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CONTINUOUS INJECTIONS BETWEEN THE
PRODUCTS OF TWO CONNECTED NOWHERE REAL

LINEARLY ORDERED SPACES

TETSUYA ISHIU

Abstract. We shall show that if K0, K1, L0, and L1 are nowhere
real connected linearly ordered topological spaces and f : K0 ×
K1 → L0×L1 is a continuous injective function, then f is coordinate-
wise.

1. Introduction

Let f : X0 ×X1 → Y0 × Y1 be a function. We say that f is coordinate-
wise if and only if there exist i < 2, g0 : Xi → Y0, and g1 : X1−i → Y1

such that for every ⟨x0, x1⟩ ∈ X0 ×X1, f(x0, x1) = ⟨g0(xi), g1(x1−i)⟩.
Many homeomorphisms from R2 onto R2 are not coordinate-wise. For

example, f(x, y) = ⟨x− y, x+ y⟩.
However, K. Eda and R. Kamijo proved the following theorem that this

is not necessarily the case when we replace R by other connected linearly
ordered spaces.

Theorem 1.1 (Eda and Kamijo [1]). Let K be a connected linearly or-
dered space such that, for a dense set of x ∈ K, either cf(x) or ci(x) is
uncountable. Here, cf(x) denotes the cofinality of x and ci(x) the coini-
tiality of x. Then for every n < ω, every homeomorphism f : Kn → Kn

is coordinate-wise.

Eda and Kamijo asked if it can be extended to, for example, the cut-
completion of an Aronszajn line. In this article, we shall prove the fol-
lowing theorem that answers this question positively with some other
improvements for the case n = 2.
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320 T. ISHIU

Definition 1.2. A linearly ordered space L is nowhere real if and only if
it is uncountable, but no uncountable convex set is separable.

Fact 1.3. For every linearly ordered set K, K is nowhere real if and only
if the closure of any countable subset of K is nowhere dense.

Theorem 1.4. Let K0, K1, L0, and L1 be connected nowhere real linearly
ordered spaces. Then every continuous injection f : K0 ×K1 → L0 × L1

is coordinate-wise.

Thus, these four connected linearly ordered spaces may or may not be
different, and the function only needs to be a continuous injection, instead
of a homeomorphism.

The proof is done by a set-theoretic argument using countable ele-
mentary submodels. It is quite different from the argument of Eda and
Kamijo, which is much more topological.

We also show this theorem can be extended to the product of any finite
number of connected nowhere real linearly ordered spaces. An article
about this result is now in preparation.

2. Connected Linearly Ordered Spaces

In this section, we shall state known basic facts on connected linearly
ordered spaces. We shall use the standard interval notation for a linearly
ordered set K, such as for a, b ∈ K with a ≤ b,

(a, b) = { x ∈ K : a < x < b }
[a, b] = { x ∈ K : a ≤ x ≤ b } .

Lemma 2.1. Let K be a connected linearly ordered space. For every
non-empty subset A of K, if A has an upper bound in K, then A has the
least upper bound in K.

Proof. Let A ⊆ K be a non-empty set that has an upper bound. Suppose
that A does not have the least upper bound. Let U be the set of all upper
bounds of A. Then it is easy to see that U is clopen, and hence K is not
connected, which is a contradiction. �

By using the same argument as the proof to show every bounded subset
of R is compact, we can show the following lemma.

Lemma 2.2. Every bounded closed subset of a connected linearly ordered
space is compact.

By using this lemma, we can show the following.

Lemma 2.3. Let K and L be connected linearly ordered spaces and g :
K → L a continuous function. Let a, b ∈ K with a < b. Then there exist
maximum and minimum values of g on [a, b].
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We can also see the intermediate value theorem for continuous functions
from one connected linearly ordered space to another.

Lemma 2.4. Let K and L be connected linearly ordered spaces, and let
g : K → L be a continuous function. Let a, b ∈ K with a < b. If z ∈ L is
between g(a) and g(b), then there exists c ∈ (a, b) such that g(c) = z.

Proof. Without loss of generality, we may assume g(a) < g(b). Let c =
sup{y ∈ K : a ≤ y ∧ ∀x ∈ (a, y)(g(x) < z)}. Clearly, we have a < c < b.
We shall show that g(c) = z.

Claim. For every x ∈ (a, c), g(x) < z.
⊢ Let x ∈ (a, c). By the definition of c, there exists a y ∈ (x, c) such

that, for every x′ ∈ (a, y), g(x′) < z. Since x ∈ (a, y), we have g(x) < z.
⊣ (Claim)

By the claim, it is easy to see g(c) ≤ z. Hence, it suffices to show
g(c) ≥ z. Suppose not, i.e., g(c) < z. Then there exists b′ > c such that,
for every x ∈ (c, b′), g(x) < z. Then for every x ∈ (a, b′), g(x) < z. Thus,
c ≥ b′, which is a contradiction. �

3. Continuous Functions from
One Linearly Ordered Space to Another

Throughout this section, let K and L be any connected linearly ordered
sets, let g : K → L be a continuous function, and let M be a countable
elementary submodel of H(θ) with K,L, f ∈ M for some regular cardinal
θ with P(P(K ∪ L)) ∈ H(θ). Without loss of generality, we may assume
K and L are disjoint.

Definition 3.1. Let J(K,M) be the set of all x ∈ int(K \M) such that
inf(K ∩M) ≤ x ≤ sup(K ∩M).

For every x ∈ K, let

η(K,M, x) = sup { y ∈ cl(K ∩M) : y ≤ x } ,
ζ(K,M, x) = inf { y ∈ cl(K ∩M) : y ≥ x } ,
I(K,M, x) = [η(K,M, x), ζ(K,M, x)],

Iint(K,M, x) = (η(K,M, x), ζ(K,M, x)),

C(K,M, x) = { η(K,M, x), ζ(K,M, x) }

if they exist. Note that if x ∈ J(K,M), then all of them exist. When it
is clear from the context, we omit K and M .

Remark 3.2. We can easily show the following facts.
(1) I(x) is a convex set.
(2) If x ∈ cl(K ∩M), then η(x) = ζ(x) = x and I(x) = {x }.
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(3) If x ̸∈ cl(K ∩M), then η(x) is either an element of M or a limit
point of K ∩M from below (i.e., for every x′ < x, there exists a
y ∈ K ∩M such that x′ < y < x).

(4) If x ̸∈ cl(K ∩M), then ζ(x) is either an element of M or a limit
point of K ∩M from above.

Lemma 3.3. Let x ∈ J(K,M). Then either η(x) ̸∈ M or ζ(x) ̸∈ M .

