

http://topology.nipissingu.ca/tp/

NONCONNECTED INVERSE LIMITS

by Hussam Abobaker

Electronically published on February 20, 2017

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: (Online) 2331-1290, (Print) 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on February 20, 2017

NONCONNECTED INVERSE LIMITS

HUSSAM ABOBAKER

ABSTRACT. In this paper we give an example of an inverse limit sequence on [0,1] with a single upper semi-continuous set-valued bonding function f such that $G(f^n)$ is an arc for each positive integer n, but the inverse limit is not connected. This answers a question posed by W. T. Ingram.

1. Introduction

In [1] Iztok Banič and Judy Kennedy pose a question: If $f:[0,1] \to 2^{[0,1]}$ is an upper semi-continuous function such that G(f) is an arc and $G(f^n)$ is connected for each positive integer n, is $\varprojlim f$ connected? In [2] W. T. Ingram answers their question in the negative (see Example 1) and asked whether f produces a connected inverse limit in case $G(f^n)$ is an arc for each positive integer n. In this paper we give a negative answer to this question.

2. Definitions and Notation

A continuum is a non-empty compact connected metric space. If X is a continuum, $2^X = \{A \subseteq X : A \text{ is non-empty closed in } X\}$ denotes the hyperspace of X. If X and Y are continua, a function $f: X \to 2^Y$ is said to be upper semi-continuous if for every $x_0 \in X$ and every open subset U of Y such that $f(x_0) \subset U$, the set $\{x \in X : f(x) \subset U\}$ is an open subset of X. The graph of the function $f: X \to 2^Y$ is $G(f) = \{(x,y) : y \in f(x)\}$, and for a subset A of X, we define $f(A) = \{y \in Y : y \in f(x) \text{ for some } x \in A\}$. If $f: X \to 2^X$, then we denote the composition $f \circ f$ by f^2 and, for any integer n > 2, $f^n = f^{n-1} \circ f$.

 $^{2010\} Mathematics\ Subject\ Classification.\ 54F15,\ 54C60.$

Key words and phrases. generalized inverse limits, set-valued functions. ©2017 Topology Proceedings.

Let X be a sequence $\{X_i\}_{i=1}^{\infty}$ of continua, and let f be a sequence $\{f_i\}_{i=1}^{\infty}$ of functions such the $f_n: X_{i+1} \to 2^{X_i}$, then the subspace $\varprojlim f = \{x \in \Pi_{i=1}^{\infty} X_i : x_i \in f_i(x_{i+1}) \text{ for each positive integer } i\}$ of the product topology $\Pi_{i=1}^{\infty} X_i$ is called the *inverse limit* of f. The functions f_i are called *bonding functions*. In this paper we will use inverse limits with a single upper semi-continuous set-valued bonding function. More information about inverse limits can be found in [3] and [4].

The following lemma is known (see [6, Lemma 3.2]).

Lemma 2.1. Suppose X is a Hausdorff continuum, $f: X \to 2^X$ is an upper semi-continuous set-valued function, and, for each n, G_n is the set of all $(x_1, x_2, ..., x_n) \in \prod_{i=1}^n X$ such that $x_i \in f(x_{i+1})$ for i = 1, ..., n-1. Then $\varprojlim \mathbf{f}$ is connected if and only if G_n is connected for each n.

3. Examples

The following example by Ingram answers the question of Banič and Kennedy. We recall it here for completeness.

Example 3.1. Let $f:[0,1] \to 2^{[0,1]}$ be the function whose graph consists of five straight line intervals, one from (1/4,1/4) to (0,0), one from (0,0) to (1/2,0), one from (1/2,0) to (1,1/2), one from (1,1/2) to (1,1), and one from (1,1) to (3/4,3/4) (see Figure 1). Then G(f) is an arc and $G(f^n)$ is connected for each positive integer n, but $\lim_{n \to \infty} f$ is not connected.

FIGURE 1. The graph of the bonding function f (left) and f^2 (right).

