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ALGEBRAIC DYNAMICS

ERNIE MANES

Abstract. Dynamical notions are introduced in arbitrary tight
categories. The enveloping semigroup of X is the free object on
one generator in the variety generated by X. Two new examples
are dynamical systems in which all spaces are countably tight and
compact spaces which are homeomorphic to their square. All dy-
namic varieties have a universal minimal object. Comfort types are
identified with certain singly-generated submonads of the ultrafilter
monad.

1. Introduction

Topological dynamics studies the action of a group on a locally compact
Hausdorff space. It has long been known [2] that a point is almost periodic
if and only if its orbit closure is minimal and compact. Beginning with
the work of Robert Ellis [7] and continued by many others, the study of
almost periodicity and the proximal relation for compact group actions
was formulated in terms of very simple structure with the device of the
enveloping semigroup.

The category of topological spaces and continuous maps is “loose” in
that a subset of a space admits many topologies with the inclusion con-
tinuous, and a product of spaces admits many topologies making the
projections continuous. Other familiar categories such as groups, or com-
pact Hausdorff spaces are more “tight.” The notion of a “tight category” is
defined in 1.4 below. A “dynamic category” is a tight category with extra
structure to allow the ideas originated by Ellis [7] to develop dynamical
notions in a more general setting. Ellis showed that when the theory of
almost periodicity and proximality of section 4 below is applied to the
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tight category of topological group actions on compact Hausdorff spaces,
his new definitions were the same as the original ones found, for example,
in [11]. It is our thesis that this theory has application in the broader
context of dynamic categories.

Classical examples of compact dynamical systems are metrizable. One
cannot assume all spaces are metrizable because the enveloping semigroup
is rarely metrizable. The theory of the final two sections stays closer to
this traditional setting, but relaxes the compact Hausdorff assumption
with the gain that all spaces (including the enveloping semigroup) are
countably tight.

There are many dynamic structures which would not usually be re-
garded as dynamical systems. One such example is a compact Hausdorff
space which is homeomorphic to its square.

Definition 1.1. A category of sets with structure is defined by the fol-
lowing data and axioms.

For each set, X is given a set σX whose elements are called structures
on X. This defines the objects of a category C which are pairs (X, δ)
with δ ∈ σX and these are also called structures. Additionally, for each
δ ∈ σX and ϵ ∈ σY , we are given a subset of admissible maps from X
to Y . We indicate that f is admissible by the notation f : (X, δ) →
(Y, ϵ). The axioms are exactly those required to make C into a category
with structures as objects and admissible maps as morphisms; namely, a
composition of admissible maps is admissible and idX : (X, δ) → (X, δ) is
admissible.

Definition 1.2. Let C be a category of sets with structure, let (Yi, ϵi) be
a family of structures, and let fi : X → Yi be a family of functions. We
say δ ∈ σX is an optimal structure for the fi and that fi : (X, δ) → (Yi, ϵi)
is an optimal family if the following hold:

• Each fi : (X, δ) → (Yi, ϵi) is admissible.
• Given g : (W,γ) → X with each gfi : (W,γ) → (Y, ϵi) admissible,

then g : (W,γ) → (X, δ) is also admissible.
Similarly, given a family (Xi, δi) of structures and functions gi : Xi →
Y , gi : (Xi, δi) → (Y, ϵ) is co-optimal if all gi : (Xi, δi) → (Y, ϵ) are
admissible and if whenever h : Y → (Z, β) with each hgi : (Xi, δi) →
(Z, β) admissible, then h : (Y, ϵ) → (Z, β) is admissible.

Example 1.3. The category of topological spaces and continuous maps
is a category of structured sets. σX is the set of topologies on X. The
admissible maps are the continuous ones.

In this example, if fi : (X, δ) → (Yi, ϵi) is optimal, then δ is the weakest
topology making the fi continuous. If gi : (X,δi) → (Y, ϵ) is co-optimal,
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then ϵ is the strongest topology making all gi continuous. Given a space
(X, δ), if A ⊂ X with inclusion i : A → X, then the topology making i
optimal is the subspace topology. If f : X → Y is surjective, then the
quotient topology on Y induced by f makes f co-optimal.

Definition 1.4. A tight category is a category C of sets with structure
which satisfies the following four axioms.

(tc.1) Let f, g : (X, δ) → (Y, ϵ) be admissible. Let A = {x ∈ X : fx =
gx} with inclusion i : A → X. Let B = f(X) = {fx : x ∈ X} be
the image of f with inclusion j : B → Y . Then there exist δo ∈
σA, and ϵo ∈ σB with i : (A, δo) → (X, δ) and j : (B, ϵ0) → (Y, ϵ)
admissible.

(tc.2) Let f : (X, δ) → (Y, ϵ) be admissible. Then if f is surjective, f is
co-optimal. If f is injective, f is optimal.

(tc.3) If (Xi, δi) is a family of structures in C and if X =
∏
Xi is a

product in the category of sets with projections πi : X → Xi, then
there exists unique δ ∈ σX such that each πi : (X, δ) → (Xi, δi) is
admissible. Moreover, this family is optimal (and so constitutes
a product in C).

(tc.4) There exists a cardinal function ψ and, for each cardinal α, there
exists a set Sα of cardinality at most ψ(α) consisting of (S, γ, t),
with (S, γ) a structure in C and t : n → S a function, all such
that the following condition holds: Given any structure (A, ϵ) in
C and any function f : n → A, there exists (S, γ, t) ∈ S|n| and
admissible g : (S, γ) → (A, ϵ) such that n t−−→ S

g−−→ A = f .

For the balance of the section, we work in a tight category C.

Example 1.5. The category of groups and group homomorphisms is
tight.

To see axiom (tc.4), observe that if t : n → F is the inclusion of the
generators into the free group (F, δ) generated by n, then {(F, δ, t)} is a
one-element Sn, ψ(α) = 1. A more relaxed construction is to choose one
copy up to isomorphism of each group S generated by a set of cardinality
at most n and all (S, γ, t) for such S. Now ψ(α) = (α× ω)α.

Example 1.6. The category of complete Boolean algebras and complete
homomorphisms is not tight.

All axioms hold except (tc.4). It was proved independently by [8] and
[13] that there is no bound on the cardinality of a complete Boolean
algebra generated by three or more elements.

Example 1.7. The category CT2 of compact Hausdorff spaces and con-
tinuous maps is tight.
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It is well known that a bijective continuous map between compact
Hausdorff spaces is a homeomorphism. Using standard facts about prod-
ucts, subspaces, and quotients in topology then makes the first three
axioms routine. For (tc.4), let Sn = {(βX, δ, η)} where (βX, η) is the
beta-compactification of X with the discrete topology with inclusion η :
X → βX. Then Ψ(α) = 1. As in Example 1.5, one can choose a more
relaxed example by using one copy up to homeomorphism of all spaces S
of density at most n, so that ψ(α) =Max(22

α

, ω).

Definition 1.8. Let (X, δ) in C. An injective function m : A → X
is a substructure of (X, δ) if there exists δo with m : (A, δo) → (X, δ)
admissible. A surjective function q : X → Q is a quotient structure of
(X, δ) if there exists ϵ with q : (X, δ) → (Y, ϵ) admissible.

Since an isomorphism is the same thing as the product of a one-element
family, every bijective admissible map is an isomorphism. It follows from
(tc.2) that such δo is unique if it exists. Similarly, ϵ is unique.

Since any limit is the equalizer of a pair of maps between products ([1,
Theorem 12.4], [17, ch. V, sec. 2, Theorem 2]), C is a complete category,
so has pullbacks, inverse limits, etc.

Definition 1.9. Let A be any class of objects of C. Define

S(A) = all substructures of structures in A
Q(A) = all quotient structures of structures in A
P (A) = all products of sets of structures in A.

Using identity maps (which are unary products in particular), we see
that A ⊂ S(A), A ⊂ Q(A), and A ⊂ P (A). Since the composition of
two injective admissible maps is injective and admissible, and similarly
for surjective, we see that SS(A) ⊂ S(A) and QQ(A) ⊂ Q(A). Though
perhaps tedious to write down carefully and verify, PP (A) ⊂ P (A) holds
in any category which has products. We leave it to the reader to show
the following (use pullbacks for the last one):

PQ(A) ⊂ QP (A)

PS(A) ⊂ SP (A)

SQ(A) ⊂ QS(A).

