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A GEOMETRIC PROOF OF
THE STRUCTURE THEOREM FOR

CYCLIC SPLITTINGS OF FREE GROUPS

CHRISTOPHER H. CASHEN

Abstract. We give a geometric proof of a well-known theorem
that describes splittings of a free group as an amalgamated product
or HNN extension over the integers. The argument generalizes to
give a similar description of splittings of a virtually free group over
a virtually cyclic group.

1. Introduction

This paper describes one-edge splittings of free groups over (infinite)
cyclic subgroups. Conversely, it describes when two free groups can be
amalgamated along a cyclic subgroup to form a free group, or when an
HNN-extension of a free group along a cyclic subgroup is free.

Theorem 1.1 (Shenitzer [17], Stallings [19], Swarup [20]). Let A and B
be finitely generated free groups, and let C be a cyclic group.

• G = A ∗C B is free if and only if one of the injections of C into
A and B maps C onto a free factor of the vertex group.
• G = A∗C is free if and only if, up to A-conjugation, the edge
injections map C into independent free factors of A, and one of
them is onto its factor.

This theorem is well known. The amalgamated product case is a the-
orem of Abe Shenitzer [17]. The HNN case follows from a theorem of
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G. A. Swarup [20], who proves a more general theorem for splittings of
free groups over free subgroups. Swarup attributes the case of cyclic
splittings to Stallings. A published version of Stallings’ proof appears
later [19]. A simple topological proof appears in an unpublished paper of
Mladen Bestvina and Mark Feighn [1, Lemma 4.1]. Generalized versions
appear in work of Larsen Louder [11] and Guo-An Diao and Feighn [6].

The “if” direction of the theorem is easy. The “only if” direction we
prove geometrically. We build a geometric model X for the group G.
The amalgamated cyclic subgroup is a quasi-geodesic in this model. We
show that this quasi-geodesic can be continuously deformed to avoid any
compact set. This shows that the two distinct endpoints at infinity of the
quasi-geodesic are contained in the same end of X. Therefore, the group
G is not even virtually free, since then X would be a quasi-tree and every
end of X would contain a single boundary point. This proof generalizes
to virtually free groups.

Theorem 1.2. Let A and B be finitely generated virtually free groups,
and let C be a virtually cyclic group.

• G = A ∗C B is virtually free if and only if one of the injections of
C into A and B maps C onto a factor of the vertex group.

• G = A∗C is virtually free if and only if, up to A-conjugation, the
edge injections map C into independent factors of A, and one of
them is onto its factor.

We call an infinite subgroup H of a group G a factor if H is a vertex
group in a graph of groups decomposition of G with finite edge groups,
and we call two factors independent if they are the vertex groups in the
same graph of groups decomposition of G with finite edge groups.

Theorem 1.2 can also be derived from more general machinery for
hyperbolic-elliptic splittings; see, for example, [6, Theorem 7.2]. The
proof given here is different, and is elementary, other than the fact that
a group is virtually free if and only if it is a quasi-tree.

Gilbert Levitt has pointed out that some virtually free groups do not
have any virtually cyclic factors according to our definition. An example
is Z/2Z ∗ Z/3Z; see Example 4.8. Consequently, no HNN extension of
Z/2Z ∗Z/3Z over a virtually cyclic group is ever virtually free, nor is any
amalgam of two copies of Z/2Z ∗ Z/3Z over a virtually cyclic group.

2. Preliminaries

We first recall some preliminary material about Whitehead graphs,
quasi-trees, and geometric models for graphs of groups.
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2.1. Free groups and Whitehead graphs.

Let F = Fn be a finite rank free group. For f ∈ F , let f denote
the inverse element. A free generating set B = {b1, . . . , bn} is called a
basis. A multiword w is a finite list of elements in F . A multiword
w = {w1, . . . , wk} is basic if there exist elements fi ∈ F such that {f iwifi}
is a subset of a basis. An element is indivisible if it is not a proper
power of another element. Basic elements are often called primitive in
the literature.