Proof. Suppose not, i.e., η(x) ∈ M and ζ(x) ∈ M . By the elementarity
of M , since K is connected, there exists an x′ ∈ K ∩M such that η(x) <
x′ < ζ(x). This is a contradiction by the definition of η(x) and ζ(x). �

We can prove the following lemma, which means that the maximum
and minimum values of g on I(x̂) are attained at endpoints of I(K,M, x̂).

Lemma 3.4. Let x̂ ∈ J(K,M). Then

max g→(I(x̂)) = max g→(C(x̂))

min g→(I(x̂)) = min g→(C(x̂)).

In particular, if g(η(x̂)) = g(ζ(x̂)), then g is constant on I(x̂).

Proof. We shall prove it for max as the same proof works for min. Let
v = max g→(I(x̂)). Suppose v ̸= max g→(C(X)).

If η(x) ∈ M , let a = η(x). Otherwise, η(x) is a limit point of K ∩M
from below. So, there exists an a ∈ K ∩ M such that a < η(x) and
for every x ∈ [a, η(x)], g(x) < v. Similarly, if ζ(x) ∈ M , let b = ζ(x).
Otherwise, let b ∈ K ∩M such that b > ζ(x) and for every x ∈ [ζ(x), b],
g(x) < v. Then we have a, b ∈ K ∩M and for every x ∈ [a, b], if g(x) = v,
then η(x) < x < ζ(x).

Note that v = max g→([a, b]). Since a, b, g ∈ M , we have v ∈ M .
Since there exists an x ∈ [a, b] such that g(x) = v, by the elementarity
of M , there exists such an x ∈ M . By the previous paragraph, we have
η(x) < x < ζ(x). By the definition of η(x) and ζ(x), this implies x ̸∈ M .
This is a contradiction. �
Lemma 3.5. Let x̂ ∈ J(K,M) with g(x̂) ∈ M . Then g is constant on
I(x̂).

Proof. Let v = g(x̂). By Lemma 3.4, it suffices to show that g(η(x̂)) =
g(ζ(x̂)) = v.

We shall show g(η(x̂)) = v. Suppose not. If η(x̂) ∈ M , let a = η(x̂).
Otherwise, let a ∈ K ∩M such that a < η(x̂) and for every y ∈ [a, η(x̂)],
g(y) ̸= v. Let x = min { y ∈ K : y ≥ a and g(y) = v }. Then clearly a ≤
x ≤ x̂ and g(x) = v. Since a ∈ M , by elementarity, x ∈ M . Hence,
x ≤ η(x̂). But the definition of a implies g(x) ̸= v. This is a contradiction.

Similarly, we can show g(ζ(x̂)) = v, and hence g is constant on I(x̂). �
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Lemma 3.6. Let x̂ ∈ J(K,M). If η(x̂) ̸∈ M and g(η(x̂)) ∈ M , then g
is constant on I(x̂). Similarly, if ζ(x̂) ̸∈ M and g(ζ(x̂)) ∈ M , then g is
constant on I(x̂).

Proof. Let v = g(η(x̂)). Suppose that g is not constant on I(x̂). Then
g(ζ(x̂)) ̸= g(η(x̂)) = v. If ζ(x̂) ∈ M , then let b = ζ(x̂). Otherwise, let
b ∈ K∩M such that b ≥ ζ(x̂) and for every x ∈ [ζ(x̂), b], g(x) ̸= v. Let x0

be the maximum of all x ∈ K such that x ≤ b and g(x) = v. Then clearly
we have x0 ≤ b and g(x0) = v. By the definition of b, we have x0 < ζ(x̂).
Since g(η(x̂)) = v, we have x0 ≥ η(x̂). But by elementarity, we have
x0 ∈ M . Since η(x̂) ̸∈ M , we have x0 > η(x̂). This is a contradiction
since (η(x̂), ζ(x̂)) ∩M = ∅. �

Lemma 3.7. Let x̂ ∈ J(K,M) be so that g(x̂) ∈ J(L,M). Then

{ g(η(x̂)), g(ζ(x̂)) } = C(g(x̂)).

Proof. We first prove the following claim.
Claim. For every x ∈ (η(x̂), ζ(x̂)), g(x) ̸∈ M .
⊢ Suppose that there exists an x ∈ (η(x̂), ζ(x̂)) such that g(x) ∈ M . By

Lemma 3.5, g is constant on I(x) = I(x̂). Hence, g(x̂) = g(x) ∈ M . This
is a contradiction to g(x̂) ∈ J(L,M). ⊣ (Claim)

By the claim and Lemma 2.4, we have g→(I(x̂)) ⊆ I(g(x̂)). In par-
ticular, g(η(x̂)) ∈ I(g(x̂)). Since η(x̂) ∈ cl(K ∩ M), we have g(η(x̂)) ∈
cl(L ∩ M). Hence, g(η(x̂)) ∈ cl(L ∩ M) ∩ I(g(x̂)) = C(g(x̂)). Similarly,
we can show g(ζ(x̂)) ∈ C(g(x̂)).

If g(η(x̂)) = g(ζ(x̂)), then by Lemma 3.4, g is constant on I(x̂). Then
g(x̂) = g(η(x̂)) ∈ cl(L ∩M), which is a contradiction to the assumption
g(x̂) ∈ J(L,M). Thus, g(η(x̂)) ̸= g(ζ(x̂)). Since |C(g(x̂))| = 2, this
clearly implies { g(η(x̂)), g(ζ(x̂)) } = C(g(x̂)). �

4. f : K0 ×K1 → L

Throughout this section, we assume that K0, K1, and L are nowhere
real connected linear orders, f : K0 ×K1 → L is a continuous function,
and M is a countable elementary submodel of H(θ) with K0,K1, L ∈ M
for a regular cardinal θ with P(P(K0 ∪K1 ∪ L)) ∈ H(θ).

Lemma 4.1. Let x̂ ∈ J(K0,M) and ŷ ∈ cl(K1 ∩M). Then

max f→(I(x̂)× { ŷ }) = max { f(η(x̂), ŷ), f(ζ(x̂), ŷ) }
min f→(I(x̂)× { ŷ }) = min { f(η(x̂), ŷ), f(ζ(x̂), ŷ) } .

In particular, x 7→ f(x, ŷ) is constant on I(x̂) if and only if f(η(x̂), ŷ) =
f(ζ(x̂), ŷ).
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Proof. If ŷ ∈ M , then x 7→ f(x, ŷ) is a function lying in M . So Lemma
3.4 implies the conclusion.