Proposition 1.10. The following hold for any class A of objects of C.
(1) SP (A) is the smallest subclass containing A and closed under

products and substructures.
(2) QS(A) is the smallest subclass containing A and closed under

quotients and substructures.
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(3) QP (A) is the smallest subclass containing A and closed under
quotients and products.

(4) QSP (A) is the smallest subclass containing A and closed under
quotients, substructures and products.

Proof. These are immediate from the previous remarks. For example,
QQSP = QSP ; SQSP ⊂ QSSP = QSP ; PQSP ⊂ QPSP ⊂ QSPP =
QSP . �

Definition 1.11. A quasivariety in C is a full subcategory of C closed
under substructures and products. A variety in C is a quasivariety which
is also closed under quotients.

Thus, A is a quasivariety if and only if A = SP (A) and A is a variety if
and only if A = QSP (A). For any A, SP (A) is the smallest quasivariety
containing A and QSP (A) is the smallest variety containing A. We say
QSP (A) is the variety generated by A.

It is not hard to see that any quasivariety in a tight category is again
a tight category.

Definition 1.12. For any set n, the structure in C freely generated by n
or the free structure on n generators, if it exists, is a structure (Tn, τn)
together with a function called the inclusion of the generators ηn : n→ Tn
with the universal mapping property, and for each structure (X, δ) and
each function f : n→ X, there exists a unique admissible ψ : (Tn, τn) →
(X, δ) such that ψηn = f .

In the above, we said “the” free structure because any two such are
isomorphic. This is immediate. If (Fn, τn; ηn) and (Gn, γn;αn) are both
free, then there exists unique ψ : (Fn, τn) → (Gn, γn) with ψηn = αn and
unique ϕ : (Gn, γn) → (Fn, τn) with ϕαn = ηn. The unique admissible
map t : (Fn, τn) → (Fn, τn) with tηn = ηn is then both the identity map
of Fn and ϕψ. Similarly, ψϕ = idGn .

Theorem 1.13. In any tight category, each set n generates a free struc-
ture (Tn, τn).

Proof. This is an immediate application of the Freyd adjoint functor the-
orem. For an expository proof of that theorem, see [1, Theorem 18.12] or
[17, ch. V, sec. 6, Theorem 2]. �

Notation 1.14. For each set X, choose a free C-object (TX, τX) gen-
erated by X with inclusion of the generators ηX : X → TX. Given
a structure (Y, ϵ) and a function f : X → Y , the unique admissible
ψ : (TX, τX) → (Y, ϵ) with ψηX = f will be denoted as f# : (TX, τX) →
(Y, ϵ).



286 E. MANES

Notice that if any structure in C has two or more elements, then there
exist structures of arbitrarily large cardinality by taking products. Hence,
if X is a set, there exists a structure (Y, ϵ) and an injective function
f : X → Y . Since f#ηX = f , ηX is injective. Thus, the terminology
“inclusion of the generators” is legitimate so long as C is not trivial.

Proposition 1.15. The following three properties hold. They are known
as the monad laws.

(m.1) For f : X → TY , f# ηX = f .
(m.2) (ηX)

#
= idTX .

(m.3) For f : X → TY , g : Y → TZ, (g#f)# = g#f#.

Proof. (m.1) holds by definition. As idTX : (TX, τX) → (TX, τX) is
admissible and idTX ηX = ηX , idTX = (ηX)

#, and this is (m.2). As both
sides of (m.3) are admissible and g#f#ηX = g#f = (g#f)

#
ηX , (m.3)

holds. �

Example 1.16. Let M be a discrete monoid with unit e. An M -action
M×X → X, (t, x) 7→ tx satisfies ex = x and (tu)x = t(ux) and a function
f : X → Y between two M -actions is equivariant if f(tx) = t(fx). Let C

be the category of compact Hausdorff M -actions (which means M ×X →
X is continuous) with continuous equivariant maps as admissible maps.

We may see that this is a tight category as follows. The free structure
generated by any set exists by the adjoint functor theorem, where (tc.4)
uses Hausdorff to guarantee that for any subset A of an structure, | <
A> | = |MA| ≤ 22

|M×A|
. The other properties are routine. We now give

a specific construction of the free structure on one generator. It is the
space βM (the usual Stone space of ultrafilters on the set M with the
hull-kernel topology) with M -action tU = (βλt)U where λt : M → M is
left translation by t. Each βλt is continuous because the Stone extension
is and this is an action since β(gf) = (βg)(βf) and β idX = idβX , whereas
λe = idM and λtu = λtλu. The free generator is the principal ultrafilter on
the monoid unit, prin(e). Given a compact M -action X and x ∈ X, there
is at most one admissible map βM → X mapping prin(e) to x because
M is dense in βM . To construct such an admissible map, start with the
equivariant map ψ :M → X, ψt = tx. We claim that the Stone extension
ψ# : βM → X is the desired map. We have ψ#prin(e) = ψe = ex = x,
so it remains only to show that ψ# is equivariant. To that end, the map
πt : X → X,πtx = tx is continuous by the definition of a topological
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M -action. Because of this continuity, (πtψ)
#
= πtψ

#. We have

ψ#(tU) = ψ#(prinM λt)
# U = (ψ# prinM λt)

# U
= (ψ λt)

# U = (πt ψ)
# U = πt ψ

# U ,

as desired.

2. The Enveloping Semigroup

In this section, the enveloping semigroup of [7] is introduced in the
setting of an arbitrary tight category.

We work in a fixed tight category C. X is a structure in C.

Proposition 2.1. Let (F, η0) be free on one generator in a tight category.
Then F is a monoid with composition σ ◦ τ = τ#σ and unit η0, and this
monoid acts on the left on each structure by σx = x#σ.

Proof. Let τ, σ, ρ ∈ F . Then τ#σ#η0 = τ#σ = (τ#σ)
#
η0. As two

admissible maps agreeing on η0 are equal, we have

τ#σ# = (τ#σ)
#
.(2.1)

Associativity is then immediate since (τ ◦σ)◦ρ = (τ#σ)◦ρ = (τ#σ)
#
ρ =

τ#(σ#ρ) = τ ◦ (σ ◦ρ). As idF : F → F is an admissible map, (η0)
# is the

identity function, so σ ◦ η0 = (η0)
#
σ = idF σ = σ and η0 ◦ σ = σ#η0 = σ,

showing that η0 is the monoid unit. The same type of proof establishes
the action axioms. �

It is routine to check that all admissible maps are equivariant. Lemma
2.13 below gives a partial converse.

Observation 2.2. For the monoid F above, right translations are ad-
missible maps since the right translation σ 7→ σ ◦ τ is the admissible map
τ#. These are clearly the only admissible maps.

In Example 1.16, βM is free on one generator. We now compute the
monoid structure. For V ∈ βM , let fV :M → βM be the equivariant map
t 7→ (prinM λt)

# V so that (fV )
# is the unique continuous equivariant map

sending prin(e) to V. Then the monoid multiplication is U ◦V = (fV )
# U .

Therefore,

R ∈ U ◦ V ⇔ {a ∈M : R ∈ fVa} ∈ U
⇔ {a ∈M : R ∈ (prinM λa)

# V} ∈ U
⇔ {a ∈M : {c ∈M : R ∈ prinM (ac)} ∈ V} ∈ U
⇔ {a ∈M : {c : ac ∈ R} ∈ V} ∈ U .
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Neil Hindman and Dona Strauss [14] study a semigroup βS induced
by a semigroup S. In the case that S is a monoid, their formula for
multiplication is exactly that given above. It is easy to check that if S is
any subsemigroup of M , then βS is a subsemigroup of βM . Hence, the
semigroup case can be recovered from the monoid case by regarding S as
a subsemigroup of the monoid S1 = S + 1 with x1 = xs = 1x.