Let |g|B denote the word length of an element g with respect to the
basis B. Let |[g]|B denote the minimum B-length of a conjugate of g.

The Whitehead graph WhB(∗){w} of an indivisible, cyclically reduced
word w ∈ F with respect to a basis B is a graph with vertex set in bijection
with the set B∪B of generators and their inverses. An edge is added from
vertex x to vertex y for each occurrence of xy as a subword of w written
as a reduced cyclic word in the letters B ∪ B.

We can similarly define a Whitehead graph for a finite list of words w.
We will be interested in the conjugacy classes of maximal cyclic subgroups
containing the words of w. Thus, to define WhB(∗){w}, we choose a
minimal set of indivisible, cyclically reduced words v = {vi} so that each
wi ∈ w is conjugate into some 〈vj〉. Then we add edges as above for each
vj . The graph constructed is independent of the choice of the vj ’s.

Whitehead’s algorithm [21] produces a point in the Aut(F ) orbit of w
of minimal B-length. An equivalent formulation for multiwords is that
it chooses a basis B with respect to which WhB(∗){w} has the minimal
number of edges.

The Whitehead graphs we deal with will not always be connected, so
we make the following definitions.

Definition 2.1. A cut point of a graph is a point such that deleting it
increases the number of connected components. A cut vertex is a vertex
that is a cut point.

Definition 2.2. We say a graph has 2-connected components if every
connected component is 2-connected, that is, does not contain a cut point.

A special case of Menger’s Theorem [14] says a graph without cut
points has 2-connected components.

The next lemmas are easy exercises with Whitehead’s algorithm.

Lemma 2.3. A Whitehead graph with a cut vertex is not minimal.

Lemma 2.4. A Whitehead graph with a valence one vertex labeled x is
not minimal unless x and x are joined by an isolated edge.
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Lemma 2.5. Every non-trivial component of a minimal Whitehead graph
is either 2-connected or an isolated edge joining a vertex to its inverse.

Lemma 2.6. Each word in a multiword contributes edges to only one
component of a minimal Whitehead graph.

For a fixed basis B, the Cayley graph of F with respect to B is a
tree T . The Whitehead graph can be generalized to a Whitehead graph
WhB(X ){w} over a compact subtree X of T . The vertex set is indexed
by the elements of F that are adjacent to X in T . Vertices labeled u
and v are connected by an edge for each w-orbit of uv as a subword of
some power of w. One way to imagine this is that there is some cyclic
permutation w′ of w so that if you start from the vertex u in T and
follow the edge path that repeatedly spells out the word w′, eventually
you arrive at the vertex v. Thus, WhB(X ){w} records the “line pattern”
that conjugates of 〈w〉 make as they pass through X . See [5] and [4] for
more on line patterns and generalized Whitehead graphs.

The classical Whitehead graph WhB(∗){w} is the generalized White-
head graph such that the subtree X is just the identity vertex ∗ ∈ T .

Jason Fox Manning [13] shows that generalized Whitehead graphs can
be constructed from classical Whitehead graphs by a construction called
splicing. It is an easy observation that splicing connected graphs with
no cut vertices produces a connected graph with no cut vertices. This
observation gives us the following generalization of Lemma 2.5, which
will be used later as an inductive step in building detours.

Lemma 2.7. If WhB(∗){w} has 2-connected components, then for every
compact subtree X ⊂ T , the generalized Whitehead graph WhB(X ){w}
has 2-connected components.

2.2. Quasi-trees.

The terms in this section are standard (see, for example, [3].) The
following theorem gathers together various characterizations of virtually
free groups.

