pseudo-networks?

Question 4.9. Suppose thatX is a monotonically normal compact space.
Must X have an ω-representative family of pseudo-networks?

Question 4.10. Suppose that X is a compact space with a representa-
tive family of pseudo-networks. Must any continuous image of X have a
representative family of pseudo-networks?

Question 4.11. Suppose that X is a first countable compact space.
Must any continuous image of X have a representative family of pseudo-
networks?

Question 4.12. Suppose that X is a monotonically Sokolov space of
countable pseudocharacter. This implies that L(X) · ψ(X) = ω (see [15,
Corollary 4.20]). Is it true that |X| ≤ c?

Question 4.13. Suppose that X is a Lindelöf Sokolov space of countable
pseudocharacter. Is it true that |X| ≤ c?
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