http://topology.auburn.edu/tp/

TOPOLOGY PROCEEDINGS

Volume 50, 2017
Pages 277-280
http://topology.nipissingu.ca/tp/

Nonconnected Inverse Limits

by
Hussam Abobaker

Electronically published on February 20, 2017

Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
Department of Mathematics \& Statistics
Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: (Online) 2331-1290, (Print) 0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.

http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

TOPOLOGY PROCEEDINGS

Volume 50 (2017)

Pages 277-280
E-Published on February 20, 2017

NONCONNECTED INVERSE LIMITS

HUSSAM ABOBAKER

Abstract

In this paper we give an example of an inverse limit sequence on $[0,1]$ with a single upper semi-continuous set-valued bonding function f such that $G\left(f^{n}\right)$ is an arc for each positive integer n, but the inverse limit is not connected. This answers a question posed by W. T. Ingram.

1. Introduction

In [1] Iztok Banič and Judy Kennedy pose a question: If $f:[0,1] \rightarrow$ $2^{[0,1]}$ is an upper semi-continuous function such that $G(f)$ is an arc and $G\left(f^{n}\right)$ is connected for each positive integer n, is $\lim f$ connected? In [2] W. T. Ingram answers their question in the negative (see Example 1) and asked whether f produces a connected inverse limit in case $G\left(f^{n}\right)$ is an arc for each positive integer n. In this paper we give a negative answer to this question.

2. Definitions and Notation

A continuum is a non-empty compact connected metric space. If X is a continuum, $2^{X}=\{A \subseteq X: A$ is non-empty closed in $X\}$ denotes the hyperspace of X. If X and Y are continua, a function $f: X \rightarrow 2^{Y}$ is said to be upper semi-continuous if for every $x_{0} \in X$ and every open subset U of Y such that $f\left(x_{0}\right) \subset U$, the set $\{x \in X: f(x) \subset U\}$ is an open subset of X. The graph of the function $f: X \rightarrow 2^{Y}$ is $G(f)=\{(x, y): y \in f(x)\}$, and for a subset A of X, we define $f(A)=\{y \in Y: y \in f(x)$ for some $x \in A\}$. If $f: X \rightarrow 2^{X}$, then we denote the composition $f \circ f$ by f^{2} and, for any integer $n>2, f^{n}=f^{n-1} \circ f$.

[^0]Let \boldsymbol{X} be a sequence $\left\{X_{i}\right\}_{i=1}^{\infty}$ of continua, and let \boldsymbol{f} be a sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ of functions such the $f_{n}: X_{i+1} \rightarrow 2^{X_{i}}$, then the subspace $\lim _{\leftrightarrows}^{\boldsymbol{f}}=$ $\left\{x \in \Pi_{i=1}^{\infty} X_{i}: x_{i} \in f_{i}\left(x_{i+1}\right)\right.$ for each positive integer $\left.i\right\}$ of the product topology $\Pi_{i=1}^{\infty} X_{i}$ is called the inverse limit of \boldsymbol{f}. The functions f_{i} are called bonding functions. In this paper we will use inverse limits with a single upper semi-continuous set-valued bonding function. More information about inverse limits can be found in [3] and [4].

The following lemma is known (see [6, Lemma 3.2]).
Lemma 2.1. Suppose X is a Hausdorff continuum, $f: X \rightarrow 2^{X}$ is an upper semi-continuous set-valued function, and, for each n, G_{n} is the set of all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Pi_{i=1}^{n} X$ such that $x_{i} \in f\left(x_{i+1}\right)$ for $i=1, \ldots, n-1$. Then $\lim \boldsymbol{f}$ is connected if and only if G_{n} is connected for each n.

3. Examples

The following example by Ingram answers the question of Banič and Kennedy. We recall it here for completeness.
Example 3.1. Let $f:[0,1] \rightarrow 2^{[0,1]}$ be the function whose graph consists of five straight line intervals, one from $(1 / 4,1 / 4)$ to $(0,0)$, one from $(0,0)$ to $(1 / 2,0)$, one from $(1 / 2,0)$ to $(1,1 / 2)$, one from $(1,1 / 2)$ to $(1,1)$, and one from $(1,1)$ to $(3 / 4,3 / 4)$ (see Figure 1). Then $G(f)$ is an arc and $G\left(f^{n}\right)$ is connected for each positive integer n, but $\lim f$ is not connected.

Figure 1. The graph of the bonding function f (left) and f^{2} (right).