Theorem 2.8 (Geometric Characterization of Virtually Free Groups).
Let G be a finitely generated group. Let X be a proper geodesic metric
space quasi-isometric to G. The following are equivalent:

(1) G is virtually free: It has a finite index free subgroup.
(2) G has a finite index normal free subgroup.
(3) G decomposes as a graph of virtually free groups with finite edge

groups.
(4) G decomposes as a graph of finite groups.
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(5) X is a quasi-tree: There is a simplicial tree Γ and a (λ, ε)-quasi-
isometry φ : X → Γ.

(6) (Bottleneck Property) There is a constant ∆ > 0 so that for all
x and y in X, there exists a midpoint m such that d(x,m) =
d(y,m) = 1

2d(x, y) and such that any path from x to y passes
through N∆(m).

(7) (Bottleneck Property ′) For any K ≥ 1 and any C ≥ 0, there is
a ∆′ = ∆′(K,C) ≥ 0 so that for any x and y in X, any (K,C)-
quasi-geodesic segment γ joining x to y, and any continuous path
p from x to y, we have γ ⊂ N∆′(p).

(8) X is hyperbolic and the natural map from ∂X onto Ends(X) is a
bijection.

Proof. Item (2) follows easily from (1).
The equivalence of (1) and (4) is a theorem of A. Karass, A. Pietrowski,

and D. Solitar [10], using Stallings’ Theorem [18].
Item (3) is a variant.
Item (4) implies (5) since G acts properly discontinuously and cocom-

pactly on the Bass–Serre tree of the graph of groups decomposition.
The Bottleneck Property (6) is due to Manning, who shows [12, The-

orem 4.6] the equivalence of (5) and (6).
Condition (7) is a different version of the bottleneck property. It is just

a coarsening of the fact that for any two points x and y in a simplicial
tree, there is a unique geodesic [x, y] joining them, and any path p joining
x to y necessarily contains [x, y].

That (5) =⇒ (7) is proven by pushing γ and p forward to Γ with
φ, applying this fact, and then pulling back to X using a quasi-isometry
inverse of φ.

That (7) =⇒ (6) is proven by taking a geodesic segment γ joining
x to y and taking m to be the midpoint of γ. Item (6) follows with
∆ = ∆′(1, 0).

If X is a quasi-tree, it is hyperbolic and has a well-defined boundary
at infinity. Item (7) shows that no two boundary points lie in the same
end; thus, (5) implies (8).

Finally, ifG is finite, the theorem is trivially true, and if it is infinite and
(8) holds, then ∂X and Ends(X) have at least two points. By Stallings’
Theorem, G splits over a finite group, and by Dunwoody’s Accessibility
Theorem [7], there is a graph of groups decomposition of G over finite
groups so that all of the vertex groups are either finite or one-ended. A
one-ended vertex group would violate condition (8), however, soG satisfies
condition (4). �
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To show something is not a quasi-tree, we will show that it is possible to
detour around some bottleneck point, violating condition (7). Formally:

Corollary 2.9. A geodesic metric space X is not a quasi-tree if there
exists a quasi-geodesic γ : R → X and an increasing sequence (ti) of
positive integers such that γ(−ti) and γ(ti) can be connected by a path
that does not enter Ni(γ(0)).

2.3. Geometric models.

In the torsion free case we build a Bass–Serre complex X for G =
A ∗C B as follows (the HNN case is similar). Let KA be a rose with
π1(KA) = A, and, similarly, let KB be a rose for B. Let KC = S1 × [0, 1]
be an annulus with π1(KC) = C. Build a space K with π1(K) = G
by gluing one boundary component of KC to KA according to the edge
injection C ↪→ A, and, similarly, glue the other boundary component to
KB . Let X = K̃. See [16] and [15] for details.

A vertex space is a connected component in X of the preimage of KA
or KB . In our case, these are copies of Cayley trees for A and B. An
edge strip is a connected component of the preimage of one of the KC :
a bi-infinite, width 1 strip. The quotient map that collapses each vertex
space to a point and each edge strip to an interval gives a G-equivariant
map from X to the Bass–Serre tree of the graph of groups decomposition
of G, so we call X the Bass–Serre Complex.