Suppose ŷ is a limit point of K1 ∩M . Let v = max f→(I(x̂) × { ŷ }).
Suppose f(η(x̂), ŷ) < v and f(ζ(x̂), ŷ) < v. Then there exists x0 ∈
(η(x̂), ζ(x̂)) such that f(x0, ŷ) = v. Then there exist v0 ∈ L such that
max { f(η(x̂), ŷ), f(ζ(x̂), ŷ) } < v0 < v. Then there exists an open neigh-
borhood U of ŷ such that for every y ∈ U , f(η(x̂), y) < v0, f(ζ(x̂), y) < v0,
and f(x0, y) > v0. Let y ∈ U ∩M . Then by Lemma 3.4, since the map
x 7→ f(x, y) belongs to M , v0 < f(x0, y) ≤ max { f(η(x̂), y), f(ζ(x̂), y) } <
v0. This is a contradiction. �

Lemma 4.2. Let x̂ ∈ J(K0,M) and let ŷ be a limit point of K1 ∩ M
from above. Suppose that f(x̂, ŷ) ∈ J(L,M). Then there exists a c ∈ K1

such that c > ŷ and for every y ∈ [ŷ, c], f(η(x̂), y) = f(η(x̂), ŷ) and
f(ζ(x̂), y) = f(ζ(x̂), ŷ).

Proof. Since |C(f(x̂, ŷ))| ≤ 2 and f(x̂, ŷ) ∈ J(L,M), there exists a c ∈
K1 ∩M such that c > ŷ such that

|f→({ η(x̂) } × [ŷ, c]) ∩ C(f(x̂, ŷ))| ≤ 1

|f→({ ζ(x̂) } × [ŷ, c]) ∩ C(f(x̂, ŷ))| ≤ 1

f→({ x̂ } × [ŷ, c]) ⊆ int I(f(x̂, ŷ)).

Then there exist v, w ∈ C(f(x̂, ŷ)) such that for every y ∈ [ŷ, c], if
f(η(x̂), y) ∈ C(f(x̂, ŷ)), then f(η(x̂), y) = v, and if f(ζ(x̂), y) ∈ C(f(x̂, ŷ)),
then f(ζ(x̂), y) = w.

Claim 1. For every y ∈ [ŷ, c]∩M , { f(η(x̂), y), f(ζ(x̂), y) } = C(f(x̂, ŷ)).
⊢ Let y ∈ [ŷ, c]∩M . Then we have f(x̂, y) ∈ int I(f(x̂, ŷ)) ⊆ J(L,M).

Since y ∈ M , the map x 7→ f(x, y) belongs to M . By Lemma 3.7, we have
{ f(η(x̂), y), f(ζ(x̂), y) } = C(f(x̂, y)). Since f(x̂, y) ∈ int(I(f(x̂, ŷ))), we
have C(f(x̂, y)) = C(f(x̂, ŷ)). Thus,

{ f(η(x̂), y), f(ζ(x̂), y) } = C(f(x̂, ŷ)). ⊣ (Claim 1)

Claim 2. For every y ∈ [ŷ, c] ∩M , f(η(x̂), y) = v and f(ζ(x̂), y) = w.
⊢ By Claim 1, both f(η(x̂), y) and f(ζ(x̂), y) belong to C(f(x̂, ŷ)). By

the definition of v and w, we have f(η(x̂), y) = v and f(ζ(x̂), y) = w.
⊣ (Claim 2)

Claim 3. For every y ∈ [ŷ, c] ∩ cl(K1 ∩ M), f(η(x̂), y) = v and
f(ζ(x̂), y) = w.

⊢ If y ∈ M , then it is clear from Claim 2. Otherwise, y is a limit
point of K1∩M . By Claim 2, for every y1 ∈ K1∩M , f(η(x̂), y1) = v and
f(ζ(x̂), y1) = w. Since y is a limit point of K1∩M , we have f(η(x̂), y) = v
and f(ζ(x̂), y) = w. ⊣ (Claim 3)
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In particular, since ŷ is a limit point of K1 ∩ M , f(η(x̂), ŷ) = v and
f(ζ(x̂), ŷ) = w.

Now we shall show that for every y ∈ [ŷ, c], f(η(x̂), y) = v and f(ζ(x̂), y)
= w. If y ∈ cl(K1 ∩ M), then this is clear from Claim 3. Suppose not.
It is easy to see y ∈ J(K1,M). Since η(y), ζ(y) ∈ cl(K1 ∩ M), we have
f(η(x̂), η(y)) = f(η(x̂), ζ(y)) = v and f(ζ(x̂), η(y)) = f(ζ(x̂), ζ(y)) = w.
By Lemma 4.1, we have f(η(x̂), y) = v and f(ζ(x̂), y) = w. �

Lemma 4.3. Let x̂ ∈ J(K0,M) and ŷ ∈ cl(K1 ∩ M). Suppose that
f(x̂, ŷ) ∈ J(L,M). Then

{ f(η(x̂), ŷ), f(ζ(x̂), ŷ) } = C(f(x̂, ŷ)).

Proof. First, suppose ŷ ∈ M . Then the map x 7→ f(x, ŷ) is a function
from K0 into L lying in M. The conclusion follows from Lemma 3.7.

Now suppose ŷ is a limit point of K1 ∩M . Without loss of generality,
we may assume ŷ is a limit point of K1 ∩ M from above. By Lemma
4.2, there exists a c > ŷ such that for every y ∈ [ŷ, c], f(η(x̂), y) =
f(η(x̂), ŷ) and f(ζ(x̂), y) = f(ζ(x̂), ŷ). Let y ∈ [ŷ, c] ∩ M such that
f(x̂, y) ∈ int(I(f(x̂, ŷ)). Then, since the map x 7→ f(x, y) belongs to M
and f(x̂, y) ∈ J(L,M), by Lemma 3.7, we have { f(η(x̂), y), f(ζ(x̂), y } =
C(f(x̂, y)) = C(f(x̂, ŷ)). Hence, { f(η(x̂), ŷ), f(ζ(x̂), ŷ) } = C(f(x̂, ŷ)).

�

Lemma 4.4. Let x̂ ∈ J(K0,M) and ŷ ∈ cl(K1 ∩M). If f(η(x̂), ŷ) ∈ M
and η(x̂) ̸∈ M , then for every x ∈ I(x̂), f(x, ŷ) = f(x̂, ŷ).

Proof. If ŷ ∈ M , then the map x 7→ f(x, ŷ) belongs to M . So, by Lemma
3.6, for every x ∈ I(x̂), f(x, ŷ) = f(x̂, ŷ).