We are now ready for the main definition of this section.

Definition 2.3. Let V be any class of structures in C. The enveloping
semigroup E(V) of V is the free structure on one generator in QSP (V).

Although E(V) is both a structure and a monoid (the latter as in
Proposition 2.1), the term “enveloping semigroup” coined by Ellis [7] has
become standard. For X a structure, we write E(X) for E({X}).

Proposition 2.4. E(E(X)) ∼= E(X).

Proof. E(X) ∈ SP (X) so that QSP (E(X)) ⊂ QSP (X). Thus, E(X)
acts as the free structure on one generator in QSP (E(X)) and therefore
is isomorphic to E(E(X)). �

In order to recapture the original construction of E(X) given by Ellis,
we must pause to consider how substructures are generated.

Proposition 2.5. For f : X → Y a function, define Tf : (TX, τX) →
(TY, τY ) as the admissible map

Tf = (ηY f)
#
.

Then such T is a functor Set → Set and η : id → T is a natural trans-
formation.

Proof. T (idX) = (ηX)
#
= idTX . Further, if g : Y → Z, we have

(Tg)(Tf) = (ηZ g)
#
(ηY f)

#
= ((ηZ g)

#
ηY f)

#

= (ηZ gf)
#

= T (gf).

To see that η is a natural transformation from the identity functor to T ,
we must verify

TX TY-
Tf

X Y-f

?
ηX ?

ηY
.

Indeed, (Tf) ηX = (ηY f)
#
ηX = ηY f . �
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Definition 2.6. For (X, δ), a structure in C, the structure map of (X, δ)
is the admissible map ξδ : (TX, τX) → (X, δ) defined by ξδ = (idX)

#.

Theorem 2.7. For (X, δ) and (Y, ϵ), structures in C, and f : X → Y , a
function, the following hold:

(1) f# = TX
Tf−−→ TY

ξϵ−−→ Y .
(2) f : (X, δ) → (Y, ϵ) is admissible if and only if the following square

commutes:

X Y-
f

TX TY-Tf

?
ξδ

?
ξϵ

.

Proof. For the first statement,

ξϵ(Tf) = (idY )
#
(ηY f)

#
= ((idY )

#
ηY f)

#

= (idY f)
#

= f#.

For the second statement, as ξδ ηX = idX , ξδ is surjective. If the square
commutes, f is admissible because ξδ is co-optimal and f# is admissible.
Conversely, let f be admissible. Then, as (f ξδ) ηX = f(idX) = f , f ξδ =
f# = ξϵ (Tf). �

We have yet to apply the part of axiom (tc.1) that asserts that the
image of an admissible map is a substructure. This is needed for the next
results.

Corollary 2.8. Let (X, δ) be a structure in C and let m : A → X be in-
jective. Then m is a substructure if and only if there exists a factorization
ξo

A X-
m

TA TX-Tm

?
ξo

?
ξδ

,

and then ξo is the structure map of A.

Proof. If A is a substructure, let ξo be its structure map and apply the
previous theorem. Conversely, if ξo exists, then, using Theorem 2.7(1), A
is the image of the admissible map m# and therefore is a substructure.
The structure map of that substructure also makes the square commute
and so coincides with ξo since m is injective. �
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Definition 2.9. For (X, δ), a structure in C, A ⊂ X with inclusion
i : A→ X, denote by <A> the image of i# : TA→ X.

Proposition 2.10. <A> is the substructure of (X, δ) generated by A.

Proof. As i# ηA = i, A ⊂<A>. <A> is a substructure by (tc.1). Now let
B ⊂ X be a substructure of (X, δ) with inclusion j : B → X and suppose
that A ⊂ B so that there is an inclusion k with i = A

k−−→ B
j−−→ X.

By Theorem 2.7, there is a commutative square

B X-
j

TB TX-Tj

?
ξ
δo

?
ξ
δ

,

where δo is the unique structure making j admissible. By the same theo-
rem,

i# = ξδ (Ti) = ξδ (Tj) (Tk)

= j ξδo (Tk),

and this shows that <A>⊂ B. �

Proposition 2.11. If f : (X, δ) → (Y, ϵ) is admissible and A ⊂ X, then
<fA>= f <A>.

Proof. Let i : A → X, j : fA → Y be the inclusion maps. We have a
factorization in the square on the left with p surjective, and the square
on the right

fA Y-
j

A X-i

?
p

?
f

X Y-
f

TX TY-Tf

?
ξδ

?
ξϵ

from Theorem 2.7. By Proposition 2.5, Tp is surjective (that is, if pi = id,
then (Tp)(Ti) = id). We then have that

<fA> = Im(ξϵ (Tj)) = Im(ξϵ (Tj) (Tp))

= Im(ξϵ (Tf) (Ti)) = Im(f ξδ (Ti))

= Im(fi#) = f(Im(i#) = f <A>. �

We are now ready to establish Ellis’s original definition.
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Theorem 2.12. E(X) may be constructed as the substructure of the prod-
uct structure XX generated by idX . The associated monoid structure is
function composition and the action of E(X) on X is function evaluation.

Proof. Define E =<idX>⊂ XX so that E ∈ SP (X) ⊂ QSP (X). Let W
be the class of all structures W such that, for each w ∈ W , there exists
an admissible map ψ : E → W with ψ(idX) = w. Such ψ is necessarily
unique. Moreover, X ∈ W because for any x ∈ X, prx : E → X is admis-
sible and maps idX to x. Thus, E is free on one generator in QSP (X),
providing W is shown to be closed under products, substructures, and
quotients. Products and substructures are obvious. For quotients, let
h : W → Z be an admissible surjection with W ∈ W. By the axiom of
choice, there exists a function f : Z → W with hf = idZ . Let z ∈ Z. By
hypothesis, there exists an admissible map ψ : E → Z mapping idX to fz.
Then hψ : E → Z is admissible and maps idX to z and indeed Z is in W.
We next verify that the monoid multiplication induced by freeness coin-
cides with function composition. For any function f : X → X, composing
with f is an admissible map −◦f : XX → XX because prx (−◦f) = prfx.
By Proposition 2.11, −◦ f maps E into itself so long as f ∈ E. But then
−◦ f is the unique admissible map f# mapping idX to f . Since such f#
is the right translation of the monoid structure by Observation 2.2, the
two monoids coincide. Finally, for x ∈ X, prx : E → X is the unique
admissible map x# mapping idX to x so the action of E on X is function
evaluation. �

Notice that the action of E on X is effective. We conclude the section
with a few further facts about the enveloping semigroup.

Lemma 2.13. Let F be the free structure on the generator η0 and let X
and Y be structures with f : X → Y , an F -equivariant map. Then if X
is singly-generated, f is admissible.

Proof. For x ∈ X we have the commutative triangle

X Y-
f

(fx)
#

@
@

@
@R

F

?
x#

because, by equivariance, (fx#)t = f(tx) = t(fx) = (fx)
#
t. Since X

is singly-generated, x ∈ X exists with x# : F → X surjective. Now use
(tc.2). �
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Proposition 2.14. Let W and V be subclasses of a tight category with
W ⊂ QSP (V), and let E(V) and E(W) have free generators η0 and ξ0.
Then the unique admissible map ψ : E(V) → E(W) mapping η0 to ξ0 is
surjective and is a monoid homomorphism.

Proof. ψ is surjective because its image is a substructure containing the
generator, and ψ maps the monoid unit to the monoid unit. The right
translation by τ in E(V) is τ#. Proving that ψ is a semigroup homomor-
phism, is equivalent to showing that it commutes with right translations,
that is, that the following square commutes.

E(W) E(W)-
(ψτ)

#

E(V) E(V-τ#

?

ψ

?

ψ

.

As all four maps are admissible, we need only check that both paths map
η0 to the same element. Indeed, (ψτ)

#
ψ(η0) = (ψτ)

#
(ξ0) = ψ(τ) =

ψτ#(η0). �

Lemma 2.15. Let X be a structure, E = E(X) and x ∈ X. Then
<x>= Ex.