The edge strips glue onto the vertex spaces along conjugates of the
image 〈w〉 of the edge inclusion. Thus, the Whitehead graph for w, or for
{w1, w2} in the HNN case, records the intersection pattern of edge strips
in a vertex space.

We will refer to paths that remain within a single vertex space as
horizontal, and paths that go directly across an edge space as vertical.

In the presence of torsion, we can use the same construction to build
a Bass–Serre complex, but the vertex and edge spaces may not be so
nice. However, in the proof we will only need the fact that G and X
are quasi-isometric, not that G acts nicely on X. Thus, we can make a
trade: We will build a “nicer” space X ′ quasi-isometric to G, but sacrifice
the G action to do so. To do this we will choose finite index normal free
subgroups A′ and B′ of A and B, respectively. Fix bases for each of these,
and replace each A-vertex space in X by a copy of the Cayley tree for A′,
and similarly for B. Each edge strip of X glues on to an A-vertex space
and a B-vertex space along coarsely well-defined lines, and we can use
quasi-isometry inverses to the inclusion maps A′ ↪→ A and B′ ↪→ B to
give lines in the X ′ vertex spaces to attach edge strips to (see Equation
4.1). The resulting space X ′ is a coarse Bass–Serre complex (see [15,
section 2.6]).
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3. Proof of Theorem1.1

We now proceed with the proof of Theorem 1.1, handling the amalga-
mated product and HNN extension cases separately.

3.1. Amalgamated product case.

First, consider G = A ∗〈w〉 B. Choose a basis for the minimal free
factor ŵA of A containing w such that w has minimal length, and extend
it arbitrarily to a basis BA of A. Let KA be the rose with rank(A) petals
in bijection with BA. Repeat the construction for B.

Metrize KA so that the edges have length |[w]|BB . Metrize KB so that
the edges have length |[w]|BA . Let KC be a height 1 right annulus with
boundary circles of length |[w]|BA · |[w]|BB . With these choices, the vertex
spaces and edge strips are isometrically embedded in the corresponding
Bass–Serre complex X.

Choose a basepoint γ(0) in an A-vertex space Xα. Define a map
γ : |[w]|BAZ → X by γ(|[w]|BA · t) = wt.γ(0), and extend linearly to get
a map from R. To satisfy Corollary 2.9, it suffices to take the sequence
(ti = |[w]|BA · i). To see this, for each i > 0, we construct a path pi joining
γ(−ti) to γ(ti) that stays outside Ni(γ(0)).

Fix any i > 0. Take the 0th approximation qi0 to pi to be the subseg-
ment of γ connecting γ(−ti) to γ(ti). This goes through Ni(γ(0)).

We will inductively push out the approximations of pi until we leave
Ni(γ(0)), thereby creating a detour. Depending on X, we can push ver-
tically or horizontally.

First, suppose that w is divisible in A. In this case, for any line in
Xα to which an edge strip attaches, there are at least two edge strips
attached. Construct qi1 from qi0 by pushing the segment vertically across
one of the edge strips that it lies on the boundary of. That is, replace the
horizontal segment qi0 along one boundary of the edge strip by a path
that goes vertically across the edge strip, horizontally across the opposite
side, and then vertically back.