Now suppose ŷ ̸∈ M . Since ŷ ∈ cl(K1 ∩ M), ŷ is a limit point of
K1 ∩M . Without loss of generality, we may assume ŷ is a limit point of
K1 ∩M from above.

Suppose that there exists an x ∈ I(x̂) such that f(x, ŷ) ̸= f(x̂, ŷ).
Since L is nowhere real, there exists an x0 ∈ I(x̂) such that f(x0, ŷ) ∈
J(L,M). By Lemma 4.2, there exists a c > ŷ such that for every y ∈ [ŷ, c],
f(η(x̂), y) = f(η(x̂), ŷ) and f(ζ(x̂), y) = f(ζ(x̂), ŷ). Let y ∈ [ŷ, c] ∩ M .
Then the map x 7→ f(x, y) belongs to M . Moreover, η(x̂) ̸∈ M and
f(η(x̂), y) ∈ M . By Lemma 3.6, we have f(η(x̂), y) = f(ζ(x̂), y). Hence,
f(η(x̂), ŷ) = f(ζ(x̂), ŷ). Then Lemma 4.1 implies for every x ∈ I(x̂),
f(x0, ŷ) = f(η(x̂), ŷ) ̸∈ J(L,M). This is a contradiction. �

Lemma 4.5. Let x̂ ∈ J(K0,M) and ŷ ∈ J(K1,M). Let U be an open
subset of L such that f→∂(I(x̂) × I(ŷ)) ⊆ U . Then there exist a, b ∈
K0 ∩ M and c, d ∈ K1 ∩ M such that a ≤ η(x̂) < ζ(x̂) ≤ b, c ≤ η(ŷ) <
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ζ(ŷ) ≤ d, and for every x ∈ (a, b) and y ∈ (c, d), if f(x, y) ̸∈ U , then
⟨x, y⟩ ∈ Iint(x̂)× Iint(ŷ).

Note that for every x̂ ∈ J(K0,M) and ŷ ∈ J(K1,M), ∂(I(x̂)× I(ŷ)) is
the set of all ⟨x, y⟩ ∈ I(x̂)× I(ŷ) such that either x ∈ C(x̂) or y ∈ C(ŷ).

Proof. For every ⟨x, y⟩ ∈ ∂(I(x̂) × I(ŷ)), let a⟨x,y⟩, b⟨x,y⟩ ∈ K0 and let
c⟨x,y⟩, d⟨x,y⟩ ∈ K1 be so that a⟨x,y⟩ < x < b⟨x,y⟩, c⟨x,y⟩ < y < d⟨x,y⟩,
and f→([a⟨x,y⟩, b⟨x,y⟩]× [c⟨x,y⟩, d⟨x,y⟩]) ⊆ U . Let U⟨x,y⟩ = (a⟨x,y⟩, b⟨x,y⟩)×
(c⟨x,y⟩, d⟨x,y⟩). Since ∂(I(x̂)×I(ŷ)) is compact, there exists a finite subset
{ ⟨x0, y0⟩, . . . , ⟨xk−1, yk−1⟩ } of ∂(I(x̂)× I(ŷ)) such that ∂(I(x̂)× I(ŷ)) ⊆∪

l<k U⟨xl,yl⟩. For each l < k, define U ′
l = U⟨xl,yl⟩, a′l = a⟨xl,yl⟩, b′l =

b⟨xl,yl⟩, c
′
l = c⟨xl,yl⟩, and d′l = d⟨xl,yl⟩.

Claim 1. None of { a′l | l < k and a′l < η(x̂) }, { b′l | l < k and b′l > ζ(x̂) },
{ c′l | l < k and c′l < η(ŷ) }, and { d′l | l < k and d′l > ζ(ŷ) } is empty.

⊢ Since ⟨η(x̂), η(ŷ)⟩ ∈
∪

l<k U
′
l , there exists an l < k such that

⟨η(x̂), η(ŷ)⟩ ∈ U ′
l . Thus, { a′l | l < k and a′l < η(x̂) } is non-empty. Simi-

larly, we can show that other three sets are non-empty. ⊣ (Claim 1)
Claim 2. There exist a, b ∈ K0 ∩M and c, d ∈ K1 ∩M such that

• max { a′l | l < k and a′l < η(x̂) } < a ≤ η(x̂),
• ζ(x̂) ≤ b < max { b′l | l < k and b′l > ζ(x̂) },
• max { c′l | l < k and c′l < η(ŷ) } < c ≤ η(ŷ),
• ζ(ŷ) ≤ d < max { d′l | l < k and d′l > ζ(ŷ) },
• if η(x̂) ∈ M , then a = η(x̂),
• if ζ(x̂) ∈ M , then b = ζ(x̂),
• if η(ŷ) ∈ M , then c = η(ŷ), and
• if ζ(ŷ) ∈ M , then d = ζ(ŷ).

⊢ We shall only define a. Similar constructions work for b, c, and d.
If η(x̂) ∈ M , then let a = η(x̂).

Suppose η(x̂) ̸∈ M . Then η(x̂) is a limit point of K0 ∩ M from
below. By Claim 1, { a′l | l < k and a′l < η(x̂) } is non-empty. Clearly,
max { a′l | l < k and a′l < η(x̂) } < η(x̂). Since η(x̂) is a limit point of
K0 ∩M from below, there exists an a ∈ K0 ∩M such that

max { a′l | l < k and a′l < η(x̂) } < a ≤ η(x̂). ⊣ (Claim 2)

Claim 3. (a, b)× (c, d) ⊆ (Iint(x̂)× Iint(ŷ)) ∪
∪

l<k U
′
l .

⊢ Let ⟨x, y⟩ ∈ [a, b] × [c, d]. Suppose ⟨x, y⟩ ̸∈ Iint(x̂) × Iint(ŷ). It
suffices to show that there exists an l < k such that ⟨x, y⟩ ∈ U ′

l .
We shall only prove the case in which x ≤ η(x̂) as other cases can be

proved similarly.
Case 1. y ≤ η(x̂).
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There exists an l < k such that ⟨η(x̂), η(ŷ)⟩ ∈ U ′
l . Then we have

a′l < η(x̂) < b′l and c′l < η(ŷ) < d′l. So a′l ≤ a and c′l ≤ c. Thus, we have
a′l ≤ a ≤ x < η(x̂) < b′l and c′l ≤ c ≤ y < η(ŷ) < d′l. So ⟨x, y⟩ ∈ U ′

l .
Case 2. η(ŷ) < y < ζ(ŷ).