Proof. Ex = prx(<x>) =<prx(idX)>=<x>. �

3. lg-Semigroups

The dynamical information of a structure in the tight categories we
wish to study is stored in the core of an lg-semigroup. Some of the basic
theory is available in texts such as [6] and [14], so we omit proofs in these
cases. Note, however, that our approach puts special emphasis on Green’s
relations [12]. We present here those aspects which we believe to be new.
For semigroups per se, we follow standard notations and definitions such
as may be found in [15].

Let S be a semigroup. The equivalence class of x under Green’s equiv-
alence relations L, R, H, and D are denoted Lx, Rx, Hx, and Dx, respec-
tively. Here, xLy ⇔ Sx ∪ {x} = Sy ∪ {y}, xRy ⇔ xS ∪ {x} = yS ∪ {y},
H = L ∩ R, and LR = D = RL (relation composition) is the smallest
equivalence relation containing L and R. Hx = Lx ∩Rx is a group if and
only if it has an idempotent. The maximal subgroups of the semigroup
are precisely those H-classes which have idempotents and every group in
the semigroup is contained in a unique H-class. If u2 = u, v2 = v, and
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uDv, then Hu and Hv are isomorphic groups. An element x in a semi-
group is regular if there exists a with xax = x. In a regular semigroup, all
elements are regular. If x is regular, all elements of Dx are regular and
Dx is called a regular D-class. In a regular D-class, each L-class and each
R-class has at least one idempotent.

Definition 3.1 ([5]). A semigroup I is a left group if, for all x, y ∈ I,
there exists unique z ∈ I with zx = y. The dual concept, xz = y, is a
right group.

The relationship of left groups to semigroups is in many ways like the
relationship between groups and semigroups. A subsemigroup of a group
need not be a group and a subsemigroup of a left group need not be a
left group, but both groups and left groups are closed under products and
quotients in semigroups. Both groups and left groups are equationally
definable if a new operation is added. In the case of groups, add the
unary operation of inverse. In the case of left groups, add a new binary
operation y

x and impose the equations
y

x
x = y

yx

x
= y.

A semigroup homomorphism between two groups always preserves inverse.
A semigroup homomorphism between two left groups always preserves y

x .
It is immediate from the definition that a left group comprises a single

L-class and is a right cancellative semigroup. The following is a useful
characterization of left groups.

Lemma 3.2. A semigroup I is a left group if and only if all of its elements
are regular and each of its idempotents is a right unit.

Proof. ⇒ For x ∈ I, let v ∈ I with vx = x. As v2x = v(vx) = vx,
we can cancel x to get v2 = v. As v is regular and I = Lv = Dv, all
elements of I are regular. If u2 = u ∈ I and x ∈ I, write zu = x. Then
xu = (zu)u = zu = x.

⇐ Let x, y ∈ I and write xax = x. As ax is idempotent, (ya)x =
y(ax) = y. As xa is also idempotent, if zx = y, then z = z(xa) = (zx)a =
ya. �
Lemma 3.3. Let I be a left group. Then every H-class is a group. If
u2 = u ∈ I, Hu = uI.

Proof. In a left group, R = H and all elements are regular, so every H-
class has an idempotent and therefore is a group. Hu ⊂ uI since Hu is a
group with unit u. Conversely, let x ∈ I and show ux ∈ Hu. There exist
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unique y and z with yx = u and zxy = u. Then ux = (zxy)x = zxu = zx.
Cancelling x, z = u. We have (ux)y = zxy = u, whereas ux = ux so that
uxRu. As I is a single L-class, uxHu. �
Definition 3.4. If S is a set, S is a semigroup if xy = x. Such is called
a left zero semigroup.

The following result gives rather complete information on how to con-
struct left groups. The proof is standard, and we omit it.

Theorem 3.5. Let S be a semigroup. Then S is a left group ⇔ S is
isomorphic to the product of a left zero semigroup with a group. In that
case, the left zero semigroup may be taken to be the set U of idempotents
of S and the group may be taken to be any H-class G of S. The map
U ×G→ S, (u, g) 7→ ug is a semigroup isomorphism. �
Definition 3.6. Let S be a semigroup, I ⊂ S. I is a left ideal of S if
I ̸= ∅ and SI ⊂ I. I is a right ideal of S if I ̸= ∅ and IS ⊂ I. I is an ideal
of S if it is both a left and a right ideal. I is an lg-ideal if it is a left ideal
which, as a semigroup, is a left group. I is an rg-ideal if it is a right ideal
which, as a semigroup, is a right group. Finally, S is an lg-semigroup if it
has an lg-ideal.

The following alternate characterization of lg-ideals is the one usually
found in the literature.

Lemma 3.7. Let I be a left ideal of a semigroup S. Then I is an lg-ideal
⇔ it is a minimal left ideal with an idempotent.

Proof. ⇒ If x ∈ I, then Ix = I. As I is a left ideal, Sx = I. This shows
that I properly contains no left ideal. If x ∈ I, x is regular in I so there
exists a ∈ I with xax = x. Thus, ax is an idempotent in I.

⇐ Given x, y ∈ I, Sx = I = Sy. It follows that xLy in S so all
elements of I are regular since I has an idempotent. By Lemma 3.2, it
suffices to show for x ∈ I and u2 = u ∈ I that xu = x. Let zu = x. Then
xu = (zu)u = zu = x. �
Example 3.8. Let S be a semigroup admitting a compact Hausdorff
topology for which all right translations are continuous. Zorn’s lemma
gives a minimal closed left ideal I. Because right translations are closed,
I is a minimal left ideal. It is well known that every closed subsemigroup
contains an idempotent (see [7], [14], [21]), so S is an lg semigroup.

Note that all finite semigroups are lg-semigroups. The preceding ex-
ample is a primary source of infinite lg-semigroups.

Because of Lemma 3.7, lg-semigroups have been studied in the litera-
ture. We omit proofs that can be referred to [7] or [14, sections 1.6 and
1.7].
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Lemma 3.9. The following hold for an lg-semigroup.
(1) Each lg-ideal is an L-class.
(2) Let I be an lg-ideal, x ∈ I. Then the H-class Hx of x in S is a

subset of I and is a group.
(3) If I is an lg-ideal and u2 = u ∈ I, then Hu = uSu = uIu and Iu

is an rg-ideal. �
It follows that the dual of an lg-semigroup is again an lg-semigroup.

Lemma 3.10. Let S be an lg-semigroup and let I and J be lg-ideals of
S. The following hold.

(1) ([7, Lemma 2]) If x, y ∈ I and a ∈ S with xa = ya, then x = y.
(2) ([7, Lemma 3])Let u2 = u ∈ I. Then there exists a unique v ∈ J

with vu = u. Further, v2 = v and uv = v.
(3) Every minimal left ideal of S is an lg-ideal.
(4) For any x ∈ S, Ix is an lg-ideal.
(5) Every left ideal contains an lg-ideal, an idempotent in particular.

�
Lemma 3.11. Let S be an lg-semigroup and let I and J be lg-ideals of S.
Suppose that ψ : I → J is S-equivariant; that is, ψ(tx) = tψ(x) for t ∈ S
and x ∈ I. Then there exists p ∈ J with ψ(x) = xp and ψ is bijective.

Proof. Let u2 = u ∈ I so that u is a right unit for I. Define p = ψu. For
x ∈ I, xp = x(ψu) = ψ(xu) = ψ(x). By Lemma 3.10(1), ψ is injective.
As Ip is a left ideal and Ip ⊂ J , Ip = J , so ψ is surjective. �

If S is any semigroup and if I and J are ideals in S, then IJ is an ideal
and IJ ⊂ I ∩ J . Thus, if the intersection of all ideals is non-empty, it is
the minimum ideal.

Definition 3.12. Let S be an lg-semigroup. The core of S is the union
of all the lg-ideals. We denote it D(S).

Theorem 3.13. Let S be an lg-semigroup with core D. Then D is the
minimum ideal of S and comprises a single D-class.

