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TO ORDERED TOPOLOGICAL VECTOR SPACES

ER-GUANG YANG

Abstract. In this paper, we give partial answers to some ques-
tions posed by Kaori Yamazaki (Monotone countable paracompact-
ness and maps to ordered topological vector spaces, Topology Appl.
169 (2014), 51–70).

1. Introduction and Preliminaries

A space always means a T1 topological space and a function always
means a real-valued function. The set of all positive integers is denoted
by N. A vector space always means a real vector space. The origin of a
vector space is denoted by 0 For a space X and A ⊂ X, we use intA and
A to denote the interior and the closure of A in X, respectively. Also, we
use χA to denote the characteristic function of A.

A vector space Y equipped with a partial order ≤ is called an ordered
vector space if ≤ is compatible with its linear structure. A topological
vector space Y is called an ordered topological vector space if Y is an
ordered vector space and the positive cone Y + = {y ∈ Y : y ≥ 0} is
closed in Y .

Let Y be an ordered topological vector space and e ∈ Y +. Then e is
called an interior point of Y + if e ∈ intY (Y

+). If e is an interior point
of Y + and e > 0, then e is called a positive interior point. e is called an
order unit if for each y ∈ Y , there exists λ > 0 such that y ≤ λe. It is
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clear (see [6]) that if e is an interior point of Y +, then for each r > 0,
both −re+ Y + and re− Y + are 0-neighborhoods.

Recall that a function f on a space X is called lower (upper) semi-
continuous if for any real number r, the set {x ∈ X : f(x) > r} (respec-
tively, {x ∈ X : f(x) < r}) is open. In [1], the notion of semi-continuous
functions was generalized to the semi-continuous maps with values into
ordered topological vector spaces as follows.

Let X be a topological space and Y an ordered topological vector space.
A map f : X → Y is called lower semi-continuous [1] if the set-valued
mapping φ : X → 2Y , defined by letting φ(x) = f(x)−Y + for each x ∈ X,
is lower semi-continuous. f is upper semi-continuous if −f is lower semi-
continuous. f is called locally upper bounded [6] if for each x ∈ X and
each 0-neighborhood V , there exist a neighborhood Ox of x and n ∈ N
such that f(Ox) ⊂ nV − Y +. A real-valued function f on a space X is
called locally bounded (locally upper bounded) if for each x ∈ X, there exist
a neighborhood Ox of x and n ∈ N such that |f(x′)| < n (respectively,
f(x′) < n) for each x′ ∈ Ox.

Lemma 1.1 ([1], [6]). Let X be a topological space and Y an ordered
topological vector space. For a map f : X → Y , (1) and (2) are equivalent
and (1) implies (3).

(1) f is lower (upper) semi-continuous.
(2) For each x ∈ X and each 0-neighborhood V , there exists a neigh-

borhood Ox of x such that f(Ox) ⊂ f(x) + V + Y + (respectively,
f(Ox) ⊂ f(x) + V − Y +).

(3) f−1(y − Y +) (respectively, f−1(y + Y +)) is closed in X for each
y ∈ Y .

Lemma 1.2 ([6]). Let X be a topological space and Y an ordered topo-
logical vector space with a positive interior point e of Y +. Then a map
f : X → Y is locally upper bounded if and only if for each x ∈ X, there
exist a neighborhood Ox of x and n ∈ N such that f(Ox) ⊂ ne− Y +.

For two sequences ⟨Aj⟩ and ⟨Bj⟩ of subsets of a space X, we write
⟨Aj⟩ ≼ ⟨Bj⟩ if An ⊂ Bn for every n ∈ N.

Definition 1.3 ([3]). A space X is called monotonically countably meta-
compact if there is an operator O assigning to each decreasing sequence
⟨Fj⟩ of closed subsets of X with empty intersection, a sequence of open
sets {O(n, ⟨Fj⟩) : n ∈ N} such that

(1) Fn ⊂ O(n, ⟨Fj⟩) for each n ∈ N,
(2) if ⟨Fj⟩ ≼ ⟨Hj⟩, then O(n, ⟨Fj⟩) ⊂ O(n, ⟨Hj⟩) for all n ∈ N,
(3)

∩
n∈N O(n, ⟨Fj⟩) = ∅.
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X is called monotonically countably paracompact if, in addition, (3
′
)∩

n∈N O(n, ⟨Fj⟩) = ∅.