There exists an l < k such that ⟨η(x̂), y⟩ ∈ U ′
l . Then we have a′l <

η(x̂) < b′l, and c′l < y < d′l. Thus, we have a′l ≤ a < x ≤ η(x̂) < b′l. So
⟨x, y⟩ ∈ U ′

l .
Case 3. y ≥ ζ(ŷ).

⊢ Similar to Case 1. ⊣ (Claim 3)
Now, we shall show that a, b, c, and d witness the conclusion. Let

x ∈ (a, b) and y ∈ (c, d) be so that f(x, y) ̸∈ U . By the definition of U ′
l ,

⟨x, y⟩ ̸∈
∪

l<k U
′
l . By Claim 3, we have ⟨x, y⟩ ∈ Iint(x̂)× Iint(ŷ). �

Lemma 4.6. Let x̂ ∈ J(K0,M) and ŷ ∈ J(K1,M). Then

max f→(I(x̂)× I(ŷ)) = max f→(C(x̂)× C(ŷ))

min f→(I(x̂)× I(ŷ)) = min f→(C(x̂)× C(ŷ)).

Proof. Let v = max f→(I(x̂)× I(ŷ)).
Claim. v ∈ f→(∂(I(x̂)× I(ŷ)))

⊢ Suppose not, i.e., v ̸∈ f→(∂(I(x̂) × I(ŷ))). Then by Lemma 4.5,
there exist a, b ∈ K0 ∩ M and c, d ∈ K1 ∩M with a ≤ η(x̂) < ζ(x̂) ≤ b
and c ≤ η(ŷ) < ζ(ŷ) ≤ d such that for every ⟨x, y⟩ ∈ [a, b] × [c, d],
if f(x, y) = v, then ⟨x, y⟩ ∈ Iint(x̂) × Iint(ŷ). Note that there exists
⟨x, y⟩ ∈ [a, b] × [c, d] such that f(x, y) = v. By the elementarity of M ,
there exists such an ⟨x, y⟩ ∈ M . By the definition of a, b, c and d, we have
⟨x, y⟩ ∈ Iint(x̂)×Iint(ŷ). This is a contradiction to the definition of Iint(x̂)
and Iint(ŷ). ⊣ (Claim)

Let ⟨x0, y0⟩ ∈ ∂(I(x̂) × I(ŷ)) be so that f(x0, y0) = v. Then at least
one of x0 = η(x̂), x0 = ζ(x̂), y0 = η(ŷ) and y0 = ζ(ŷ) holds. For example,
suppose y0 = η(ŷ). Then v = max f→(I(x̂)×{ η(ŷ) }). By Lemma 4.1, we
have either f(η(x̂), η(ŷ)) = v or f(ζ(x̂), η(ŷ)) = v. By a similar argument,
we can see that v ∈ f→(C(x̂)× C(ŷ)) in the other three cases, too. �

Lemma 4.7. Let x̂ ∈ J(K0,M) and ŷ ∈ J(K1,M) be such that f(x̂, ŷ) ∈
M . Then for every x ∈ I(x̂) and y ∈ I(ŷ), f(x, y) = f(x̂, ŷ).

Proof. Let v = f(x̂, ŷ).
Case 1. η(x̂), η(ŷ) ∈ M .
Then ζ(x̂) is a limit point of K0 ∩M from above, and ζ(x̂) is a limit

point of K1 ∩M from above.
Claim 1. f(ζ(x̂), ζ(ŷ)) = v.
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⊢ It suffices to show that for every b ∈ K0 and d ∈ K1, if ζ(x̂) < b
and ζ(ŷ) < d, then there exist x ∈ [ζ(x̂), b) and y ∈ [ζ(ŷ), d) such that
f(x, y) = v. Let b ∈ K0 and d ∈ K1 with ζ(x̂) < b and ζ(ŷ) < d. Since
ζ(x̂) is a limit point of K0 ∩ M from above and ζ(ŷ) is a limit point of
K1 ∩M from above, there exist b′ ∈ (ζ(x̂), b)∩M and d′ ∈ (ζ(ŷ), d)∩M .
Since ‘∃x ∈ (η(x̂), b′)∃ y ∈ (η(ŷ), d′) (f(x, y) = v)’ holds in V , it also
holds in M . So there exist x ∈ (η(x̂), b′)∩M and y ∈ (η(ŷ), d′)∩M such
f(x, y) = v. However, by the definition of ζ(x̂) and ζ(ŷ), we have ζ(x̂) ≤ x
and ζ(ŷ) ≤ y. ⊣ (Claim 1.)

By Lemma 4.4, since ζ(ŷ) ̸∈ M and f(ζ(x̂), ζ(ŷ)) = v ∈ M , for every
y ∈ I(ŷ), f(ζ(x̂), y) = v. In particular, f(ζ(x̂), η(ŷ)) = v.

By a similar argument, we can show that for every x ∈ I(x̂), f(x, ζ(ŷ)) =
v. In particular, f(η(x̂), ζ(ŷ)) = v.

Since f(ζ(x̂), η(ŷ)) = v, by Lemma 4.4, f(η(x̂), η(ŷ)) = v. By Lemma
4.6, for every x ∈ I(x̂) and y ∈ I(ŷ), f(x, y) = v.

Case 2. η(x̂) ∈ M and η(ŷ), ζ(ŷ) ̸∈ M .

Claim 2. For every b ∈ K0 and c, d ∈ K1 with ζ(x̂) < b and
c < η(ŷ) < ζ(ŷ) < d, there exists ⟨x, y⟩ ∈ K0×K1 such that ζ(x̂) < x < b,
y ∈ (c, η(ŷ)) ∪ (ζ(ŷ), d), and f(x, y) = v.

⊢ By Lemma 3.3, we have ζ(x̂) ̸∈ M , and hence ζ(x̂) is a limit point
of K0 ∩ M from above. So, without loss of generality, we may assume
b ∈ M . Moreover, since η(ŷ), ζ(ŷ) ̸∈ M , η(ŷ) is a limit point of K1 ∩M
from below and ζ(ŷ) is a limit point of K1∩M from above. Thus, without
loss of generality, we may assume c, d ∈ M .

Since ‘∃ ⟨x, y⟩ ∈ K0 ×K1(η(x̂) < x < b ∧ c < y < d ∧ f(x, y) = v)’ is
true in V , there exist ⟨x, y⟩ ∈ (K0 × K1) ∩ M such that η(x̂) < x < b,
c < y < d, and f(x, y) = v. By the definition of η(x̂) and ζ(x̂), since
x ∈ M , we have x ̸∈ (η(x̂), ζ(x̂)], and hence ζ(x̂) < x < b. Similarly, by
the definition of η(ŷ) and ζ(ŷ), since y ∈ M , we have y ̸∈ [η(ŷ), ζ(ŷ)];
hence, y ∈ (c, η(ŷ))∪ (ζ(ŷ), d). ⊣ (Claim 2.)