Example 3.2. Let $f:[0,1] \to 2^{[0,1]}$ be a function defined by f(0) = [0,1], $f(x) = \{x, 1-x\}$ for 0 < x < 1/4, $f(x) = \{1/4, 3/4\}$ for $1/4 \le x \le 3/4$, and $f(x) = \{x\}$ if $3/4 < x \le 1$. Then $G(f^n) = G(f)$, so $G(f^n)$ is an arc for any positive integer n (see Figure 2), but $\varprojlim f$ is not connected.

FIGURE 2. Graphs of the bonding functions f (left) and f^n (right).

Proof. It is not hard to verify that $G(f^n) = G(f)$, so $G(f^n)$ is an arc for any positive integer n. To show that $\varprojlim f$ is not connected, we will use Lemma 2.1. Let $A = \{1/4\} \times \{3/4\} \times \{1/4\} \times [1/4,3/4]$, then A is a closed subset of G_4 . We will show that A is a clopen subset of G_4 . Let $0 < \epsilon < 1/4$ and put $U = (1/4 - \epsilon, 1/4 + \epsilon) \times (3/4 - \epsilon, 3/4 + \epsilon) \times (1/4 - \epsilon, 1/4 + \epsilon) \times (1/4 - \epsilon, 3/4 + \epsilon)$, and let $(x_1, x_2, x_3, x_4) \in G_4 \cap U$.

Case 1: If $1/4 - \epsilon < x_4 < 1/4$, then $x_3 \in f(x_4) = \{x_4, 1 - x_4\}$. Since $x_3 \in (1/4 - \epsilon, 1/4 + \epsilon)$, it follows that $x_3 = x_4$. So $x_2 \in f(x_3) = f(x_4) = \{x_4, 1 - x_4\}$, but $x_2 \in (3/4 - \epsilon, 3/4 + \epsilon)$; therefore, $x_2 = 1 - x_4$ and $x_1 \in f(x_2) = \{1 - x_4\}$. But this contradicts $x_1 \in (1/4 - \epsilon, 1/4 + \epsilon)$. So $x_4 \notin (1/4 - \epsilon, 1/4)$.

Case 2. If $3/4 < x_4 < 3/4 + \epsilon$, then $x_3 \in f(x_4) = \{x_4\}$, but this contradicts $x_3 \in (1/4 - \epsilon, 1/4 + \epsilon)$. So, $x_4 \notin (3/4, 3/4 + \epsilon)$.

It follows that if $(x_1, x_2, x_3, x_4) \in G_4 \cap U$, then $x_4 \in [1/4, 3/4]$. Since for any $x \in [1/4, 3/4]$ we have $f(x) = \{1/4, 3/4\}$, we can conclude that $G_4 \cap U = A$. Therefore, A is a clopen subset of G_4 . Thus, G_4 is not connected and by Lemma 2.1, $\lim_{x \to a} f$ is not connected.

References

- [1] Iztok Banič and Judy Kennedy, Inverse limits with bonding functions whose graphs are arcs, Topology Appl. 190 (2015), 9–21.
- [2] W. T. Ingram, Concerning inverse limits on [0,1] with set-valued functions having graphs that are arcs. Submitted.
- [3] W. T. Ingram, An Introduction to Inverse Limits with Set-valued Functions. Springer Briefs in Mathematics. New York: Springer, 2012.
- [4] W. T. Ingram and William S. Mahavier, Inverse Limits. From Continua to Chaos. Developments in Mathematics, 25. New York: Springer, 2012
- [5] Sam B. Nadler, Jr. Continuum Theory. An Introduction. Monographs and Textbooks in Pure and Applied Mathematics, Vol. 158. New York: Marcel Dekker, Inc., 1992.
- [6] Van Nall, Connected inverse limits with a set-valued function, Topology Proc. 40 (2012), 167–177.

Department of Mathematics & Statistics; Missouri University of Science and Technology; Rolla, Missouri 65409-0020

 $E ext{-}mail\ address: haq3f@mail.mst.edu}$