The vertical segments of qi1 lie outside Ni(γ(0)). The horizontal seg-
ment may not, but it has at least moved distance one farther away from
γ(0) than qi0. This new horizontal segment lies in a B-vertex space. Now,
if w is also divisible in B, then there are at least two edge strips that at-
tach to the line we have just arrived on. Thus, we can push the horizontal
segment vertically across an edge strip different from the edge strip that
we used in the previous step, so that the horizontal segment gets farther
from γ(0). Continuing in this way, the vertical segments always stay out-
side Ni(γ(0)), and after i steps, the horizontal segment is also outside
Ni(γ(0)).
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If w is indivisible we must also push horizontally. Suppose w is indi-
visible in A. By Lemma 2.6, WhBA(∗){w} has one non-trivial connected
component. If 〈w〉 is not a factor, then the non-trivial connected com-
ponent is not an isolated edge, so by Lemma 2.5, WhBA(∗){w} has 2-
connected components. Note that since Xα is isometrically embedded,
Xα ∩Ni(γ(0)) is just the i-ball NXα

i (γ(0)) in Xα in its own natural met-
ric (the one lifted from KA). The two vertices u and v in Ni(0) ∩ γ are
adjacent in WhBA(NXα

i (γ(0))){w}; they are connected by an edge e cor-
responding to a segment of qi0. By Lemma 2.7, WhBA(NXα

i (γ(0))){w}
has 2-connected components, so there is another path connecting u and v,
an edge path e1, . . . , ek that does not use the edge e. Each edge ej corre-
sponds to a geodesic segment in Xα joining vertices outside of NXα

i (γ(0)).
Construct

_
q i0 from qi0 by replacing the e-segment by the segments com-

ing from the alternate path in the generalized Whitehead graph.
Each of the new horizontal segments has endpoints u′ and v′ outside

of the ball Ni(γ(0)). Furthermore, each of these new segments has an
edge strip attached along it. Construct qi1 from

_
q i0 by pushing each

horizontal segment vertically across an edge strip. As in the previous
case, the vertical segments of qi1 stay outside Ni(γ(0)), and the horizontal
segments move farther from γ(0).

The new horizontal segments lie in B-vertex spaces. We can continue
the construction if it is possible to push each of these segments vertically
or horizontally without pushing back across an edge strip that was already
crossed. Thus, we would like to know that each of these segments is on
the boundary of two edge strips or that WhBB (∗){w} has 2-connected
components. If 〈w〉 is not a factor of B, then one of these is true.

Thus, if 〈w〉 is a factor in neither A nor B, we can push γ out of
any Ni(γ(0)), so X is not a quasi-tree, so A ∗〈w〉 B is not free (not even
virtually free).

3.2. HNN extension case.

Let G = A∗C =
〈
A, t | tw1t = w2

〉
, where w1 and w2 are words in A.

The edge injections are the maps C
∼=−→ 〈wi〉.

If w1 and w2 are conjugate into a common maximal cyclic subgroup,
then G contains a Baumslag-Solitar subgroup, so it is not free. Otherwise,
the vertex spaces are quasi-isometrically embedded, and we may repeat
the construction from the amalgamated product case.

Take ti large enough so that d(γ(±ti), γ(0)) ≥ 2i. If there is an initial
horizontal push, take the new set of vertices to also lie outside N2i(γ(0)).
A vertical segment from such a vertex may lead closer to γ(0), but stays
outside N2i−1(γ(0)). Make sure the next round of horizontal pushing
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gives vertices outside of N2i−1(γ(0)), so that the next vertical segments
stay outside N2i−2(γ(0)), etc. Ni(γ(0)) still reaches across at most i− 1
edge strips, so at the ith stage, all vertical and horizontal segments lie
outside Ni(γ(0)).

If w1 and w2 are both divisible, then we only need to push vertically,
as before, to avoid the bottleneck point, so G is not virtually free.

Otherwise, choose a basis B so that the Whitehead graph for w =
{w1, w2} is minimal. Recall that by definition, WhB(∗){w} = WhB(∗){v}
where v = {v1, v2} such that v1 and v2 are indivisible and cyclically
reduced with respect to B, and so that there exists an ai ∈ A such that
wi ∈ ai 〈vi〉 ai. We may assume a1 is trivial.

There are two possibilities. Either WhB(∗){v} has only one non-trivial
connected component, or it has distinct components corresponding to v1

and v2. In the first case, the component has more than one edge, so by
Lemma 2.5, WhB(∗){v} has 2-connected components.