By Claim 2, it is easy to see that either f(ζ(x̂), η(ŷ)) = v or f(ζ(x̂), ζ(ŷ))
= v. By the same argument as in Case 1, we can show that for every
y ∈ I(ŷ), f(ζ(x̂), y) = v. Since f(ζ(x̂), η(ŷ)) = f(ζ(x̂), η(ŷ)) = v and
ζ(x̂) ̸∈ M , by Lemma 4.4, for every x ∈ I(x̂) ∩M , we have f(x, η(ŷ)) =
f(x, ζ(ŷ)) = v. In particular, we have f(η(x̂), η(ŷ)) = f(η(x̂), ζ(ŷ)) =
f(ζ(x̂), η(ŷ)) = f(ζ(x̂), ζ(ŷ)) = v. By Lemma 4.6, for every x ∈ I(x̂) and
y ∈ I(ŷ), we have f(x, y) = v.

Case 3. η(x̂), ζ(x̂), η(ŷ), ζ(ŷ) ∈ M .

As in Case 2, we can show the following claim.
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Claim 3. For every a, b ∈ K0 and c, d ∈ K1 with a < η(x̂) <
ζ(x̂) < b and c < η(ŷ) < ζ(ŷ) < d, there exist x ∈ (a, η(x̂))∪ (ζ(x̂), b) and
y ∈ (c, η(ŷ)) ∪ (ζ(ŷ), d) such that f(x, y) = v.

This implies that at least one of f(η(x̂), η(ŷ)); f(η(x̂), ζ(ŷ)); f(ζ(x̂), η(ŷ));
and f(ζ(x̂), ζ(ŷ)) is equal to v. In all cases, we can apply Lemma 4.4 sev-
eral times to show that f(η(x̂), η(ŷ)) = f(η(x̂), ζ(ŷ)) = f(ζ(x̂), η(ŷ)) =
f(ζ(x̂), ζ(ŷ)) = v. �

By the previous lemma, we can easily see the following lemma.

Lemma 4.8. Let x̂ ∈ J(K0,M) and ŷ ∈ J(K1,M). If f is not constant
on I(x̂)× I(ŷ), then

f→(I(x̂)× I(ŷ)) = I(f(x̂, ŷ))

f→(C(x̂)× C(ŷ)) = C(f(x̂, ŷ)).

Proof. Suppose that f is not constant on I(x̂)×I(ŷ). Then without loss of
generality, we may assume f(x̂, ŷ) ∈ J(L,M). By Lemma 4.7, for every
⟨x, y⟩ ∈ I(x̂) × I(ŷ), f(x, y) ̸∈ M . Hence, we have f→(I(x̂) × I(ŷ)) ⊆
I(f(x̂, ŷ)).

It is easy to see f→(C(x̂)×C(ŷ)) ⊆ C(f(x̂, ŷ)). But if f→(C(x̂)×C(ŷ))
is a singleton, then by Lemma 4.6, f is constant on I(x̂)× I(ŷ), which is
a contradiction to the assumption. So f→(C(x̂)×C(ŷ)) = C(f(x̂, ŷ)). It
follows that f→(I(x̂)× I(ŷ)) = I(f(x̂, ŷ)). �

5. f : K0 ×K1 → L0 × L1

Let K0, K1, L0, and L1 be connected linearly ordered spaces. Let
f : K0 ×K1 → L0 × L1 be an injective continuous function. Let g0 and
g1 be so that f(x, y) = ⟨g0(x, y), g1(x, y)⟩ for every ⟨x, y⟩ ∈ K0 ×K1. Let
M be a countable elementary submodel of H(θ) for some regular cardinal
θ with P(P(K0 ∪K1 ∪ L0 ∪ L1)) ∈ H(θ).

Lemma 5.1. Let x̂ ∈ J(K0,M) and ŷ ∈ J(K1,M). Then for every
i < 2, gi is not constant on I(x̂)× I(ŷ).

Proof. Suppose not, i.e., there exists i < 2 such that gi is constant on
I(x̂)× I(ŷ).

Since f is injective, we have either g1−i(η(x̂), η(ŷ)) < g1−i(ζ(x̂), η(ŷ))
or g1−i(η(x̂), η(ŷ)) > g1−i(ζ(x̂), η(ŷ)). Without loss of generality, we may
assume g1−i(η(x̂), η(ŷ)) < g1−i(ζ(x̂), η(ŷ)).

Claim. g1−i(ζ(x̂), η(ŷ)) < g1−i(ζ(x̂), ζ(ŷ))

⊢ Suppose not. Then g1−i(ζ(x̂), η(ŷ)) > g1−i(ζ(x̂), ζ(ŷ)). If
g1−i(ζ(x̂), η(ŷ)) < g1−i(η(x̂), η(ŷ)), then by Lemma 2.4, there exists y ∈
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(η(ŷ), ζ(ŷ)) such that g1−i(ζ(ŷ), y) = g1−i(η(x̂), η(ŷ)). This is a contradic-
tion to the assumption that f is injective. Similarly, we can derive a con-
tradiction when g1−i(ζ(x̂), η(ŷ)) > g1−i(η(x̂), η(ŷ)). ⊣ (Claim.)

Similarly, we can prove g1−i(η(x̂), η(ŷ)) < g1−i(ζ(x̂), η(ŷ)) <
g1−i(ζ(x̂), ζ(ŷ)) < g1−i(η(x̂), ζ(ŷ)) < g1−i(η(x̂), η(ŷ)). This is a contra-
diction. �

Lemma 5.2. Let x̂ ∈ J(K0,M) and ŷ ∈ J(K1,M). Then there exists
i < 2 such that for every x ∈ I(x̂),

gi(x, η(ŷ)) = gi(η(x̂), η(ŷ)) ̸= gi(η(x̂), ζ(ŷ)) = gi(x, ζ(ŷ))

and for every y ∈ I(ŷ),

g1−i(η(x̂), y) = g1−i(η(x̂), η(ŷ)) ̸= g1−i(ζ(x̂), η(ŷ)) = g1−i(ζ(x̂), y).

Proof. By Lemma 4.1, it suffices to show that there exists i < 2 such that

gi(η(x̂), η(ŷ)) = gi(η(x̂), ζ(ŷ)) ̸= gi(ζ(x̂), η(ŷ)) = gi(ζ(x̂), ζ(ŷ))

g1−i(η(x̂), η(ŷ)) = g1−i(ζ(x̂), η(ŷ)) ̸= g1−i(η(x̂), ζ(ŷ)) = g1−i(ζ(x̂), ζ(ŷ)).