Definition 1.4 ([7]). A space X is called a monotone cb-space if there
exists an operator Φ assigning a continuous function Φ(f) to each lo-
cally bounded function f on X, such that |f | ≤ Φ(f) and Φ(f) ≤ Φ(f ′)
whenever |f | ≤ |f ′|.

In [6], Kaori Yamazaki generalized real-valued functions in some inser-
tion theorems to maps with values into ordered topological vector spaces
and posed the following several questions.

Question 1.5. Let X be a topological space and Y an ordered topolog-
ical vector space with a positive interior point of Y +. Are the following
conditions equivalent?

(1) X is monotonically countably paracompact.
(2) There exist operators Φ and Ψ assigning to each lower semi-contin-

uous map f : X → Y + \ {0}, an upper semi-continuous map Φ(f) : X →
Y + \ {0}, and a lower semi-continuous map Ψ(f) : X → Y + \ {0} with
Ψ(f) ≤ Φ(f) ≤ f such that Φ(f) ≤ Φ(f ′) and Ψ(f) ≤ Ψ(f ′) whenever
f ≤ f ′.

Question 1.6. Let X be a topological space and Y an ordered topolog-
ical vector space with a positive interior point of Y +. Are the following
conditions equivalent?

(1) X is monotonically countably metacompact.
(2) There exists an operator Φ assigning to each lower semi-continuous

map f : X → Y + \ {0}, an upper semi-continuous map Φ(f) : X →
Y + \ {0} with Φ(f) ≤ f such that Φ(f) ≤ Φ(f ′) whenever f ≤ f ′.

Question 1.7. Let X be a topological space and Y an ordered topolog-
ical vector space with a positive interior point of Y +. Are the following
conditions equivalent?

(1) X is a monotone cb-space.
(2) There exists an operator Φ assigning to each locally upper bounded

map f : X → Y , a continuous map Φ(f) : X → Y with f ≤ Φ(f) such
that Φ(f) ≤ Φ(f ′) whenever f ≤ f ′.

The main purpose of this paper is to give some partial answers to the
above questions.

2. Partial Answers

In this section, we shall give partial answers to questions 1.5–1.7.
It is known that if X is a topological space, Y is a topological vector

space, and f is a continuous function on X, then for each y ∈ Y , the map
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g : X → Y defined by letting g(x) = f(x)y for each x ∈ X is continuous.
As for semi-continuity, we have the following.

Proposition 2.1. Let X be a topological space, Y an ordered topolog-
ical vector space, and f a function on X. If f is lower (upper) semi-
continuous, then for each y ∈ Y +, the map g : X → Y defined by letting
g(x) = f(x)y for each x ∈ X is lower (upper) semi-continuous.

Proof. Let x0 ∈ X and let V be a 0-neighborhood. Then there exists
δ > 0 such that if |λ| ≤ δ, then λy ∈ V . Put Ox0 = {x ∈ X : f(x) >
f(x0)−δ}. Since f is lower semi-continuous, Ox0 is an open neighborhood
of x0. For each x ∈ Ox0 , g(x) = f(x)y ≥ f(x0)y − δy which implies that
g(x) ∈ g(x0) − δy + Y + ⊂ g(x0) + V + Y +. By Lemma 1.1, g is lower
semi-continuous. �

The following theorem gives a partial answer to Question 1.5.

Theorem 2.2. Let X be a topological space and Y an ordered topological
vector space with a positive interior point e of Y +. If there exist operators
Φ and Ψ assigning to each lower semi-continuous map f : X → Y + \
{0}, an upper semi-continuous map Φ(f) : X → Y + \ {0} and a lower
semi-continuous map Ψ(f) : X → Y + \ {0} with Ψ(f) ≤ Φ(f) ≤ f
such that Φ(f) ≤ Φ(f ′) and Ψ(f) ≤ Ψ(f ′) whenever f ≤ f ′, then X is
monotonically countably paracompact.