In the second case, for each i, either the component containing vi is
2-connected or it is an isolated edge and vi is basic.

Thus, we can repeat the construction to build a path avoiding the
bottleneck point, and G is not virtually free, unless for some i, say i = 2,
we have both

• w2 is indivisible, and
• v2 is basic and gives an isolated edge in WhB(∗){v}.

Now, the second condition implies there is a splitting A = A′ ∗ 〈v2〉
with w1 ∈ 〈v1〉 ⊂ A′. If w2 is indivisible, then w2 = a2v2a2 (after possibly
exchanging v2 and v2), so

A = A′ ∗ 〈v2〉 = A′ ∗ a2 〈w2〉 a2.

Thus, G is not free unless, up to A-conjugation, the edge injections
map C into independent factors, and one of them is onto.

4. Factors

To prove the theorem with torsion, we will need a characterization
of when an infinite subgroup is a factor. Recall this means that the
subgroup appears as a vertex group in a graph of groups decomposition
with finite edge groups. We make use of some results about the boundaries
of relatively hyperbolic groups due to B. H. Bowditch [2] and Daniel
Groves and Manning [8].

A collection of subgroups H = {H1, . . . ,Hk} is an almost malnormal
collection if |gHig ∩Hj | =∞ implies i = j and g ∈ Hi.

If G is a finitely generated hyperbolic group and H is an almost mal-
normal collection of infinite, finitely generated, quasi-convex subgroups,
then G is hyperbolic relative to H [2, Theorem 7.11]. There is a relatively
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hyperbolic boundary of (G,H) that we will denote DH . This can be seen
as the boundary of the “cusped space” obtained from G by hanging a
horoball off each conjugate of each of the Hi’s [8]. The effect of this is to
collapse the embedded image of each boundary of a conjugate of an Hi

to a point. Thus, DH is the decomposition space that has one point for
each distinct conjugate of each Hi and one point for each boundary point
of G that is not a boundary point of some conjugate of an Hi.

We say that G splits relative to H if there is a splitting of G so that
each Hi is conjugate into a vertex group of the splitting. It is easy to
see that corresponding to each edge in the Bass–Serre tree of a splitting
of G over a finite group relative to H, there is a pair of complementary
nonempty clopen sets of DH . Moreover, there is an analogue of Stallings’
Theorem: G splits over a finite group relative to H if and only if DH is
not connected [2, Proposition 10.1].

Proposition 4.1. Let H be an infinite subgroup of a finitely generated
hyperbolic group G. Then H is a factor of G if and only if H is finitely
generated, quasi-convex, almost malnormal, and the connected component
of DH containing the image of ∂H is a single point.

Proof. The “only if” direction is easy. For the converse, suppose H is not
a proper factor of G. We will show H = G.
H is infinite, so there is a unique minimal factor containing it. A

factor of a factor is a factor, since finite groups act elliptically on any
tree; therefore, we may assume H is not contained in a proper factor of
G. This means that G does not split relative to H, so DH is connected.
Since the component containing the image of ∂H is a single point, all of
DH is a single point. This means the inclusion of H into G induces a
homeomorphism between ∂H and ∂G. Since H is finitely generated, this
implies that H is a finite index subgroup of G. However, H is almost
malnormal, so the index must be one. �

Corollary 4.2. Let H be an infinite subgroup of a finitely generated vir-
tually free group G. Then H is a factor of G if and only if H is finitely
generated and almost malnormal, and DH is totally disconnected.

Proof. Since G is virtually free, H is a factor if and only if G has a
graph of groups decomposition such that H is a vertex group and all
other local groups are finite. The components of DH in this case are
singletons for each conjugate of H and each end of the Bass–Serre tree of
the splitting. �

Proposition 4.3. Let H = {H1, H2} be an almost malnormal collection
of infinite, finitely generated, quasi-convex subgroups of a hyperbolic group
G. Up to conjugation, H1 and H2 are contained in independent factors of
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G if and only if the component of DH containing the image of ∂H1 does
not contain the image of the boundary of any conjugate of H2.