By Lemma 5.1, for every i < 2, we may assume gi(x̂, ŷ) ∈ J(Li,M). For
each i < 2, let vi = gi(x̂, ŷ). By Lemma 4.8, for every i < 2, gi→(C(x̂)×
C(ŷ)) = C(vi), which means that

{ f(η(x̂), η(ŷ)), f(η(x̂), ζ(ŷ)), f(ζ(x̂), η(ŷ)), f(ζ(x̂), ζ(ŷ)) }
= { ⟨η(v0), η(v1)⟩, ⟨η(v0), ζ(v1)⟩, ⟨ζ(v0), η(v1)⟩, ⟨ζ(v0), ζ(v1)⟩ } .

By reversing the order of L0 and/or L1 if necessary, we may assume
f(η(x̂), η(ŷ)) = ⟨η(v0), η(v1)⟩.

Claim 1. If for every i < 2, gi(η(x̂), η(ŷ)) ̸= gi(ζ(x̂), η(ŷ)), then
η(ŷ) ∈ M

⊢ Suppose η(ŷ) ̸∈ M . Then η(ŷ) is a limit point of K1 ∩ M from
below. By Lemma 4.2, there exists c ∈ K1 such that c < η(ŷ) and for
every y ∈ K1 and i < 2, if c < y < η(ŷ), then gi(η(x̂), y) = gi(η(x̂), η(ŷ))
and gi(ζ(x̂), y) = gi(ζ(x̂), η(ŷ)). Clearly, this contradicts the assumption
that f is injective. ⊣ (Claim 1.)

Claim 2. There exists i < 2 such that gi(η(x̂), η(ŷ)) = gi(ζ(x̂), η(ŷ)).
⊢ Suppose not. By Claim 1, η(ŷ) ∈ M . We also have f(ζ(x̂), η(ŷ)) =

⟨ζ(v0), ζ(v1)⟩. Then we have either ‘f(η(x̂), ζ(ŷ)) = ⟨η(v0), ζ(v1)⟩ and
f(ζ(x̂), ζ(ŷ)) = ⟨ζ(v0), η(v1)⟩’ or vice versa. In either case, we have
gi(η(x̂), ζ(ŷ)) ̸= gi(ζ(x̂), ζ(ŷ)) for every i < 2. However, by the same
argument as in Claim 1, we can show ζ(ŷ) ∈ M . This is a contradiction
to Lemma 3.3. ⊣ (Claim 2.)
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By the same argument, there exist j, k, l < 2 such that

gj(ζ(x̂), η(ŷ)) = gj(ζ(x̂), ζ(ŷ)),

gk(ζ(x̂), ζ(ŷ)) = gk(η(x̂), ζ(ŷ)),

gl(η(x̂), ζ(ŷ)) = gl(η(x̂), η(ŷ)).

But since f is injective, it is easy to see i = k ̸= j = l. �
Lemma 5.3. Let x̂ ∈ J(K0,M) and ŷ ∈ J(K1,M). Then there ex-
ists i < 2 such that for every y ∈ K1 with ŷ < y ≤ sup(K1 ∩ M), we
have gi(η(x̂), ŷ) = gi(η(x̂), y), gi(ζ(x̂), ŷ) = gi(ζ(x̂), y), and gi(η(x̂), ŷ) ̸=
gi(ζ(x̂), ŷ).

Proof. By Lemma 5.2, there exists i < 2 such that for every y ∈ K1, if
ŷ ≤ y ≤ ζ(y0), then gi(η(x̂), y) = gi(η(x̂), ŷ), and gi(ζ(x̂), y) = gi(ζ(x̂), ŷ).
Moreover, gi(η(x̂), ŷ) ̸= gi(ζ(x̂), ŷ).

Now, we shall show that for every y ∈ K1, if ŷ ≤ y < sup(K1 ∩ M),
then gi(η(x̂), y) = gi(η(x̂), ŷ) and gi(ζ(x̂), y) = gi(ζ(x̂), ŷ). Suppose not.
Let y1 be the infimum of y ∈ K1 with y ≥ ŷ such that either gi(η(x̂), y) ̸=
g(η(x̂), ŷ) or gi(ζ(x̂), y) ̸= g(ζ(x̂), y0). Note gi(η(x̂), y1) = g(η(x̂), ŷ) and
gi(ζ(x̂), y1) = g(ζ(x̂), ŷ).

Case 1. y1 is a limit point of K1 ∩M from above.
Since gi(η(x̂), y1) = gi(η(x̂), ŷ) ̸= gi(ζ(x̂), ŷ) = gi(ζ(x̂), y1), there exists

x0 ∈ I(x̂) such that gi(x0, y1) ∈ J(Li,M). So, by Lemma 4.2, there
exists y2 ∈ K1 such that y1 < y2 and for every y ∈ [y1, y2], gi(η(x̂), y) =
gi(η(x̂), y1) and gi(η(x̂), y) = gi(η(x̂), y1). This is a contradiction to the
definition of y1.

Case 2. y1 is a limit point of K1 ∩M from below, but not from above.
Let y2 = inf { y ∈ K1 ∩M | y > y1 }. By Lemma 5.2, there exists j < 2

so that gj(η(x̂), y1) = gj(ζ(x̂), y1), and for every y ∈ [y1, y2], g1−j(η(x̂), y)
= g1−j(η(x̂), y1) and g1−j(ζ(x̂), y) = g1−j(ζ(x̂), y1). Since gi(η(x̂), y1) ̸=
gi(ζ(x̂), y1), we have i ̸= j, and hence 1 − j = i. So for every y ∈
[y1, y2], gi(η(x̂), y) = gi(η(x̂), y1) and gi(ζ(x̂), y) = gi(ζ(x̂), y1). This is a
contradiction to the definition of y1.

Case 3. y1 is a limit point of K1 ∩ M neither from above nor from
below.