Proof. The first statement is standard, so we omit the proof. Let x, y ∈ D.
We must first show xDy. There exist lg-ideals I and J with x ∈ I and
y ∈ J . Let u2 = u ∈ I. By Lemma 3.10(2), there exists v2 = v ∈ J
with uv = v and vu = u. This shows uRv. As I and J are L-classes, it
follows that xDy. So far, D is contained in a single D-class. To complete
the proof, let x ∈ D and y ∈ S with xDy, and show that y ∈ D. There
exists z ∈ S with xLz and zRy. z ∈ D as the lg-ideal containing x is an
L-class. If y ̸= z, there exists w ∈ S with y = zw. But then y ∈ D since
D is a right ideal. �
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Every D-class in a semigroup has a Clifford–Preston egg-box picture in
which the columns are the L-classes, the rows are the R-classes, and the
cells are the H-classes. In general, a D-class need not be a subsemigroup,
let alone an ideal. If Dx has an idempotent u, one can show that LuRu =
Du, but Du may be a different D-class than Dx; in this case, LuRu
does not intersect Dx since different equivalence classes must be disjoint.
For S an lg-semigroup, the D-class D(S) is the minimum ideal and the
columns of the egg-box are the lg-ideals and the rows are the rg-ideals.
Every H-class in D(S) has an idempotent and therefore is a group. For
x, y ∈ D(S), Lx is a right cancellative semigroup and Lx and Ly are
isomorphic semigroups. Rx is a left cancellative semigroup and Rx and
Ry are isomorphic semigroups. Finally, Hx andHy are isomorphic groups.

Proposition 3.14. The following hold.
(1) Any product X of lg-semigroups Xi is an lg-semigroup and D(X) =∏

D(Xi).
(2) If ψ : S → W is a surjective semigroup homomorphism and S

is an lg-semigroup, then W is an lg-semigroup and ψ maps D(S)
onto D(W ).

(3) Let S be an lg-semigroup and let e2 = e ∈ D(S). Let W be a
subsemigroup of S with e ∈ W . Then W is an lg-semigroup and
D(W ) =W ∩D(S).

Proof. (1) This is obvious since a Cartesian product of left ideals is a left
ideal and a Cartesian product of left groups is a left group.

(2) Let I be an lg-ideal of S. It is obvious that ψ(I) is a left ideal of
ψ(S) and that ψ(I) is a left group if I is; therefore, W is an lg-semigroup
and ψ maps D(S) into D(W ). Let u be an idempotent of D(W ). As all
elements of D(S) are regular, it follows from Lallement’s lemma applied
to the homomorphism D(S) → D(W ) that there exists an idempotent
v ∈ D(S) with ψv = u. Since any semigroup homomorphism preserves
Green’s relations, ψ(Lv) = Lu, so ψ maps D(S) onto D(W ).

(3) Let I be the lg-ideal of S with e ∈ I. Then We ⊂ W ∩ I. If
x ∈ W ∩ I, then x = xe, so We = W ∩ I. Let x ∈ We. Let A = {u ∈
W ∩ I : u2 = u}. By Theorem 3.5, we can write x = ug with u2 = u ∈ I
and g ∈ He, where He means the H-class of e in I. Let H be the H-class
of e in W . As x ∈ W , ug ∈ W , so g = eg = (eu)g = e(ug) = ex ∈ W .
Thus, g ∈ H. As also g−1 ∈ H, u = u(gg−1) = (ug)g−1 = xg−1 ∈ W .
Thus, u ∈ A and x ∈ AH. We have We ⊂ AH ⊂W ∩ I =We; therefore,
by Theorem 3.5, We is a left group. Thus, We is an lg-ideal of W and
W is an lg-semigroup. Since any semigroup homomorphism preserves
Green’s relations, an element D-related to e in W is D-related to e in S
as well. Thus, D(W ) ⊂ D(S) ∩W . Let x ∈ D(S) ∩W . Let I be the
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lg-ideal of S with x ∈ I. I ∩W is a left ideal of W and so contains an
lg-ideal J of W by Lemma 3.10(5). Let u2 = u ∈ J ⊂ I ∩W so that,
by minimality, Wu = J . As u ∈ I ∩W , Iu = I = Ix. Thus, x ∈ Iu, so
x = xu ∈Wu = J ⊂ D(W ). �

Proposition 3.14(3) raises the question if any subsemigroup of an lg-
semigroup is lg. In fact, the opposite is true. Any semigroup is a sub-
semigroup of an lg-semigroup. To see this, first embed the semigroup as
a subsemigroup of the endomorphism monoid XX of a set X using Cay-
ley’s theorem. Then observe that XX has a unique lg-ideal, namely the
constant functions.

4. Dynamic Structures

Definition 4.1. A structure X in a tight category C is a dynamic struc-
ture if its enveloping semigroup E(X) is an lg-semigroup.

Evidently, every finite structure is a dynamic structure since its en-
veloping semigroup is also finite (notice that every finite semigroup has
an idempotent).

Example 4.2. A product of dynamic structures need not be dynamic.
For example, in the tight category of semigroups, ZZn is a dynamic struc-
ture (being finite), but X =

∏
n≥0 ZZn is not dynamic.

To see this, let N = {1, 2, 3, . . .} and note that E(X) = (N,+) as a
semigroup and (N, ·) as a monoid. Clearly, the latter has no minimal
ideal.

Powers behave better, however. If X is a structure and K is a set,
then XK is either finite (which includes the case that K is empty) or else
XK ∈ P (X), X ∈ Q(XK). Thus, E(X) = E(XK), so XK is dynamic if
X is.

We also have the following.

Lemma 4.3. Every substructure or quotient structure of a dynamic struc-
ture is dynamic.

Proof. Let X be a dynamic structure and let either Y ∈ S(X) or Y ∈
Q(X). Either way, Y ∈ QSP (X). By Proposition 2.14, E(Y ) is a monoid
quotient of E(X), so E(Y ) is an lg-semigroup by Proposition 3.14. �

Thus, if V is a class of dynamic structures closed under products,
QSP (V) = QS(V) is a dynamic category.

For the time being, fix a dynamic structure X with enveloping semi-
group E = E(X) with core D = D(E(X)). (In general, D(X) will denote
D(E(X)).) Recall that E acts on X by evaluation, tx = t(x).
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We now introduce dynamic notions for dynamic structures.

Definition 4.4. Say that x ∈ X is an almost periodic point, abbreviated
x ap, if there exists t ∈ D with tx = x. Say that x, y ∈ X are proximal,
written xPy, if there exists t ∈ E with tx = ty. Finally, say that x and y
are distal, written x ⊥ y, if x ̸= y and x and y are not proximal.

Lemma 4.5. The following hold.
(1) x is almost periodic if and only if every lg-ideal has an idempotent

u with ux = x.
(2) xPy if and only if there exists an lg-ideal I with tx = ty for all

t ∈ I.

Proof. (1) Let t ∈ D with tx = x. Let I be an lg-ideal and let H be the
H-class I ∩Rt, so that H is a group with unit u. As u is a left-unit in its
R-class, ux = u(tx) = (ut)x = tx = x.

(2) The set {p ∈ E : px = py} is non-empty, therefore, clearly a left
ideal. But every left ideal contains an lg-ideal by Lemma 3.10(5). �

Theorem 4.6. The following hold.
(1) Every element of X is proximal to an almost periodic point.
(2) If xPy with y ap, then there exists u2 = u ∈ D with ux = y.
(3) If u2 = u ∈ D and x, y ∈ X, then either ux = uy or ux ⊥ uy.

Proof. (1) Let u2 = u ∈ D. Then the equation u(ux) = ux gives that ux
is an almost periodic point proximal to x.

(2) Let I be an lg-ideal with tx = ty for all t ∈ I. There exists
u2 = u ∈ I with uy = y. Thus, ux = uy = y.

(3) Suppose uxP uy so that there exists an lg-ideal I with tux = tuy
for all t ∈ I. By Lemma 3.10(2), there exists v2 = v ∈ I with uv = v and
vu = u. Thus, ux = (vu)x = v(ux) = v(uy) = (vu)y = uy. �

Definition 4.7. Say that X is distal if x ̸= y ⇒ x ⊥ y.

Thus, Theorem 4.6(1) gives that all points in a distal structure are
almost periodic.