Proof. The “only if” direction is easy. For the converse, for each i, let Ĥi

be the smallest factor containing Hi. The image of ∂Ĥi is a connected
component ofDH . The hypothesis then implies that {Ĥ1, Ĥ2} is an almost
malnormal collection whose decomposition space is not connected. Pass
to a maximal graph of groups splitting of G over finite groups relative to
{Ĥ1, Ĥ2}. The hypothesis implies that Ĥ1 and Ĥ2, hence H1 and H2, are
conjugate into different vertex groups of this splitting. �

4.1. Virtually cyclic factors of virtually free groups.

In this section, let H be an almost malnormal, virtually cyclic sub-
group of a finitely generated virtually free group G, and let F be a finite
index normal free subgroup of G. We relate connectivity of DH to con-
nectivity of Whitehead graphs.

Choose representatives gi so that G =
∐
Fgi. The map ι : G →

F : fgi 7→ f is a quasi-isometry inverse to the inclusion ι : F ↪→ G.
Let 〈w〉 = F ∩ H. This is a maximal cyclic subgroup of F since H is
almost malnormal. Let di be double coset representatives of F\G/ 〈w〉.
Let w = {diwdi}.

Definition 4.4. The multiword w = {diwdi} above is a lift of H to F .

For every g ∈ G, there exist f ∈ F , gi, dj , and f ′ ∈ F such that
g = fgi ∈ f ′dj 〈w〉. Thus, ι coarsely takes each G-conjugate of H to an
F -conjugate of some

〈
djwdj

〉
:

ι(gHg) = ι(fgiHgif)
c
= ι(fgi 〈w〉 gif)

= ι(f ′dj 〈w〉 djf ′) = f ′
〈
djwdj

〉
f ′

(4.1)

(The second equivalence is coarsely true.) It follows that DH is home-
omorphic to the decomposition space of the boundary of F obtained from
the almost malnormal collection {

〈
diwdi

〉
}, which we shall denote by Dw.

Thus, to decide if DH is totally disconnected, we can lift the problem to
F and consider Dw.

Remark 4.5. We took F to be normal so that w would have a nice
form, but lifting to any finite index subgroup gives a homeomorphism of
decomposition spaces.

Lemma 4.6. Let w be a multiword in a free group whose elements gener-
ate distinct conjugacy classes of maximal cyclic subgroups. The following
are equivalent:

(1) w is basic.
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(2) Some minimal Whitehead graph for w consists of isolated edges.
(3) Every minimal Whitehead graph for w consists of isolated edges.
(4) Dw is totally disconnected.

Proof. Using Whitehead’s algorithm, the equivalence of (1), (2), and (3)
is easy.

If w is basic we may take a graph of groups decomposition of F with
finite edge groups whose cyclic vertex groups are generated by conjugates
of the words in w. The same argument as Corollary 4.2 shows that Dw is
totally disconnected. Thus, (1) implies (4).

Suppose (3) is false, so that some minimal Whitehead graph has a
component containing more than one edge. By passing to a free factor
we may assume that the Whitehead graph is connected. Since it has 2-
connected components, this is not a rank one factor. It follows that the
decomposition space of the factor is connected and not a single point (see,
for example, [5, Theorem 4.1]), so Dw is not totally disconnected. Thus,
(4) implies (3). �

Lemma 4.7. Let w = {diwdi} as above be a lift of H to F . The following
are equivalent:

(1) H is a factor of G.
(2) w ⊂ F is basic.
(3) Every minimal Whitehead graph of w consists of isolated edges.
(4) Some minimal Whitehead graph of w contains an isolated edge.
The alternative is that every minimal Whitehead graph of w has 2-

connected components.