Proof. Assume the condition and let ⟨Fj⟩ be a decreasing sequence of
closed subsets of X with empty intersection. For each x ∈ X, let

f⟨Fj⟩(x) = (1−
∞∑

n=1

1

2n
χ

Fn
(x))e.

By Proposition 2.1, f⟨Fj⟩ : X → Y + \ {0} is lower semi-continuous. For
each n ∈ N, let

O(n, ⟨Fj⟩) = int(Φ(f⟨Fj⟩)
−1(

1

2n−1
e− Y +))

and

E(n, ⟨Fj⟩) = Ψ(f⟨Fj⟩)
−1(

1

2n−1
e− Y +).

Then {O(n, ⟨Fj⟩) : n ∈ N} is a decreasing sequence of open subsets of
X. Since Ψ(f⟨Fj⟩) is lower semi-continuous, by Lemma 1.1, E(n, ⟨Fj⟩) is
closed. From Ψ(f⟨Fj⟩) ≤ Φ(f⟨Fj⟩), it follows that O(n, ⟨Fj⟩) ⊂ E(n, ⟨Fj⟩),
and thus O(n, ⟨Fj⟩) ⊂ E(n, ⟨Fj⟩). Since Ψ(f⟨Fj⟩)(x) > 0 for each x ∈ X,
we have that

∩
n∈N E(n, ⟨Fj⟩) = ∅. Indeed, if x ∈

∩
n∈N E(n, ⟨Fj⟩) for

some x ∈ X, then Ψ(f⟨Fj⟩)(x) ≤ 1
2n−1 e for each n ∈ N. Since Y + is
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Archimedean, it follows that Ψ(f⟨Fj⟩)(x) ≤ 0, a contradiction. Hence,∩
n∈N O(n, ⟨Fj⟩) = ∅.
It is clear that if ⟨Fj⟩ ≼ ⟨Hj⟩, then O(n, ⟨Fj⟩) ⊂ O(n, ⟨Hj⟩) for each

n ∈ N.
For a fixed n ∈ N, let x ∈ Fn and k = max{n ∈ N : x ∈ Fn}. Then

n ≤ k and so

Φ(f⟨Fj⟩)(x) ≤ f⟨Fj⟩(x) = (1−
k∑

n=1

1

2n
)e =

1

2k
e ≤ 1

2n
e.

Since Φ(f⟨Fj⟩) is upper semi-continuous and 1
2n e−Y + is a 0-neighborhood,

there exists an open neighborhood Ox of x such that

Φ(f⟨Fj⟩)(x
′) ∈ Φ(f⟨Fj⟩)(x) +

1

2n
e− Y + − Y + ⊂ 1

2n−1
e− Y +

for all x′ ∈ Ox. This implies that x ∈ int(Φ(f)−1( 1
2n−1 e − Y +)) and so

Fn ⊂ O(n, ⟨Fj⟩). Consequently, X is monotonically countably paracom-
pact. �

We don’t know whether the condition in the above theorem is necessary.
However, if we require additionally that each point of Y +\{0} be an order
unit, then the converse of the above theorem is also true. We sketch the
proof as follows.

Proof. Let f : X → Y + \ {0} be a lower semi-continuous map. For
each j ∈ N, let Fj(f) = X \ int(f−1( 1

2j−1 e + Y +)). Then ⟨Fj(f)⟩ is a
decreasing sequence of closed subsets of X. Let x ∈ X, since f(x) is an
order unit, there exists n > 2 such that f(x) ≥ 1

2n−2 e. Since f is lower
semi-continuous and − 1

2n−1 e + Y + is a 0-neighborhood, there exists an
open neighborhood Ox of x such that f(x′) ∈ f(x)− 1

2n−1 e+Y + +Y + ⊂
1

2n−1 e + Y + for all x′ ∈ Ox. Thus, x ∈ int(f−1( 1
2n−1 e + Y +)) which

implies that x /∈ Fn(f) and so
∩

n∈N Fn(f) = ∅.
Let O be the operator in Definition 1.3. For each x ∈ X, let

Φ(f)(x) = (1−
∞∑

n=1

1

2n
χ

O(n,⟨Fj(f)⟩)(x))e

and

Ψ(f)(x) = (1−
∞∑

n=1

1

2n
χ

O(n,⟨Fj(f)⟩)
(x))e.