Example 3.2. Let $f:[0,1] \rightarrow 2^{[0,1]}$ be a function defined by $f(0)=[0,1]$, $f(x)=\{x, 1-x\}$ for $0<x<1 / 4, f(x)=\{1 / 4,3 / 4\}$ for $1 / 4 \leq x \leq 3 / 4$, and $f(x)=\{x\}$ if $3 / 4<x \leq 1$. Then $G\left(f^{n}\right)=G(f)$, so $G\left(f^{n}\right)$ is an arc for any positive integer n (see Figure 2), but $\lim f$ is not connected.

Figure 2. Graphs of the bonding functions f (left) and f^{n} (right).

Proof. It is not hard to verify that $G\left(f^{n}\right)=G(f)$, so $G\left(f^{n}\right)$ is an arc for any positive integer n. To show that $\lim f$ is not connected, we will use Lemma 2.1. Let $A=\{1 / 4\} \times\{3 / 4\} \times\{1 / 4\} \times[1 / 4,3 / 4]$, then A is a closed subset of G_{4}. We will show that A is a clopen subset of G_{4}. Let $0<\epsilon<1 / 4$ and put $U=(1 / 4-\epsilon, 1 / 4+\epsilon) \times(3 / 4-\epsilon, 3 / 4+\epsilon) \times(1 / 4-$ $\epsilon, 1 / 4+\epsilon) \times(1 / 4-\epsilon, 3 / 4+\epsilon)$, and let $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in G_{4} \cap U$.

Case 1: If $1 / 4-\epsilon<x_{4}<1 / 4$, then $x_{3} \in f\left(x_{4}\right)=\left\{x_{4}, 1-x_{4}\right\}$. Since $x_{3} \in(1 / 4-\epsilon, 1 / 4+\epsilon)$, it follows that $x_{3}=x_{4}$. So $x_{2} \in f\left(x_{3}\right)=f\left(x_{4}\right)=$ $\left\{x_{4}, 1-x_{4}\right\}$, but $x_{2} \in(3 / 4-\epsilon, 3 / 4+\epsilon)$; therefore, $x_{2}=1-x_{4}$ and $x_{1} \in f\left(x_{2}\right)=\left\{1-x_{4}\right\}$. But this contradicts $x_{1} \in(1 / 4-\epsilon, 1 / 4+\epsilon)$. So $x_{4} \notin(1 / 4-\epsilon, 1 / 4)$.

Case 2. If $3 / 4<x_{4}<3 / 4+\epsilon$, then $x_{3} \in f\left(x_{4}\right)=\left\{x_{4}\right\}$, but this contradicts $x_{3} \in(1 / 4-\epsilon, 1 / 4+\epsilon)$. So, $x_{4} \notin(3 / 4,3 / 4+\epsilon)$.

It follows that if $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in G_{4} \cap U$, then $x_{4} \in[1 / 4,3 / 4]$. Since for any $x \in[1 / 4,3 / 4]$ we have $f(x)=\{1 / 4,3 / 4\}$, we can conclude that $G_{4} \cap U=A$. Therefore, A is a clopen subset of G_{4}. Thus, G_{4} is not connected and by Lemma 2.1, $\lim _{\ddagger} f$ is not connected.

References

[1] Iztok Banič and Judy Kennedy, Inverse limits with bonding functions whose graphs are arcs, Topology Appl. 190 (2015), 9-21.
[2] W. T. Ingram, Concerning inverse limits on $[0,1]$ with set-valued functions having graphs that are arcs. Submitted.
[3] W. T. Ingram, An Introduction to Inverse Limits with Set-valued Functions. Springer Briefs in Mathematics. New York: Springer, 2012.
[4] W. T. Ingram and William S. Mahavier, Inverse Limits. From Continua to Chaos. Developments in Mathematics, 25. New York: Springer, 2012
[5] Sam B. Nadler, Jr. Continuum Theory. An Introduction. Monographs and Textbooks in Pure and Applied Mathematics, Vol. 158. New York: Marcel Dekker, Inc., 1992.
[6] Van Nall, Connected inverse limits with a set-valued function, Topology Proc. 40 (2012), 167-177.

Department of Mathematics \& Statistics; Missouri University of Science and Technology; Rolla, Missouri 65409-0020

E-mail address: haq3f@mail.mst.edu

[^0]: 2010 Mathematics Subject Classification. 54F15, 54C60.
 Key words and phrases. generalized inverse limits, set-valued functions.
 © 2017 Topology Proceedings.