Lemma 4.8. E has minimal substructures. They are precisely the lg-
ideals.

Proof. For f ∈ E, <f>= Ef . It is then clear that the minimal sub-
structures coincide with the minimal left ideals. These are the lg-ideals
by Lemma 3.10(3) �

Theorem 4.9. In a dynamic structure, x is an almost periodic point if
and only if it generates a minimal substructure.
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Proof. If x ap, there exists u2 = u ∈ D with ux = x. The lg-ideal Eu is a
minimal substructure of E. Thus, prx(Eu) = prx <u>=<prx(u)>=<ux>
= <x>. Since the inverse image of a substructure is a substructure (use
a pullback), it is clear that the image of a minimal substructure under
an admissible map is minimal. Conversely, let x generate a minimal sub-
structure and let I be any lg-ideal of E. As Ix = prx(I) is a substructure,
Ix =<x>, so t ∈ I exists with tx = x. �

When the tight category is compact M -actions as in Example 1.16,
the above theorem establishes that the definition of “almost periodic” for
a dynamic structure coincides with the original topological one. It is
not hard to show that the proximal relation for compact M -actions also
coincides with the lg-definition, but we will not do that in this brief paper.
See, e.g., [6].

Theorem 4.10. For x ∈ X, the set of almost periodic points of <x> is
precisely Dx.

Proof. Let t ∈ D. Let u be the unit of the group Ht. Then u(tx) =
(ut)x = tx, so tx ap. Conversely, let y ∈ <x> be ap so that <y> is
minimal. Let I be an lg-ideal of E. Then <y>= Iy, so there exists
p ∈ I with py = y. As y ∈<x>= Ex and D is a right ideal of E,
y ∈ Dy ⊂ DEx ⊂ Dx. �

Corollary 4.11. The set of almost periodic points of E is precisely D.

Proof. E =<idX>, so the set of almost periodic points is D idX = D. �

Theorem 4.12. Let V be a class of dynamic structures closed under prod-
ucts. Then there exists U ∈ QSP (V) such that U is a minimal structure
and for every minimal structure M in QSP (V ) there exists a (necessar-
ily surjective) admissible map U → M . Further, such U is unique up to
isomorphism.

Proof. QSP (V) is a dynamic category. Let F = E(V). As F is free on one
generator in QSP (V), F admits a surjective admissible map onto every
singly-generated structure. Let U ⊂ F be any lg-ideal. Then U admits
an admissible map to every singly-generated structure, and so admits a
surjective admissible map to every minimal structure. Additionally, U
is a minimal structure by Lemma 4.8. Suppose that V is also minimal
and admits an admissible map to every other minimal. Thus, there exist
admissible U ψ−−→ V

ϕ−−→ U . Recalling that admissible maps E → E
are right translations, it follows from Lemma 3.11 that ϕψ is bijective.
Hence, the surjective map ψ is also injective and so is an isomorphism
since bijective admissible maps are isomorphisms in a tight category. �
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A structure U as in the previous theorem is usually called the universal
minimal set in topological dynamics.

Let C be an equational class for which there exists a cardinal κ for which
each C-operation has arity < κ. The category KC of compact C-structures
has as objects all C-structures X equipped with a compact Hausdorff
topology in such a way that each C-operation Xn → X is continuous, and
with morphisms the continuous C-homomorphisms. It is not hard to see
that both C and KC are tight categories (see [18], [19]).

Proposition 4.13. Every structure in KC is dynamic.

Proof. For X a compact C-structure, each right translation −◦f : XX →
XX is continuous, so that XX is a compact semigroup with continuous
right translations. E(X) is a closed subsemigroup of XX . It follows from
Example 3.8 that E(X) is an lg-semigroup. �

Example 4.14. Let JT be the equational class of Jónsson–Tarski algebras
[16, Theorem 5]. These are defined with a binary operation m and two
unary operations u and v provided with the equations that express that
m is bijective with u and v giving the inverse, specifically,

m(ux, vx) = x

um(x, y) = x

vm(x, y) = y.

These algebras were invented to give an example where all finitely-
generated free algebras are isomorphic. The free algebra on one generator
x (and also on two generators ux and vx) is constructed by building one-
variable terms in m, u, and v and reducing modulo the equations. Since
such a free algebra is countably infinite, if minimal algebras exist they
must be countable. The standard Cantor pairing function ω × ω → ω,
namely

m(x, y) =
(x+ y)(x+ y + 1)

2
+ y

is not minimal since {0} is a subalgebra. If, however, m is modified
replacing m(0, 0) with 4 and replacing m(1, 1) with 0, the new bijection
is minimal, as is not hard to show. D. M. Smirnov [22] shows that there
are in fact c non-isomorphic minimal Jónsson–Tarski algebras.

We can argue that the free Jónsson–Tarski algebra on one generator is
not an lg-semigroup because it has no minimal left ideals as follows. There
are complex terms beginning with m such as m(m(ux,m(vux, x)), vux).
By applying u sufficiently many times to any term τ , the result is a term
of form σ = w1 · · ·wkx (k ≥ 0) with each wi, either u or v. Such σ
belongs to any left ideal containing τ . But it seems clear that no term ν
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exists with νuσ = σ, so for arbitrary τ , no left ideal containing τ can be
minimal.

Example 4.15. The category KJT of compact Jónsson–Tarski algebras
has all structures dynamic.

The objects here, of course, are compact Hausdorff spaces which are
homeomorphic to their square, but the morphisms are more than continu-
ous; they must also preserve m, u, and v. The Cantor set 2ω is a minimal
structure in this category [18]. Because of Lemma 2.13, it is tempting
to conjecture that the free structure on one generator in this category is
βM if the monoid M is the free structure on one generator in JT. The
conjecture is false, however, since it is known [23, 8.12] that βω is not
homeomorphic to βω × βω.

5. Comfort Types Are Monads

In this section, we introduce subfunctors and submonads of the ultra-
filter monad β which play a role in the rest of this paper. In this section
we show that a concrete model of the Comfort type of r ∈ ω⋆ is the sub-
monad of β that r generates. We begin with the definition of a monad in
the category of sets.

Definition 5.1. A monad in the category of sets is given by the following
data and axioms. Data: A function T which, for each set X, produces
another set TX; a function ηX : X → TX for each set X; for each
function of form f : X → TY is given a function f# : TX → TY . The
axioms are the monad laws (m.1, m.2, m.3) of Proposition 1.15.

Thus, any tight category gives rise to a monad which is explicitly known
once it is understood how to construct the free structures.

Example 5.2. The ultrafilter monad (β, prin, (·)#) arises from the tight
category CT2 of Example 1.7. We know that free compact spaces are
constructed as the β-compactification of discrete spaces. In detail, let
βX be the set of ultrafilters on the set X and let prinX : X → βX map
an element x to its principal ultrafilter prin(x). Let f# : βX → βY be
the Stone extension of f .

For the ultrafilter monad, it is easily checked that the Stone extension
f# : βX → βY is given by

f#U = {B ⊂ Y : {x : B ∈ fx} ∈ U}.(5.1)

The usual “image of an ultrafilter” fU is precisely

(β f)U = {B ⊂ Y : {x : B ∈ fx} ∈ U}.(5.2)
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We now turn to exploring subfunctors and submonads of β. We use G
as the generic symbol for a subfunctor of β, where we exclude the trivial
case GX = ∅ for all X. Subfunctor means that for all f : X → Y , βf
maps GX into GY . In that case, the resulting function GX → GY is
denoted Gf , as is customary for functors.

Notice that every principal ultrafilter on X is in GX (consider the
effect of constant functions).

We use T as the generic symbol for a submonad of β. By a submonad,
we mean a subfunctor T ⊂ β with some TX ̸= ∅ (so that all principal
ultrafilters on X belong to TX) with the additional property of being
closed under the Stone extension. This means that if f : X → TY , then

(X
f−−→ TY ⊂ βY )

#

maps TX into TY . In that case we denote the
resulting map also by f# : TX → TY .

Example 5.3. βωX = {U ∈ βX : U has a countable member} is a sub-
monad of β [20, Lemma 3.6].