Proof. The alternative follows from Lemma 2.5.
Suppose some minimal Whitehead graph for w contains an isolated

edge. Such an isolated edge would mean that for some i, the point
(diwdi)

∞ is an isolated point in Dw. Since Aut(F ) acts transitively on
w and by homeomorphisms on Dw, this would imply that Dw is totally
disconnected. By Lemma 4.6, this is equivalent to w being basic and also
to every minimal Whitehead graph consisting entirely of isolated edges.
Furthermore, DH and Dw are homeomorphic, and Corollary 4.2 says that
H is a factor if and only if DH is totally disconnected. �

Example 4.8. G = Z/2Z ∗ Z/3Z has no virtually cyclic factors.

Proof. Let G =
〈
r, s | r3 = s2 = 1

〉
. There is a rank 2 normal free sub-

group F =
〈
srsr2, sr2sr

〉
, and G/F = 〈[sr]〉 = Z/6Z. The action of sr

on the abelianization of F has orbits of size 3 on lines through the origin.
Thus, the words in the lift of any virtually cyclic group H to F are not
contained in fewer than three distinct conjugacy classes of maximal cyclic
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subgroups. A basic multiword in F2 has words in at most two conjugacy
classes of maximal cyclic subgroup, so, by the previous lemma, H is not
a factor. �

5. Proof of Theorem 1.2

Let G = A ∗C B be an amalgamated product of virtually free groups
over a virtually cyclic group.

CommA(C) = {a ∈ A | aCa ∩ C has finite index in both C and aCa}
is the commensurator of C in A. A theorem of Ilya Kapovich and Hamish
Short [9, Theorem 1] says that an infinite, quasi-convex subgroup of a hy-
perbolic group has finite index in its commensurator. Since C is virtually
cyclic, so is CommA(C), and CommA(C) = {a ∈ A | |aCa ∩ C| = ∞}.
Thus, CommA(C) is the smallest almost malnormal subgroup of A con-
taining C.

Choose a finite index normal free subgroup A′ of A. Let 〈w〉 = A′ ∩
CommA(C), and let wA = {diwdi} be a lift of CommA(C) to A′. Choose
a basis for A′ with respect to which wA is Whitehead minimal. After
making similar choices for B, let X ′ be the coarse Bass–Serre complex for
G described in section 2.3.

The number of edge strips attaching to a given conjugate of a
〈
diwdi

〉
in A′ is equal to the index of C in CommA(C).
X ′ is a tree of trees glued together along bi-infinite, width 1 edge strips

just as in the torsion free case, and we repeat the previous argument to
show that X ′ is not a quasi-tree if, for each line in A′ and B′ to which an
edge strip attaches, either

• there is a second edge strip attached to that same line, or
• we can follow different edge strips to detour around an arbitrarily

large ball centered on that line.
Now suppose C is not a factor of A. It could be that C is not almost

malnormal in A, in which case the first condition above is satisfied for A.
If C is almost malnormal and not a factor of A, then by Corollary 4.7,
every minimal Whitehead graph for a lift of C = CommA(C) to A′ has
2-connected components. This gives us the second condition.

Thus, if C is a factor of neither A nor B, then X ′ is not a quasi-tree,
so A ∗C B is not virtually free.

TheG = A∗C case follows by making similar adjustments to the torsion
free HNN case. The interesting case is when the images C1 and C2 of C
in A form an almost malnormal collection. Proposition 4.3 shows that if
C1 and C2 are not, up to conjugation, contained in independent factors,
then the images of ∂C1 and some ∂gC2g are contained in a common
component of D{C1,C2}. Since {C1, C2} is an almost malnormal collection,
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this component is not a singleton, so D{C1,C2} is not totally disconnected.
It follows that a minimal Whitehead graph for a lift of {C1, C2} to a finite
index normal subgroup of A will have 2-connected components, so G is
not virtually free.
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