Then Φ(f) : X → Y + \ {0} is upper semi-continuous and Ψ(f) : X →
Y + \ {0} is lower semi-continuous and Ψ(f) ≤ Φ(f).
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Let x ∈ X. Since
∩

n∈N O(n, ⟨Fj(f)⟩) = ∅, then x /∈ O (n, ⟨Fj(f)⟩)
for some n ∈ N. Let k = min{n ∈ N : x /∈ O(n, ⟨Fj(f)⟩)}; then x /∈
O(k, ⟨Fj(f)⟩) ⊃ Fk(f), from which it follows that f(x) ≥ 1

2k−1 e. Thus,

Φ(f)(x) = (1−
k−1∑
n=1

1

2n
)e =

1

2k−1
e ≤ f(x). �

Remark 2.3. The referee pointed out that the condition that each point
of Y + \ {0} be an order unit may be too strong and asked whether there
exists an ordered topological vector space with positive interior points,
each point of which is an order unit, except spaces which are isomorphic
to R (as ordered topological vector spaces). We have no idea on it.

As for monotonically countably metacompact spaces, the following the-
orem gives a partial answer to Question 1.6.

Theorem 2.4. Let X be a topological space and Y an ordered topological
vector space with a positive interior point e of Y +. Then condition (1)
implies condition (2).

(1) There exists an operator Φ assigning to each lower semi-continuous
map f : X → Y + \ {0}, an upper semi-continuous map Φ(f) :
X → Y +\{0} with Φ(f) ≤ f and Φ(f) ≤ Φ(f ′) whenever f ≤ f ′.

(2) X is monotonically countably metacompact.
If, in addition, each point of Y + \ {0} is an order unit, then (2) implies
(1).

The following theorem partially answers Question 1.7. The proof of the
following theorem was suggested by the referee who thought the original
proof was too complicated.

Theorem 2.5. Let X be a topological space and Y an ordered topological
vector space with a positive interior point of Y +. If X is a monotone
cb-space, then there exists an operator Ψ assigning to each locally upper
bounded map f : X → Y , a continuous map Ψ(f) : X → Y with f ≤ Ψ(f)
such that if f ≤ f ′, then Ψ(f) ≤ Ψ(f ′).

Proof. For each locally upper bounded map f : X → Y and x ∈ X, let
n(f)(x) = min{n ∈ N : x ∈ int(f−1(ne− Y +)). By Lemma 1.2, for each
x ∈ X, there exist an open neighborhood Ox of x and n ∈ N such that
f(Ox) ⊂ ne−Y +. Thus, for each x′ ∈ Ox, we have x′ ∈ int(f−1(ne−Y +))
from which it follows that n(f)(x′) ≤ n. Thus, the real valued function
n(f) : X → R+ is locally upper bounded. If f ≤ f ′, then for each x ∈ X,
x ∈ int((f ′)−1(n(f ′)(x)e− Y +)) ⊂ int(f−1(n(f ′)(x)e− Y +)) from which
it follows that n(f)(x) ≤ n(f ′)(x). Thus, n(f) ≤ n(f ′). Since n(f) > 0,
it follows that n(f) is locally bounded and n(f) = |n(f)|.
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Let Φ be the operator in Definition 1.4 and let Ψ(f)(x) = Φ(n(f))(x)·e
for each x ∈ X. Then the map Ψ(f) : X → Y is continuous. It is
easy to see that Ψ(f) ≤ Ψ(f ′) whenever f ≤ f ′. For each x ∈ X,
since x ∈ int(f−1(n(f)(x)e − Y +)), we have that f(x) ≤ n(f)(x)e ≤
Φ(n(f))(x)e = Ψ(f)(x). Thus, f ≤ Ψ(f). �

We don’t know whether the condition in the above theorem is sufficient.
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