Any (pointwise) intersection or union of subfunctors is again a sub-
functor. In particular, every set of ultrafilters generates a subfunctor.
“Small” subfunctors are generated by a single ultrafilter. These are easily
described.

Example 5.4. Let r ∈ βn for some set n. Then the subfunctor Gr
generated by r is given by

GrX = {fr : n f−−→ X}
as is obvious. Here we use the customary notation fr for (βf)r when no
confusion would result.

For r, s ∈ βω, the usual Rudin–Keisler order r ≤RK s evidently
coincides with Gr ⊂ Gs. Hence, the functor Gr is a concrete model for
the Rudin–Keisler type of r.

Definition 5.5. Let G ⊂ β be a subfunctor. A topological space X is
G-compact if every ultrafilter in GX converges in X. For r ∈ ω⋆, X is
r-compact if it is Gr-compact. The Comfort preorder (see [9], [10]) on ω⋆
is defined by r ≤c s⇔ every s-compact Tychonoff space is r-compact.

To learn more about the Comfort order we shall use the following result.

Theorem 5.6 (Börger [4]). Let H be a functor from the category of sets
to itself which preserves binary coproducts. Then there exists a unique
natural transformation H → β.

Any composition of subfunctors of β preserves binary coproducts. This
is clear if we ensure that a subfunctor G of β preserves binary coproducts.
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Let U ∈ GX, A ∈ U . Then U ∈ βA by tracing with A. This trace is sU if
s : X → A extends the inclusion of A. For that reason, A ∈ U ⇒ U ∈ GA.
Preserving binary coproducts then amounts to the fact that if a disjoint
union of two subsets belongs to U , exactly one of them does.

Lemma 5.7. Let X be compact Hausdorff and let ξ : βX → X be ultra-
filter convergence. Then ξ is continuous.

Proof. Let Uα be a net in βX which converges to U , and let U be open
with ξU ∈ U . As X is regular, there exists open V with ξU ∈ V ⊂ V ⊂
U . Then ξU ∈ V ⇒ V ∈ U ⇒ eventually V ∈ Uα so that eventually
ξUα ∈ V ⊂ U . This shows that ξUα converges to ξU in X. �

Lemma 5.8. Let µX : ββX → βX be the ultrafilter convergence map of
βX. Then µ : ββ → β is a natural transformation.

Proof. By the previous lemma, µX = (idTX)
#. Naturality is then a

formal consequence of the monad laws. For details, see [19, Proposition
2.14]. �

We now turn to characterizing the Comfort preorder.

Theorem 5.9. Let S be a subfunctor of β and let T be a submonad of
β. The following are equivalent.

(1) Every T -compact space is S-compact.
(2) Every T -compact Tychonoff space is S-compact.
(3) S is a subfunctor of T .

Proof. That (1) ⇒ (2) and (3) ⇒ (1) are obvious. We show (2) ⇒ (3). Let
i : S → β and j : T → β be the inclusion natural transformations. Regard
TX as a subspace of βX so that TX is a Tychonoff space. Because T is
a submonad, we have a commutative square

TX βX-
iX

TTX ββX-(ii)X

?
(idTX)

#

?

µX

where ii is the horizontal composition of natural transformations; here

TTX
TiX−−→ TβX

iβX−−→ ββX = (ii)X = TTX
iTX−−→ βTX

βiX−−→ ββX.

(For the reader familiar with monads, we are only asserting that the
inclusion of a submonad is a monad map.) The diagram then asserts that
the ultrafilters in TβX converge in TX so that TX is T -compact. By
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hypothesis, TX is S-compact. It follows that γX exists, rendering the
following diagram commutative because the point to which an ultrafilter
in STX converges in βX lies in TX.

STX βTX-iTX ββX-βjX

TX βX-
jX

?

γX

?

µX

This results in a natural transformation ST
iT−−→ βT

βj−−→ ββ
µ−−→ β.

As j is a pointwise monic natural transformation with jγ natural, it fol-

lows that γ is a natural transformation as well. Thus, Γ = S
S prin−−−−−−−→

ST
γ−−→ T is a natural transformation. But then the triangle

S T-Γ

i
@
@
@R

β
?
j

must commute by Theorem 5.6 so that S ⊂ T . �

Definition 5.10. For r ∈ ω⋆, let Tr be the submonad of β generated by
r (in effect, the intersection of all submonads containing Gr).

Evidently, Tr is a submonad of the monad βω of Example 5.3.
It is shown in [20, Lemma 11.8] that every r-compact space is Tr-

compact. Thus, the terms “r-compact,” “Gr-compact,” and “Tr-compact”
are synonymous. The following is then immediate from the previous the-
orem.

Theorem 5.11. For r, s ∈ ω⋆, r ≤c s⇔ Tr ⊂ Ts. �

It follows that a concrete model of a Comfort type is a submonad Tr.
A comfort type can also be characterized as a single topological space.
See Theorem 6.12 below.

6. T -Spaces

Definition 6.1. Let G be a subfunctor of β and let X be a topological
space. A ⊂ X is G-open if whenever U ∈ GX and U ⇁ x ∈ A, then
A ∈ U . A is G-closed if whenever A ∈ U ⇁ x, then x ∈ A. X is a G-space
if every G-open set is open.
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Here, “⇁” indicates ultrafilter convergence. Since every neighborhood
filter is an intersection of ultrafilters, a set is β-open if and only if it is
a neighborhood of each of its points, that is, is open. In general, every
open set is G-open so there are more G-open sets than open sets. It is
trivial to prove that a subset is G-closed if and only if its complement is
G-open, so a G-space is a space in which every G-closed set is closed.

Lemma 6.2. Let (X, T ) be a G-space, let (Y,S) be any space, and let
f : X → Y be a function. Then f is continuous if and only if for every
ultrafilter U ∈ GX, if U ⇁ x, then f U ⇁ fx.

Proof. Let U be open in (Y,S) and let U ⇁ x ∈ f−1U with U ∈ GX. By
hypothesis, f U ⇁ fx ∈ U , so U ∈ f U and f−1U ∈ U . This shows that
f−1U is G-open. As (X, T ) is a G-space, f is continuous. �

Proposition 6.3. For a subfunctor G ⊂ β, let (X, T ) be a topological
space and let TG be the G-open subsets of (X, T ). Then (X, TG) is the
G-space coreflection of (X, T ).

Proof. That TG is a topology is trivial. Let A be G-open in (X, TG) and
let U converge to x in (X, TG) with x ∈ A. As also U converges to x in
(X, T ), A ∈ U . But then A is also G-open in (X, T ); that is, A is open
in (X, TG). This shows that (X, TG) is a G-space. For the coreflective
property, let f : (Z,S) → (X, T ) be continuous with (Z,S) a G-space.
We must show that f : (Z,S) → (X, TG) is continuous. To that end, let
U ∈ TG. Let U ∈ GX, U ⇁ z ∈ f−1U . By hypothesis, fU ⇁ fz ∈ U .
As U is G-open, f−1U ∈ U . This shows that f−1U is G-open, and hence
open. �

Lemma 6.4. Let R ⊂ GX×X be any relation and define TR = {U ⊂ X :
U Rx, x ∈ U ⇒ U ∈ U}. Then (X, TR) is a G-space whose G-restricted
ultrafilter convergence relation contains R.

Proof. That TR is a topology is obvious. Let ξ ⊂ GX × X be the G-
restricted ultrafilter convergence relation of (X, TR). If U ∈ TR and U Rx,
x ∈ U , then U ∈ U , so R ⊂ ξ. Let U be G-open. Let U Rx with x ∈ U .
Since U ∈ GX and U is G-open, U ∈ U . This shows that U ∈ TR so that
(X, TR) is a G-space. �

If X is a space and R is its G-restricted ultrafilter convergence relation,
then TR of the previous lemma is just the G-open sets, so (X, TR) is the
G-space coreflection of X.

Definition 6.5. Let TopG denote the category of G-spaces and contin-
uous maps.
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The category TopG has products, namely the G-space coreflection of
the Tychonoff product. This is general category theory: right adjoints
preserve products.