Then y1 ∈ J(K1,M). We have gi(η(x̂), η(y1)) = gi(η(x̂), ŷ) ̸=
gi(ζ(x̂), ŷ) = gi(ζ(x̂), η(y1)). By Lemma 5.2, there exists j < 2 such that
gj(η(x̂), η(y1)) = gj(ζ(x̂), η(y1), and for every y ∈ I(y1), g1−j(η(x̂), y) =
g1−j(η(x̂), η(y1)) = g1−j(η(x̂), ŷ) and g1−j(ζ(x̂), y) = g1−j(ζ(x̂), η(y1)) =
g1−j(ζ(x̂), ŷ). Since gi(η(x̂), η(y1)) ̸= gi(ζ(x̂), η(y1)), we have j ̸= i, and
hence 1 − j = i. So for every y ∈ I(y1), gi(η(x̂), y) = gi(η(x̂), ŷ) and
gi(ζ(x̂), y) = gi(ζ(x̂), ŷ). This is a contradiction to the definition of y1. �
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Lemma 5.4. Let x̂ ∈ J(K0,M). Then there exists i < 2 such that, for
every y, y′ ∈ (inf(K1∩M), sup(K1∩M)), we have gi(η(x̂), y) = gi(η(x̂), y

′)
and gi(ζ(x̂), y) = gi(ζ(ŷ), y

′)

Proof. Let ŷ ∈ J(K1,M) be arbitrary. By Lemma 5.3, there exists i <
2 such that for every y ∈ (ŷ, sup(K1 ∩ M)), gi(η(x̂), y) = gi(η(x̂), ŷ),
gi(ζ(x̂), y) = gi(ζ(x̂), ŷ), and gi(η(x̂), ŷ) ̸= gi(ζ(x̂), ŷ).

Now, it suffices to show that for every y0 ∈ (inf(K1∩M), sup(K1∩M)),
we have gi(η(x̂), y0) = gi(η(x̂), ŷ) and gi(ζ(x̂), y0) = gi(ζ(ŷ), ŷ). It is
trivial if y0 ≥ ŷ. So assume y0 < ŷ.

Let ŷ′ ∈ J(K1,M) be so that ŷ′ < y0. By Lemma 5.3, there exists
j < 2 such that for every y ∈ (ŷ′, sup(K1 ∩ M)), we have gj(η(x̂), y) =
gj(η(x̂), ŷ

′), and gj(ζ(x̂), y) = gj(ζ(x̂), ŷ
′). Since ŷ′ < y0 < ŷ, we have

gj(η(x̂), y0) = gj(η(x̂), ŷ) = gj(η(x̂), ŷ
′) and gj(ζ(x̂), y0) = gj(ζ(x̂), ŷ) =

gj(ζ(x̂), ŷ
′).

Now it suffices to show that i = j. Suppose not. Let y ∈ (ŷ′, sup(K1 ∩
M)). Then gj(η(x̂), y) = gj(η(x̂), ŷ) = gj(η(x̂), ŷ

′) and gi(η(x̂), y) =
gi(η(x̂), ŷ). So f(η(x̂), y) = f(η(x̂), ŷ). This is a contradiction to the
assumption that f is injective. �

6. Proof of the Main Theorem

Let K0, K1, L0, L1, f , g0, and g1 be as in the previous section. Now
we do not fix M .

Lemma 6.1. For every ⟨x̂, ŷ⟩ ∈ K0 × K1, there exists i < 2 such that,
for every y ∈ K1, gi(x̂, y) = gi(x̂, ŷ).

Proof. Let x̂ ∈ K0 and ŷ ∈ K1. By way of contradiction, we assume that
for every i < 2, there exists yi ∈ K1 such that gi(x̂, yi) ̸= gi(x̂, ŷ).

Let M be a countable elementary submodel of H(θ) with K0, K1, L0,
L1, f , g0, g1, x̂, ŷ, y0, and y1 ∈ M .

Since K0 is nowhere real, x̂ is a limit point of J(K0,M) from above.
Hence, there exists x̂′ ∈ J(K0,M) such that for every i < 2, gi(x̂′, yi) ̸=
gi(x̂

′, ŷ).
By Lemma 5.4, there exists i < 2 such that, for every y ∈ (inf(K1 ∩

M), sup(K1 ∩ M)), we have gi(x̂
′, y) = gi(x̂

′, ŷ). But then gi(x̂
′, yi) =

gi(x̂
′, ŷ), which is a contradiction. �

We can finally prove the main theorem.

Proof of Theorem 1.4. By Lemma 6.1, for every x ∈ K0, there exists
ix < 2 such that for every y, y′ ∈ K1, gix(x, y) = gix(x, y

′). Similarly,
for every y ∈ K1, there exists jy < 2 such that, for every x, x′ ∈ K0,
gjy (x, y) = gjy (x

′, y). Now it suffices to show there exists i ̸= j < 2 such
that, for x ∈ K0, ix = i, and, for every y ∈ K1, jy = j.



TWO CONNECTED NOWHERE REAL LINEARLY ORDERED SPACES 333

Let y ∈ K1 be arbitrary and let j = jy. We shall show that for every
x ∈ K0, ix ̸= j. Suppose not, i.e., ix = j. Let a, b ∈ K0 be so that a < x <
b and c, d ∈ K1 so that c < y < d. Since j = jy = ix, we have gj(a, y) =
gj(b, y) = gj(x, c) = gj(x, d) = gj(x, y). Since f is injective, none of
g1−j(a, y), g1−j(b, y), g1−j(x, c), and g1−j(x, d) is equal to g1−j(x, y). So
either there exist two of them that are greater than g1−j(x, y), or there
exist two of them that are smaller than g1−j(x, y). For example, suppose
g1−j(a, y) > g1−j(x, c) > g1−j(x, y). By the intermediate value theorem,
there exists a′ ∈ K0 such that a < a′ < x and g1−j(a

′, y) = g1−j(x, c).
Then f(a′, y) = f(x, c), which is a contradiction to the injectivity of f . �

7. Open questions

We can also prove the following theorem that extends Theorem 1.4 to
any finite number of connected linearly ordered spaces though the proof
is complicated.

Theorem 7.1. Let K0, K1, . . . , Kn−1, L0, L1, . . . , Ln−1 be connected
nowhere real linearly ordered spaces, and let f : Πi<nKi → Πi<nLi be a
continuous injection. Then f is coordinate-wise.

A paper about this result is in preparation.
Theorem 1.4 demonstrates that the situation is totally different when

we use connected nowhere real linearly ordered spaces instead of R. Hence,
we may ask the following broad question.

Question 7.2. What theorems about R can be extended to connected
linearly ordered spaces?

Considering the lemmas proved in this article, it seems very unlikely
that any similar theorems about R can be generalized to connected lin-
early ordered spaces.

While we heavily relied on linear orders in this article, we have no
evidence that they are essential. This means that the following question
is still wide open.

Question 7.3. Can we weaken the assumption that K0, K1, L0, and L1

are linearly ordered spaces? For example, what if they are 1-dimensional
in some sense?
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