Lemma 6.6. Let X be the G-space product of the G-spaces Xi. Then
each projection pri : X → Xi is open. Moreover, convergence is pointwise
in that for U ∈ GX, U ⇁ (xi) ⇔ for each i, pri U ⇁ xi.

Proof. See [20, Theorem 5.4 and Theorem 5.5]. �
Corollary 6.7. In TopG, a product of G-compact spaces is G-compact.

Proposition 6.8. The following hold.
(1) Every G-compact subspace of a Hausdorff G-space is closed.
(2) If f : X → Y is continuous and surjective with X G-compact,

then Y is also G-compact.

Proof. (1) Let A ∈ U ⇁ x, with A ⊂ X G-compact and U ∈ GX. There
exists a ∈ A with U ⇁ a. As X is Hausdorff, x ∈ A. Thus, A is G-closed,
and hence closed.

(2) Let V ∈ GY . Let s : Y → X with fs = idY and let U = sV ∈ GX.
By hypothesis, x exists with U ⇁ x. By continuity, V = fsV = fU ⇁
fx. �

From this point forward, we fix a submonad T of β.
From the diagram for iX : TX → βX in the proof of Theorem 5.8, we

see that µX : ββX → βX restricts to a map TTX → TX. We use the
same symbol µ to denote this map, µX : TTX → TX. From the formula
(5.1) for the Stone extension, we see that

µX(H) = {B ⊂ X : TB ∈ H},
where we identify TB with {U ∈ TX : B ∈ U}.

Definition 6.9. The T -space (TX, TµX
) of Lemma 6.4 will be denoted

TX.

As the T -restricted ultrafilter convergence relation of TX contains µX ,
TX is T -compact.

Lemma 6.10. For A ⊂ X, TA is clopen in TX.

Proof. Let µX(H) = U and let U ∈ TA. As A ∈ U , TA ∈ H. This shows
that TA is open in TX. As (TA)′ = TA′, TA is clopen. �

The converse of the previous lemma is also true, but we don’t need
that in this paper.

Proposition 6.11. TX is a Urysohn space.
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Proof. It suffices to show that the inclusion i : TX → 22
X

is continuous
since every compact Hausdorff space is Urysohn. For A ∈ 2X , the compo-
sition TX

i−−→ 22
X prA−−→ 2 is the characteristic function of TA, and this

is continuous by the previous lemma. �
It follows that TX is a T -compact, Hausdorff T -space whose T -restricted

ultrafilter convergence function is precisely µX : TTX → TX.

Theorem 6.12. Let S and T be submonads of the monad βω of Example
5.3. Then if the Sω and Tω are homeomorphic, S = T . In particular,
the Comfort type Tr is completely characterizated by the topological space
Trω.

Proof. See [20, Theorem 3.9]. �
Definition 6.13. For T a submonad of β, denote by CT the category of
all T -compact, Hausdorff T -spaces, and continuous maps.

Theorem 6.14. Let T be a submonad of β. The following properties are
established in [20].

(1) Let f : X → Y be a function with Y in CT . Then f# = TX
Tf−−→

TY
θ−−→ Y , where θ is the T -restricted ultrafilter convergence

function of Y , is the unique continuous map ψ with ψ prinX = f .
(2) For A ⊂ X ∈ CT with inclusion i : A → X, A is the image of

i# : TA→ X.
(3) If X is a T -space and A ⊂ X, then x ∈ A⇔ there exists U ∈ TX

with A ∈ U ⇁ x.

Proposition 6.15. The following hold.
(1) A space is a T -space if and only if each of its neighborhood filters

is an intersection of ultrafilters in TX.
(2) Every subspace of a T -space is a T -space.

Proof. (1) Suppose A /∈ Nx. Then x ∈ (Ao)′ = A′, so there exists U ∈ TX
with A′ ∈ U , U ⇁ x. As A /∈ U , we are done.

(2) Let X be a T -space, let A ⊂ X be a subspace, and let D ⊂ A with
D T -closed in A. Let D be the closure of D in X. To show D ∩ A ⊂ D,
let x ∈ D ∩ A so that there exists U ∈ TX with D ∈ U , U ⇁ x. D ∈
U ⇒ A ∈ U , so we may consider U ∈ TA. As x ∈ A and A is a subspace,
U ⇁ x in A. As D is T -closed in A, x ∈ D. �

From the facts in this section, we obtain the following result.

Theorem 6.16. For T a submonad of β, the category CT of all T -
compact, Hausdorff T -spaces and continuous maps is a tight category.
Substructures coincide with closed subsets.
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7. Countably Tight Dynamics

For M a monoid, let CM be the category of M -sets. Mainstream topo-
logical dynamics studies the category KCG of compact Hausdorff G-sets,
where G is a group. All objects here are dynamic structures and the
notions of almost periodicity, proximal as well as other properties not
discussed herein, as developed for dynamic structures, generally coincide
with their original topological definitions. The classical examples of topo-
logical dynamics are based on compact metric spaces. In KCG, however,
spaces need not be countably tight as is even the case for the free structure
on one generator βG.

In this final section, we consider submonads T of β for which every
compact metrizable space is in CT , whereas every space in CT is countably
tight. There are 2c choices of such T which are “small” in that the closure
of a countable set has cardinality at most c. For any submonad T and
group G, the category of G-actions ρ : G × X → X with X ∈ CT , G
discrete and ρ continuous is a tight category. We are interested in finding
conditions guaranteeing that all the structures in such a category are
dynamic.

Theorem 7.1. Let βω be the submonad of β of Example 5.3. Then the
βω-spaces are precisely the countably tight spaces.

Proof. See [20, Theorem 4.9]. �
It is evident from the definition that if S ⊂ T , then every S-space is a

T -space. Thus, if T ⊂ βω, every T -space is countably tight. Notice that
Tr ⊂ βω if r ∈ ω⋆.

Lemma 7.2. For any r ∈ ω⋆, every sequential space is a Gr-space.

Proof. Let X be sequential and let A ⊂ X be Gr-closed. Let f : ω → X
be a sequence which converges to x ∈ X. If U is open with x ∈ U , f−1U
is cofinite, hence in r, so fr ⇁ x. As A is Gr-closed, x ∈ A. Since then
A is sequentially closed, A is closed because X is sequential. �

We now see that there are a wealth of categories of countably tight
Hausdorff spaces which contain all compact metrizable spaces.

Corollary 7.3. For T a submonad of βω such that Tω has a nonprincipal
ultrafilter, every compact metrizable space is in CT .

Proof. There exists r ∈ ω⋆ with Gr ⊂ T . A metrizable space is sequential,
hence a Gr-space, and hence a T -space. A compact metrizable space is
T -compact and Hausdorff. �
Theorem 7.4. For r ∈ ω⋆, |Trω| = |Tr2ω| = c.
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Proof. By [20, Corollary 11.6], |Trω| ≤ |Tr2ω| ≤ c. The unit interval
belongs to CTr so admits a continuous surjection from Trω so that c ≤
|Trω|. �

We conclude the paper by delivering on our main thesis that there is a
universe for topological dynamics in which the acting group G is count-
able and all spaces are countably tight. Start with compact group actions,
so that the free structure on one generator has lg-monoid structure βG as
in Example 1.16. Let e be any idempotent in the core of βG. Applying
Proposition 3.14(3), G-actions with spaces in CTe have TeG as the free
structure on one generator with lg-monoid structure. All enveloping semi-
groups are monoid quotients of TeG and so are lg-semigroups rendering
all structures dynamic. Te-spaces are countably tight because, since G is
countable, Te is a submonad of βω.

The method of the paragraph above will not work for uncountable
groups because if G is uncountable, the uniform ultrafilters in βG form a
two-sided ideal and so all elements of the core are uniform [3, Proposition
2.4]. What goes wrong is that if e2 = e is in the core of βG, Te is
a submonad of β but is not a submonad of βω. One will get dynamic
structures based on Te-spaces, but these need not be countably tight and
the cardinality of the closure of a countable set in such spaces may exceed
c. Other approaches will be discussed elsewhere.
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